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Abstract—For centuries, pianos have been used to play music. 

“Player pianos”, containing mechanisms that allow them to sound 
without human control, were first introduced in the late 19th 
century. This mechanism allows the instrument to be freed from 
its traditional constraints: the number of frequencies produced is 
no longer limited to a meager number of ten fingers.  
 

Index Terms—Signals and Systems, Embedded Systems, 
Internet of Things 
 

I. INTRODUCTION 
his project seeks to take advantage of player pianos to 
simulate human speech. Human speech is made up of 
many frequencies, and enough keys - and their 

frequencies - combined can reproduce speech with high 
enough fidelity that a player piano can speak and be 
understood. Different modules of this project will come 
together to translate the phonemes of human speech into timed 
key presses on a piano. The audio processing module will 
receive audio input. This input information will be sampled 
for different frequencies and amplitudes. A smooth average 
will be taken at each frequency that corresponds to a piano 
key. We will repeat this at each time period. The key 
scheduling module will thus take the output of the audio 
processing module and use the time and amplitude 
information to determine the keys that need to be played at 
different times. 
 
We were inspired by the work of Mark Rober, who showcased 
on his Youtube channel a talking piano implemented on an 
Edelweiss self-playing piano. Outside of simulating speech, 
this project allows musicians more opportunities for 
expression by allowing them to overcome the physical 
constraints of ten human fingers. Such arrangements are useful 
for playing music not written for the piano, as well as 
exploring options in avant-garde genres. 
 
We were inspired by the pianolizer project created by 
Stanislaw Pusep for our virtual piano implementation, on an 
aesthetic and logistic level. Our virtual piano took inspiration 
from this project on several fronts. Firstly, the keys light up as 
they’re actuated, to help the audience visualize what is being 
played. Secondly, we also implemented the ability to select 
between several recordings, ie. the past inputs to allow the 
user to compare different audios. 
 

II. Use-Case Requirements 
There are four major requirements for our use-case 

scenario. The first thing we need access to is recordings of our 
users' voices. To achieve this, we’ll build a user interface into 
our web application that allows users to record their voice and 
send it to the backend. For the user experience to be 
pleasurable, our UI needs to have a ~200ms end-to-end 
latency. This means that for any user interaction, there should 
be at most 200ms before any new actions can be taken, for 
example, listening to the post-processed audio produced from 
a user’s voice recording. We derived this number based on 
conventional advice regarding user response. Usually, 100ms 
is a limit for the user’s flow of thought to stay uninterrupted 
and for the user to feel that the system is instantaneous. Since 
our recording system is not real-time like a website, we had 
leeway in this regard; we decided that 200ms is a reasonable 
time for a non-real-time response to feel smooth and 
acceptable. 
Next, with the recording audio of a user’s voice, we need to 
extract the frequencies that make a user’s speech. We need to 
gather information on how these frequencies change 
throughout time to generate a sequence of keys to be played. 
To achieve this, we divide the incoming audio into ‘windows’ 
which we can use to see how the frequencies of a user’s voice 
change with time. A metric of success for this requirement 
involves being able to accurately estimate the frequencies and 
amplitude of each frequency within a user’s speech for each of 
those time “windows”. We decided that an 80% estimation 
accuracy for these frequencies and amplitudes would ensure 
our audio processing transformation introduces as little error 
as possible. Once we have a description of the keys we need to 
play on the piano, those notes need to be scheduled over time, 
onto a physical device so that the piano keys are played 
correctly. Errors introduced in our implementation of this 
requirement can affect the intelligibility of our piano’s output. 
Inaccurate timing in our scheduler will affect the timing of 
syllables the piano needs to produce, by delaying, elongating, 
or speeding up syllables. To mitigate these errors, we’ve 
decided that our scheduler should miss less than 5% of timed 
syllables. This will ensure that any errors in timing will not 
affect the entirety of our system's output. 

Lastly, we need to implement a virtual piano that will 
actuate the keys and produce the sounds we aim to recreate. 
The success and accuracy of this requirement encapsulate the 
overall performance of our system’s pipeline. Since there is a 
much smaller range of notes possible with a piano, we 
understand that the output of our piano will never be an exact 
copy of a user’s speech. Therefore, we’re requiring our 
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physical device to have an 80% fidelity rate. In other words, 
the output speech of our piano should be intelligible to a user 
80% of the time. 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
While planning our overall system architecture, we realized 

the importance of modularity within the different subsystems. 
Allowing each subsystem to treat the others as black-boxes 
creates an opportunity to isolate subsystem tests and 
debugging with simulated inputs/outputs. We’ve grouped our 
subsystems into 4 main areas: user interface, audio processing, 
note scheduling, and physical performance. Figure 1 illustrates 
how the subsystems interact with each other. Our system 
begins in the user interface, where users will interact with our 
web server via a browser on their personal devices. The user 
will be able to record audio files in-browser or choose 
amongst previously recorded files to play on the piano. The 
user interface handles obtaining the audio recording file, as a 
.wav file, and passes it along to the audio processing 
subsystem hosted on our backend server. The audio processing 
subsystem converts the input audio into the collection of 
frequencies that make up these sounds across time. The audio 
processor then maps the frequencies at each timestamp seen in 
the audio recording to the frequencies playable by each key of 
the piano and encodes this data in a text file to be sent to the 
note scheduler hosted on the backend server. The note 
scheduler then processes the data and creates a two-
dimensional list of keys at different timestamps, where each 
entry denotes one of: non-movement (0), pressing (a number 
representing the volume), or lifting (-1). This is used to inform 
the virtual piano of the movement of the keys and how they 
will play and lift to create the performance. 

