
18-500 Final Project Report: Team B-2 10/14/2022

1

Abstract—For centuries, pianos have been used to play music.

“Player pianos”, containing mechanisms that allow them to sound
without human control, were first introduced in the late 19th
century. This mechanism allows the instrument to be freed from
its traditional constraints: the number of frequencies produced is
no longer limited to a meager number of ten fingers.

Index Terms—Signals and Systems, Embedded Systems,
Internet of Things

I. INTRODUCTION
his project seeks to take advantage of player pianos to
simulate human speech. Human speech is made up of
many frequencies, and enough keys - and their

frequencies - combined can reproduce speech with high
enough fidelity that a player piano can speak and be
understood. Different modules of this project will come
together to translate the phonemes of human speech into timed
key presses on a piano. The audio processing module will
receive audio input. This input information will be sampled
for different frequencies and amplitudes. A smooth average
will be taken at each frequency that corresponds to a piano
key. We will repeat this at each time period. The key
scheduling module will thus take the output of the audio
processing module and use the time and amplitude
information to determine the keys that need to be played at
different times.

We were inspired by the work of Mark Rober, who showcased
on his Youtube channel a talking piano implemented on an
Edelweiss self-playing piano. Outside of simulating speech,
this project allows musicians more opportunities for
expression by allowing them to overcome the physical
constraints of ten human fingers. Such arrangements are useful
for playing music not written for the piano, as well as
exploring options in avant-garde genres.

We were inspired by the pianolizer project created by
Stanislaw Pusep for our virtual piano implementation, on an
aesthetic and logistic level. Our virtual piano took inspiration
from this project on several fronts. Firstly, the keys light up as
they’re actuated, to help the audience visualize what is being
played. Secondly, we also implemented the ability to select
between several recordings, ie. the past inputs to allow the
user to compare different audios.

II. Use-Case Requirements
There are four major requirements for our use-case

scenario. The first thing we need access to is recordings of our
users' voices. To achieve this, we’ll build a user interface into
our web application that allows users to record their voice and
send it to the backend. For the user experience to be
pleasurable, our UI needs to have a ~200ms end-to-end
latency. This means that for any user interaction, there should
be at most 200ms before any new actions can be taken, for
example, listening to the post-processed audio produced from
a user’s voice recording. We derived this number based on
conventional advice regarding user response. Usually, 100ms
is a limit for the user’s flow of thought to stay uninterrupted
and for the user to feel that the system is instantaneous. Since
our recording system is not real-time like a website, we had
leeway in this regard; we decided that 200ms is a reasonable
time for a non-real-time response to feel smooth and
acceptable.
Next, with the recording audio of a user’s voice, we need to
extract the frequencies that make a user’s speech. We need to
gather information on how these frequencies change
throughout time to generate a sequence of keys to be played.
To achieve this, we divide the incoming audio into ‘windows’
which we can use to see how the frequencies of a user’s voice
change with time. A metric of success for this requirement
involves being able to accurately estimate the frequencies and
amplitude of each frequency within a user’s speech for each of
those time “windows”. We decided that an 80% estimation
accuracy for these frequencies and amplitudes would ensure
our audio processing transformation introduces as little error
as possible. Once we have a description of the keys we need to
play on the piano, those notes need to be scheduled over time,
onto a physical device so that the piano keys are played
correctly. Errors introduced in our implementation of this
requirement can affect the intelligibility of our piano’s output.
Inaccurate timing in our scheduler will affect the timing of
syllables the piano needs to produce, by delaying, elongating,
or speeding up syllables. To mitigate these errors, we’ve
decided that our scheduler should miss less than 5% of timed
syllables. This will ensure that any errors in timing will not
affect the entirety of our system's output.

Lastly, we need to implement a virtual piano that will
actuate the keys and produce the sounds we aim to recreate.
The success and accuracy of this requirement encapsulate the
overall performance of our system’s pipeline. Since there is a
much smaller range of notes possible with a piano, we
understand that the output of our piano will never be an exact
copy of a user’s speech. Therefore, we’re requiring our

Sing us a song, you’re a piano pi!

Marco Acea, Angela Chang, John Martins

Department of Electrical and Computer Engineering, Carnegie Mellon University

T

18-500 Final Project Report: Team B-2 10/14/2022

2

physical device to have an 80% fidelity rate. In other words,
the output speech of our piano should be intelligible to a user
80% of the time.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
While planning our overall system architecture, we realized

the importance of modularity within the different subsystems.
Allowing each subsystem to treat the others as black-boxes
creates an opportunity to isolate subsystem tests and
debugging with simulated inputs/outputs. We’ve grouped our
subsystems into 4 main areas: user interface, audio processing,
note scheduling, and physical performance. Figure 1 illustrates
how the subsystems interact with each other. Our system
begins in the user interface, where users will interact with our
web server via a browser on their personal devices. The user
will be able to record audio files in-browser or choose
amongst previously recorded files to play on the piano. The
user interface handles obtaining the audio recording file, as a
.wav file, and passes it along to the audio processing
subsystem hosted on our backend server. The audio processing
subsystem converts the input audio into the collection of
frequencies that make up these sounds across time. The audio
processor then maps the frequencies at each timestamp seen in
the audio recording to the frequencies playable by each key of
the piano and encodes this data in a text file to be sent to the
note scheduler hosted on the backend server. The note
scheduler then processes the data and creates a two-
dimensional list of keys at different timestamps, where each
entry denotes one of: non-movement (0), pressing (a number
representing the volume), or lifting (-1). This is used to inform
the virtual piano of the movement of the keys and how they
will play and lift to create the performance.

IV. DESIGN REQUIREMENTS
As noted in our use-case requirements, we have 4 main

requirements that each influenced the choices we made when
designing our system.

A. Web App Latency
We are requiring that there is a <200ms latency period

between interacting with our web application and noticing a
change in the playing of audio on the piano. To ensure this, we
are hosting our audio processing subsystem on the backend of
our web application on AWS. This will allow us to use the
powerful computers of the AWS EC2 instance to process the
audio very rapidly. This leaves most of our 200 millisecond
latency time for the transmission of data from AWS to the
Raspberry Pi via sockets. We are estimating that this should be
plenty of time since we are condensing the scheduled note
information being sent into simple text files of bits describing
which keys need to be played. To improve our transmission
speeds, we will be testing an optimal balance between the size
and frequency of data packets to minimize sending times.
Lastly, the Raspberry Pi will immediately begin sending the
received stream of bits to the shift registers to get played by
the solenoids.

B. Frequency and Amplitude Extraction Accuracy
We understand that there will be some inevitable loss when

translating the frequencies of the human voice to the finite and
relatively small number of keys on a piano. To make sure we
are maximizing the ability to play the voice as close to the
original recording as possible, we need to ensure that we are
extracting the frequencies and amplitudes from the recording
as correctly as possible. We have chosen an 80% accuracy
rating for the extraction of frequencies and their amplitudes as
described in section N. This information is extracted from the
voice recording by first splitting the recording into several
windows of time and then processing each window through a
Fourier transform, which converts the recorded data from
amplitude across time to amplitude across frequency. We will
be running tests to figure out the most optimal time window
for our Fourier transform such that the accuracy of the
frequencies and amplitudes extracted is maximized.

C. Note Scheduling Accuracy
Next, we want to design our system to schedule notes to

miss or incorrectly play less than 5% of the syllables spoken in
the voice recording. Human speech, in English, is typically
spoken at 10 to 15 phonemes (distinct sounds), or 4 to 7
syllables, per second [3][4]. As our system seeks to emulate
human speech, our rate of producing sounds should not differ
much from this rate. Typically, a piano key on an analog
upright piano can be pressed up to 15 times per second. This
limitation comes from the mechanism that moves the piano’s
hammers to its strings, known as the action. We will be using
a digital piano, which does not have an action. However,
digital pianos are programmed to resemble analog pianos as
much as possible, and thus we will still use 15 times per
second as a limitation for our piano. We have tested the
maximum actuation rates of some test 5N solenoids and found
that they can actuate at rates up to 16 Hz. Since the solenoids
can fire up to 16 times per second, we will be able to create up
to 16 distinct sounds in 1 second, allowing us to capture the
upper bound speeds of typical English speech.