IV. DESIGN REQUIREMENTS  
As noted in our use-case requirements, we have 4 main 

requirements that each influenced the choices we made when 
designing our system. 

A. Web App Latency  
We are requiring that there is a <200ms latency period 

between interacting with our web application and noticing a 
change in the playing of audio on the piano. To ensure this, we 
are hosting our audio processing subsystem on the backend of 
our web application on AWS. This will allow us to use the 
powerful computers of the AWS EC2 instance to process the 
audio very rapidly. This leaves most of our 200 millisecond 
latency time for the transmission of data from AWS to the 
Raspberry Pi via sockets. We are estimating that this should be 
plenty of time since we are condensing the scheduled note 
information being sent into simple text files of bits describing 
which keys need to be played. To improve our transmission 
speeds, we will be testing an optimal balance between the size 
and frequency of data packets to minimize sending times. 
Lastly, the Raspberry Pi will immediately begin sending the 
received stream of bits to the shift registers to get played by 
the solenoids. 

B. Frequency and Amplitude Extraction Accuracy  
We understand that there will be some inevitable loss when 

translating the frequencies of the human voice to the finite and 
relatively small number of keys on a piano. To make sure we 
are maximizing the ability to play the voice as close to the 
original recording as possible, we need to ensure that we are 
extracting the frequencies and amplitudes from the recording 
as correctly as possible. We have chosen an 80% accuracy 
rating for the extraction of frequencies and their amplitudes as 
described in section N. This information is extracted from the 
voice recording by first splitting the recording into several 
windows of time and then processing each window through a 
Fourier transform, which converts the recorded data from 
amplitude across time to amplitude across frequency. We will 
be running tests to figure out the most optimal time window 
for our Fourier transform such that the accuracy of the 
frequencies and amplitudes extracted is maximized. 

C. Note Scheduling Accuracy  
Next, we want to design our system to schedule notes to 

miss or incorrectly play less than 5% of the syllables spoken in 
the voice recording. Human speech, in English, is typically 
spoken at 10 to 15 phonemes (distinct sounds), or 4 to 7 
syllables, per second [3][4]. As our system seeks to emulate 
human speech, our rate of producing sounds should not differ 
much from this rate. Typically, a piano key on an analog 
upright piano can be pressed up to 15 times per second. This 
limitation comes from the mechanism that moves the piano’s 
hammers to its strings, known as the action. We will be using 
a digital piano, which does not have an action. However, 
digital pianos are programmed to resemble analog pianos as 
much as possible, and thus we will still use 15 times per 
second as a limitation for our piano. We have tested the 
maximum actuation rates of some test 5N solenoids and found 
that they can actuate at rates up to 16 Hz. Since the solenoids 
can fire up to 16 times per second, we will be able to create up 
to 16 distinct sounds in 1 second, allowing us to capture the 
upper bound speeds of typical English speech. 

D. Fidelity Rate of Final Piano Playback 
Lastly, we are aiming to achieve an 80% fidelity rate, 

meaning that 80% of the words spoken in the original voice 
recording will be able to be identified when listening to the 
piano playback. To ensure this, we must be able to play the 
correct frequencies at the right volume levels at the right 
times. To ensure correct frequencies can be played in the first 
place, we start with the frequency range of human voices. We 
found that the fundamental frequency for human voice can be 
as low as 85Hz and that telephone communication captures at 
frequencies up to 4000Hz. This gives us a good approximation 
of the range of human voices. By applying the equation on 
figure 2. We found that to capture the ranges of the human 
voice, we need all the keys from 20 (82Hz) to 88 (4186Hz). 
 

 
     
 
 
 
 

Figure 1: n is the nth key of the piano starting 
from the leftmost key of an 88-key piano 
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Next, we need to make sure that we can most accurately 

map the frequencies obtained from our Fourier transform to 
the frequencies playable by the piano keys so that we can best 
determine which piano keys are needed to play a particular 
sample of the voice recording. To do this, we will be 
implementing audio blurring. This involves taking surround 
frequencies around the frequencies of each piano key, 
averaging their amplitudes and weighting them by how distant 
they are from the frequency of the piano key, and determining 
if this average passes a threshold determining that the key 
should be played. For example, in the case where the voice 
audio file contains weak amplitudes at exactly the frequency 
of note A4 of the piano (440Hz), but contains strong 
amplitudes at frequencies 437, 439, and 445, we will be able 
to capture these surrounding frequencies and determine that 
the note A4 should indeed be played to capture the slightly 
different frequencies. On top of that, humans are only able to 
discern a > 1% frequency difference between two tones.  
To best reproduce the amplitude of each frequency that makes 
up any given sample of the voice recording, we will be 
encoding the bits sent to the solenoids with a PWM signal, 
allowing us to control the volume at which the keys are 
pressed. 