D. Fidelity Rate of Final Piano Playback
Lastly, we are aiming to achieve an 80% fidelity rate,

meaning that 80% of the words spoken in the original voice
recording will be able to be identified when listening to the
piano playback. To ensure this, we must be able to play the
correct frequencies at the right volume levels at the right
times. To ensure correct frequencies can be played in the first
place, we start with the frequency range of human voices. We
found that the fundamental frequency for human voice can be
as low as 85Hz and that telephone communication captures at
frequencies up to 4000Hz. This gives us a good approximation
of the range of human voices. By applying the equation on
figure 2. We found that to capture the ranges of the human
voice, we need all the keys from 20 (82Hz) to 88 (4186Hz).

Figure 1: n is the nth key of the piano starting
from the leftmost key of an 88-key piano

18-500 Final Project Report: Team B-2 10/14/2022

3

Next, we need to make sure that we can most accurately

map the frequencies obtained from our Fourier transform to
the frequencies playable by the piano keys so that we can best
determine which piano keys are needed to play a particular
sample of the voice recording. To do this, we will be
implementing audio blurring. This involves taking surround
frequencies around the frequencies of each piano key,
averaging their amplitudes and weighting them by how distant
they are from the frequency of the piano key, and determining
if this average passes a threshold determining that the key
should be played. For example, in the case where the voice
audio file contains weak amplitudes at exactly the frequency
of note A4 of the piano (440Hz), but contains strong
amplitudes at frequencies 437, 439, and 445, we will be able
to capture these surrounding frequencies and determine that
the note A4 should indeed be played to capture the slightly
different frequencies. On top of that, humans are only able to
discern a > 1% frequency difference between two tones.
To best reproduce the amplitude of each frequency that makes
up any given sample of the voice recording, we will be
encoding the bits sent to the solenoids with a PWM signal,
allowing us to control the volume at which the keys are
pressed.

V. DESIGN TRADE STUDIES

A. Virtual vs. Physical Piano Performance
One of the biggest challenges when initially designing the

scope and specifications of our project was determining
whether we would be recreating the processed speech virtually
through a virtual piano interface or physically with solenoids
pressing keys on a real piano. We understood that building a
physical key pressing system would introduce a lot of
complexity and potentially cause us to focus on mechanical
systems that were out of the scope of our ECE-focused design
requirements. After deliberate research and preliminary design
of the circuitry and hardware needed to create the physical
system, we decided that we would attempt to create the
physical performance interface, and fall back to implementing
the virtual performance interface if the physical system
presented too many issues or troubles focusing on mechanical
areas. This choice influenced several other design choices (as
in the following section), and to plan around this fallback, we
also derived a proof-of-concept design that we would build
and test to help determine the feasibility of building the entire
physical interface. Our main drive for developing this physical
interface lay in providing the user with the most engaging
experience possible in seeing how the piano can be used,
outside the possibility of human players, to recreate speech
and extend the realm of the typical use of pianos. We also
coordinated efforts with Benjamin Opie, an electronic music
professor here at CMU, to be able to have access to the digital
piano practice room for the testing of our designs.
Just recently, we implemented our proof-of-concept design
consisting of wiring up 3 5N solenoids connected to shift
registers and MOSFETs for actuation. We were successfully
able to actuate the solenoids in customized patterns based on
serial bit streams inputted to the shift registers and outputted,

in parallel, to the solenoids. This test helped us determine our
power consumption and strategy when scaling this up to the
full, 69-key system.

B. Parallelization of Audio Processing
The first major design trade study that we analyzed in our

system pipeline was with respect to the parallelization of the
audio processing. With our methodology of performing the
Sliding Discrete Fourier Transform (SDFT), we are processing
the amplitude of frequencies for each individual note of each
time stamp across the time of the whole audio file. What this
means is that we need to go key by key on the piano and
process the amplitude data for each, thus resulting in a higher
latency computation that runs through each note one by one.
In order to combat this, we considered parallelizing the
computation across multiple processors such that each one
could process fewer notes and ultimately finish the
computation faster, however this would also result in much
higher memory usage and latency is transferring the large
arrays of data between each processor and memory. This also
proved to be very complex to implement given how the
programs were stored in the web app backend and it was much
more expensive to implement through Amazon Web Services
(AWS) since we needed an instance that had many CPU cores.
On the other hand, implementing our program sequentially,
meaning it runs on one CPU locally on our laptops, was much
simpler to program and ensure the correctness of, but ended up
skyrocketing our latency when computing. In the end, we
chose to implement the sequential version because we wanted
to ensure processing correctness and ease of implementation
over potentially erroneous and complex code and faster
processing computation. Based on our baseline user
requirements, producing a more correct output was more ideal.

C. Web-Hosted vs. Hardware
When we were deciding where we would host and store our
programs, we identified we needed 2 main components: a
strong computational unit capable of performing complex
signal processing on incoming voice recording quickly, and a
way to host a fast-responding user interface that could be used
to record audio and interact with the system like
pausing/playing and loading past recordings.
 We first looked at using a Raspberry Pi for both the audio
processing and notes scheduling portion of the system. We
found that what we gained in low data transfer times and
portability, we lost heavily in computing power. We quickly
determined this would not work.
 We next looked at using a Jetson Nano to do the audio
processing, while keeping the Raspberry Pi for the notes
scheduling. In this scenario, we could probably achieve
performance with the stronger computer on the Jetson,
however, we needed to take into account our virtual piano
backup plan in case things didn’t go as we wanted. If we
needed to implement the virtual piano instead, we would need
to transfer the processed audio data and key schedules to
AWS, where the virtual piano would be hosted. On top of that,
this would introduce uncertainty as to where to host our user
interface. If we hosted it locally, users would only be able to
record audio and access the piano system on our local
machines, but we would be able to run commands hosted on

18-500 Final Project Report: Team B-2 10/14/2022

4

our local Jetson much more quickly. If we hosted our user
interface on AWS, this would allow any user to access the
interface on their personal device for recording, however, we
would need to transfer the entire audio file to the Jetson for
processing, which could introduce a large lag time. These
trade-offs brought us to our currently agreed-upon design
choice of hosting the user interface and audio processing on an
AWS EC2 instance and transferring the data to a Raspberry Pi
for playback on the physical piano interface. With these
choices, any user can access the web application on their
personal device for recording. These recordings are seamlessly
sent to the audio processing subsystem also hosted on AWS.
By hosting our audio processing subsystem on AWS, we can
take advantage of the powerful computers of the EC2 instance
to perform the audio processing very rapidly. Lastly, if we
must implement our virtual piano instead of our physical
performance interface, the rest of the subsystems will be
already hosted on AWS, therefore transferring data to the
virtual piano would be optimal. Ideally, if we get this system
toolchain working with our physical piano interface and we
still have time in our project, we will work to migrate the web
app and audio processing to a Jetson to remove any data
transfer lag times and take advantage of the portability of
having a fully hardware-based system.
D. Note Scheduling Decay Model
The next trade off we studied was how to represent the natural
decay of piano notes within our note scheduling module. For
context, the note scheduling module uses a model of the
natural sound decay when a piano note is pressed because the
scheduler needs to determine whether a note that has already
been played needs to either stay pressed down (thus producing
a sound that follows the natural decay), unpressed (thus
indicating a let go of the note and silencing the sound), or
needs to be re-pressed (thus the sound is triggered again at the
specified volume). The selection of which option to choose for
each note at each timestamp comes from analyzing the
amplitude of each piano note frequency at adjacent time
intervals and determining how to react to change in amplitude
of one note frequency from one time stamp to the next. The
tradeoff study here was focused on how accurately we need to
model the decay of piano notes. We started with a naive
approach which simply played each note again and again at
each time sample at the specified volume. This approach was
the simplest to implement and resulted in the most
reproducible, reliable program, however, was quite jittery
sounding and was susceptible to lots of noise. Next, we looked
at modeling a simple exponential decay for each note in which
we would keep track of each note played and predict the
volume of each note in the future timestamps based on this
decay to determine whether the note should continue to be
held down and ring, silenced, or played again. This approach
would help smooth out the jitteriness of the audio, however it
produced complex code, errors, and overall unreliable test
data. Lastly, we thought about modeling a much more accurate
decay for the piano notes based on research papers or even
recording the audio files we had for each piano note and
manually measuring the decay for each. This would prove
very difficult and thus we did not implement this. In the end,
we ended up choosing a hybrid approach of the naive one and

a basic piano decay model. We used the basic model to test
out our program fidelity but ended up using the naive
approach for our final project due to its reliability in
processing and our priorities with making the program output
something successfully.

E. Virtual Piano Note Visualization
The last major design trade-off that we analyzed was how we
would visualize the notes being played by the virtual piano. In
our virtual piano implementation, we planned to have a piano
keyboard visualized on the screen and show which notes are
currently being played that produce the sound that is being
heard by the user. One idea we had was to show the notes
‘raining’ down on the screen as they are played as to show the
current notes, the future notes, and provide an overall more
engaging experience for visualizing the notes. The other

18-500 Final Project Report: Team B-2 10/14/2022

5

approach we had was to simply highlight the keys currently
being played on the piano (as shown in figure 3). In
understanding which idea to implement, we considered our
original user requirements in which we ultimately wanted to
produce the representation of the sound and focus our efforts
on doing that well. So between audio and visuals, the audio
was much more important. For these reasons, we chose to
implement the latter method in which just the notes are
highlighted red to indicate they are being played.
Implementing this method allowed us to focus more efforts on
producing higher quality audio playback and ultimately a
better product as we determined was required by our users.

Figure 3. This shows how we implemented the virtual piano
visualization in our web app. The keys in red are the ones played to
reproduce the sound the user would currently be hearing.

F. Comparing Different Averaging Techniques
To propagate as much information about the frequencies

that make up a user’s voice throughout time, we want to
average those frequencies around the discrete points that
correspond to piano keys. We considered four options, each
proposing more added benefit than the last. The first was to
filter information at the frequencies that correspond to the
piano keys. This approach loses the most amount of data on
what the original frequencies of a user's voice were. However,
this approach offers the benefit of being able to be
implemented in hardware since the number of filters needed
would be small.

Our second approach was to compute a moving average of
all the frequencies before the point where a piano key lies.
This improves on our initial approach but lacks information

about the frequencies that lie after the frequency of a piano
key.

Our third potential solution was to compute an average
using the neighboring points before and after the frequency for
our piano key. We think this is our best bet since this
averaging technique is capable of propagating all of the
original features from the original audio, albeit without the
same resolution.

We considered a weighted neighbors average, where again
we average the neighboring points around the frequency of a
piano key but weigh each neighbor's contribution to the final
average by their distance from the piano key’s frequency.
Although a valid way of averaging our input, it would cause
frequencies lying between any two piano keys to not be
propagated. Therefore, we think that our third approach is our
best attempt at propagating all the information regarding a
user’s voice onto the piano keys.

G. Solenoid Choice
Originally, we were deciding between using 5 Newton

solenoids and 25 Newton solenoids for actuating the piano
keys. Looking at the solenoids available to us, the 5N
solenoids were typically much less expensive and used less
power to run. For our proof-of-concept design of the physical
interface, we ordered 5N solenoids that needed 12V and 1A to
run. We found they got quite hot when left activated for
extended periods of time and that 5N is just barely enough to
actuate a key at an audible level. Another problem with using
5N solenoids is that since they need the full power to actuate
the key, there will be no room for adjusting the volume of the
key press to represent the amplitude differences of each
frequency. Upon further research, we found 25N solenoids
that were at a good price and used a reasonable amount of
power (12V, 1.5A). We will be getting the 25N solenoids as
they will be able to press the keys with ease and have much
more room for adjusting the speed of the key press such that

Figure 2. A diagram of the web application interface design and data flow

18-500 Final Project Report: Team B-2 10/14/2022

6

we can adjust the volume of the key to emulate the amplitude
of each needed frequency.

VI. SYSTEM IMPLEMENTATION

A. Web Application User Interface

Our web application user interface is the subsystem
responsible for supporting controls the user can use to interact
with our system. [Figure 3] On the web app, users will be able
to record audio, upload past recordings, or pause/play the
piano playback. We will be hosting our web app with Django,
a python-based web framework, on an AWS EC2 instance.
Using Django allows us to conveniently integrate our audio
processing and note scheduling into our backend since those
will be written in python as well. On the front-end user
interface, we will be using Bootstrap for a pleasing and simple
design and Ajax to support asynchronous calls to our audio
processing and notes scheduler functions while maintaining
responsive interactions. Audio recordings will be done using
built-in Javascript libraries that will save the file in the .wav
format, a lossless audio format that stores the audio as
amplitude across time. This .wav file will be then sent to the
audio processing subsystem. The pause/play functionality will
be implemented by sending interrupts to the notes scheduler
whenever the user toggles the pause/play of a recording. The
interrupts will contain information that causes the notes
scheduler to either continue or stop sending information to the
Raspberry Pi.

B. Audio Processing
The following implementation details are also

illustrated in figure 3. The audio processing module takes a
recording of a user’s voice as input. For consistency, we chose
to only work with WAV (.wav) audio recordings. The
incoming .wav file is converted into a numpy array
representing the time series data of that audio, as in figure 4.

Figure 4. An example of a time-based audio signal

In order to determine what piano keys to press, we
need information on how the frequencies in our user's voice
change through time. To do this, we use the Sliding Discrete
Fourier Transform (SDFT), which is a recursive
implementation of Discrete Fourier Transform (DFT) that
returns the power found at a specific frequency bin k [5].

Figure 5. The Sliding Discrete Fourier Transform and its inverse

Performing a single DFT on a window of time series
samples would return an array of evenly spaced frequency
bins. However, with a sample rate of 48 kHz and maximum
window size of 3200 samples, which was determined using
the play rate, we cannot extract information about the specific
frequencies that correspond to piano keys. Therefore, given
some frequency F, the signal processing module will find a
window size N smaller than the maximum window size Nmax
such that one of its frequency bins corresponds to the
frequency F.

Figure 6. Computing power at each key throughout time

The audio processing module finds a window size N
and frequency bin index k for each of the 88 piano keys, (Ni ,
ki) With these specific values (Ni , ki) we can create SDFT
Bins (Si), not to be confused with the frequency bins returned
from the DFT. These bins calculate the current power present
(Xk[n]) at its corresponding frequency bin for some time
sample x[n], using the formula for the SDFT shown in figure
5. We parse the original audio array x[n] through each of the
88 SDFT Bins, and then take a simple moving average of the
power present at each play rate sample, which are the
moments in time corresponding to the play rate of 15 Hz. The
result is a two-dimensional matrix, representing the power
present at each piano key throughout time. An illustration of
this process is shown in figure 6 and 7.

Figure 7. Change in frequency throughout time

The note scheduler, and our virtual interface have no
notion of power, therefore the 2-D matrix is normalized using

18-500 Final Project Report: Team B-2 10/14/2022

7

the largest power present throughout time, as shown in figure
8. Note how the shape of the three-dimensional plot is similar,
however the z-axis corresponding to power has been replaced
with note strength.

Figure 8. Normalized Frequencies through time as key strength

As an additional feature of the signal processing module, it
can also return a reconstructed version of the original audio
only using the frequency components represented by piano
keys, as opposed to the broad spectrum of frequencies our
voice can utilize. A plot of the reconstructed audio signal is
shown in figure 9.

Figure 9. Reconstructed Audio

C. Notes Scheduler
We define the notes scheduler as the module that takes

input from the audio processing module and converts it into a
format our physical piano interface can use to create the
replication of human speech. By definition, this requires the
notes scheduler to translate time-indexed arrays of frequencies
and their corresponding amplitudes into presses of piano keys
at different time intervals with an appropriate level of force. In
more specific terms, this module will translate the output of
the audio processing system in the form of a text file with tab-
separated integers. Each line of the file represents a
timestamp, and each column represents a frequency. The
integer at line x and column y represent the volume of
frequency y at time x.

A consideration is that even though an arbitrary frequency,
a, may be active at time t, the piano key does not necessarily
need to be pressed at that time. It may have been pressed
during a previous timestamp and still producing sound.
Therefore, the note scheduler must account for which keys are
already sounding while pressing new ones to produce a
smooth sound that evokes human speech, as opposed to
stuttering, choppy noise. The module will accomplish this task
by computing, for each frequency, the difference between
amplitudes for the current timestamp compared to the previous
timestamp, as well as keeping track of which keys are
currently pressed and for how long. If the frequency is
significantly louder from one timestamp to the next, or if it has
been long enough such that the sound has already faded, the
key will be pressed again. Conversely, if the key is currently
pressed but its amplitude is insignificant, the solenoid will
lift.

D. Physical Performance Scheduler
For the physical performance interface, we will be

implementing a circuit containing a Raspberry Pi as the signal
driving unit, 9 serial-in parallel-out (SIPO) shift registers, 69
MOSFETs, and 69 cylindrical 25N solenoids. Data from the
note scheduler, in the form of a 69-bit value where the nth bit
represents if the nth key will be played or not. This 69-bit
value will be split into 9 Bytes, where each byte will be loaded
into one of the 8-bit shift registers. We will be using 9 GPIO
pins of the Raspberry Pi to serially load the 69 bits into the 9
shift registers in the correct order such that the LSB is the
lowest frequency note and the MSB is the highest frequency.
As the data is being serially loaded into each shift register, a
GPIO pin of the Raspberry Pi drives a shift clock signal to all
of the shift registers such that for each bit sent to the shift
register, the clock outputs a positive edge signal indicating to
the shift registers to intake a bit and shift the values. Once all
shift registers are filled with data (8 clock cycles), a latch
signal is sent from another GPIO pin telling all the shift
registers to output their values in parallel to the 69 MOSFETs.
Each MOSFET acts as a transistor controlling the flow of
current from our 12V power source to the 25N solenoid.

Some specifics: We need to actuate solenoids and produce a
sound with a period of the time window we select for our
audio processing since each of the 69-bit values represents the
notes comprising a particular time window sample of the
audio recording. This means we have to be able to play audio
at a frequency of 1/Tw (Tw = window of time). Since we need
to load 8 bits of our data into the shift registers within each of
those solenoid actuation periods, our bit streams and clock
signals need to be 8 times faster than the solenoid actuation
frequency. This value is given by 8 * (1/Tw). Lastly, to
determine the total power consumption of our system, we
must calculate the power of a single solenoid and multiply it
by 69 since each solenoid will be wired in parallel. For one
25N solenoid, we will need 12V and a maximum of 1.5 A of
current. With this, we will need a 12V supply capable of
outputting ~(1.5 * 69) = ~103 A of current. This would require
a 1200 Watt power supply since power (Watts) is V*I =
~12*100.

18-500 Final Project Report: Team B-2 10/14/2022

8

VII. TEST, VERIFICATION AND VALIDATION
In order to test the accuracy of our Fourier transform

frequency extraction, we wanted to compare the original audio
signal to a reconstructed audio signal using only the frequency
components extracted using the SDFT. We used a qualitative
approach and a quantitative approach. The qualitative
approach was to write the reconstructed audio signal to a
WAV file and listen to it. The reconstructed WAV file was
created by multiplying the reconstructed samples with an
exponential decay function so that the frequencies could be
sustained for long enough like they would be on a piano.
Figure 10 is an example of the original audio, Figure 11 is the
reconstructed audio using the exponential function y=Ae^((-
0.001)x), and Figure 12 uses the exponential decay function
y=Ae^((-0.0001)x). The spectrogram of the reconstructed
audio looks similar to the original spectrogram for most
recordings, even going as far as to propagate the 20kHz noise
band that was introduced by our microphone. Upon listening
to the audio we found that we could hear the user's voice in
the reconstructed audio. Our qualitative approach was to
calculate the average error between two signals, and then
compute the average of these errors for a collection of audio
recordings and their corresponding reconstructed audio. In our
results, there was a large average error, however our
qualitative results gave us confidence that the frequencies we
were extracting were in fact sufficient to hear what a user was
saying. What was most important in being able to hear a user’s
voice making the decay long enough.

Figure 10. The original audio recording

Figure 11. Reconstructed Audio using a y=e^((-0.001)x)

Figure 12. Reconstructed Audio using y=e^((-0.0001)x)

 For the end-to-end delay on actions made on the web app,
the largest delay we found was from the initial processing of a
user’s voice. On average, most recordings were around 5
seconds long, and took around 80 seconds to process. This is
because the input audio is parsed 88 times in order to generate
frequency information for each of the keys on a piano. Had we
implemented parallelism into the processing algorithm, we
expect the average voice recording of 5 seconds to take around
8-10 seconds to be processed, assuming the host machine has
more than 8 cores.

VIII. PROJECT MANAGEMENT

A. Schedule
Through the semester, we initially scheduled our time and
resources with the intention of creating a physical piano
interface using an array of solenoids, shift registers, and a
raspberry pi. We allotted time to order parts, build a proof of
concept, design, and build the final physical product. This was
mostly pushed towards the end of the semester with the
beginning of the semester reserved for implementing the audio
processing pipeline, web app, and note scheduling interface.
We pivoted to a virtual piano implementation about halfway
through the semester, causing us to need to shift all our
schedule and timeline around to account for needing to build
the virtual piano and integrate it in the web app. Luckily, we
had built in a few weeks of slack time such that all the time
allotted for building/designing the physical piano interface
along with this slack time was used for designing and
implementing the virtual piano. We also used this time to
integrate our parts together and fully test our code we could.

18-500 Final Project Report: Team B-2 10/14/2022

9

B. Team Member Responsibilities
1) Angela

Angela was responsible for implementing the note scheduler
that refines the raw frequency data from Marco’s work by
implementing algorithms that use heuristics to determine what
keys to press at what time.

2) John
John was responsible for creating the web app user interface,
integrating the audio processing and note scheduler within the
web app back end, and designing/implementing the virtual
piano interface.

3) Marco
Marco was responsible for creating the audio processing
module, which involved implementing the Sliding Discrete
Fourier Transform library, and a library of functions that
interface with the web app backend.

C. Bill of Materials and Budget
After our shift to a virtual piano interface, our cost of

materials and billing drastically changed. Originally, we had
many physical parts, but now our only expense was AWS
credits for hosting our piano interface. The bill of materials
and costs are shown here:

Please refer to Table 1 for more information.

IX. RELATED WORK
Player pianos have been around for many years, however

only recently have they begun to be built using
electromechanical devices. Edelweiss Pianos sells player
pianos within the range of $20,000 USD. Mark Rober, a
former NASA and Apple engineer, now Youtuber, posted a
video introducing his self-talking piano which inspired this
project.

X. SUMMARY
Our goal is to create a self-talking piano. In order to achieve

this, we’ll record a user’s voice via a web-app based user
interface. Once we have this data, we will extract the
frequencies that make up a user’s voice across time. We will
average these frequencies onto the frequencies that correspond
to piano keys and output that data onto a tab separate file. A
notes scheduler will parse this file and control a series of
solenoids that can actuate the keys on a piano. The result
should be series of notes being played on the piano that mimic
the sound of a human voice.

GLOSSARY OF ACRONYMS

• Play rate, the rate at which the keys on the piano are
being pressed.

• Phoneme, the atomic unit of speech, can be typically
represented by a letter in English.

REFERENCES
[1] World Leaders in Research-Based User Experience. “Response Time

Limits: Article by Jakob Nielsen.” Nielsen Norman Group,
https://www.nngroup.com/articles/response-times-3-important-limits/.

[2]“Piano Key Frequencies.” Wikipedia, Wikimedia Foundation, 29 Aug.

2022, https://en.wikipedia.org/wiki/Piano_key_frequencies.

[3]Haskins Laboratories. (n.d.). Alvin M. Liberman, 82, Speech and

Reading Scientist. Retrieved December 19, 2011, from
http://www.haskins.yale.edu/staff/amlmsk.html

[4]Peelle, Jonathan E., and Matthew H. Davis. “Neural Oscillations Carry

Speech Rhythm through to Comprehension.” Frontiers in Psychology, vol. 3,
2012, https://doi.org/10.3389/fpsyg.2012.00320.

[5] Tutorial | March 28, 2005 the Sliding DFT.
https://www.comm.utoronto.ca/~dimitris/ece431/slidingdft.pdf.

[6] Creaktive. “Creaktive/Pianolizer: An Easy-to-Use Toolkit for Music
Exploration and Visualization, an Audio Spectrum Analyzer Helping
You Turn Sounds into Piano Notes.” GitHub,
https://github.com/creaktive/pianolizer.

18-500 Final Project Report: Team B-2 10/14/2022

10

Item Cost Description

AWS
Credits

$5.00 Credits used to host the AWS instance of our web app used for testing and
attempting to get working by the final demo.

Table 1