V. DESIGN TRADE STUDIES  

A. Virtual vs. Physical Piano Performance  
One of the biggest challenges when initially designing the 

scope and specifications of our project was determining 
whether we would be recreating the processed speech virtually 
through a virtual piano interface or physically with solenoids 
pressing keys on a real piano. We understood that building a 
physical key pressing system would introduce a lot of 
complexity and potentially cause us to focus on mechanical 
systems that were out of the scope of our ECE-focused design 
requirements. After deliberate research and preliminary design 
of the circuitry and hardware needed to create the physical 
system, we decided that we would attempt to create the 
physical performance interface, and fall back to implementing 
the virtual performance interface if the physical system 
presented too many issues or troubles focusing on mechanical 
areas. This choice influenced several other design choices (as 
in the following section), and to plan around this fallback, we 
also derived a proof-of-concept design that we would build 
and test to help determine the feasibility of building the entire 
physical interface. Our main drive for developing this physical 
interface lay in providing the user with the most engaging 
experience possible in seeing how the piano can be used, 
outside the possibility of human players, to recreate speech 
and extend the realm of the typical use of pianos. We also 
coordinated efforts with Benjamin Opie, an electronic music 
professor here at CMU, to be able to have access to the digital 
piano practice room for the testing of our designs. 
Just recently, we implemented our proof-of-concept design 
consisting of wiring up 3 5N solenoids connected to shift 
registers and MOSFETs for actuation. We were successfully 
able to actuate the solenoids in customized patterns based on 
serial bit streams inputted to the shift registers and outputted, 

in parallel, to the solenoids. This test helped us determine our 
power consumption and strategy when scaling this up to the 
full, 69-key system. 

B. Parallelization of Audio Processing 
The first major design trade study that we analyzed in our 

system pipeline was with respect to the parallelization of the 
audio processing. With our methodology of performing the 
Sliding Discrete Fourier Transform (SDFT), we are processing 
the amplitude of frequencies for each individual note of each 
time stamp across the time of the whole audio file. What this 
means is that we need to go key by key on the piano and 
process the amplitude data for each, thus resulting in a higher 
latency computation that runs through each note one by one. 
In order to combat this, we considered parallelizing the 
computation across multiple processors such that each one 
could process fewer notes and ultimately finish the 
computation faster, however this would also result in much 
higher memory usage and latency is transferring the large 
arrays of data between each processor and memory. This also 
proved to be very complex to implement given how the 
programs were stored in the web app backend and it was much 
more expensive to implement through Amazon Web Services 
(AWS) since we needed an instance that had many CPU cores. 
On the other hand, implementing our program sequentially, 
meaning it runs on one CPU locally on our laptops, was much 
simpler to program and ensure the correctness of, but ended up 
skyrocketing our latency when computing. In the end, we 
chose to implement the sequential version because we wanted 
to ensure processing correctness and ease of implementation 
over potentially erroneous and complex code and faster 
processing computation. Based on our baseline user 
requirements, producing a more correct output was more ideal. 

C.  Web-Hosted vs. Hardware 
When we were deciding where we would host and store our 
programs, we identified we needed 2 main components: a 
strong computational unit capable of performing complex 
signal processing on incoming voice recording quickly, and a 
way to host a fast-responding user interface that could be used 
to record audio and interact with the system like 
pausing/playing and loading past recordings.  
    We first looked at using a Raspberry Pi for both the audio 
processing and notes scheduling portion of the system. We 
found that what we gained in low data transfer times and 
portability, we lost heavily in computing power. We quickly 
determined this would not work. 
    We next looked at using a Jetson Nano to do the audio 
processing, while keeping the Raspberry Pi for the notes 
scheduling. In this scenario, we could probably achieve 
performance with the stronger computer on the Jetson, 
however, we needed to take into account our virtual piano 
backup plan in case things didn’t go as we wanted. If we 
needed to implement the virtual piano instead, we would need 
to transfer the processed audio data and key schedules to 
AWS, where the virtual piano would be hosted. On top of that, 
this would introduce uncertainty as to where to host our user 
interface. If we hosted it locally, users would only be able to 
record audio and access the piano system on our local 
machines, but we would be able to run commands hosted on 
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our local Jetson much more quickly. If we hosted our user 
interface on AWS, this would allow any user to access the 
interface on their personal device for recording, however, we 
would need to transfer the entire audio file to the Jetson for 
processing, which could introduce a large lag time. These 
trade-offs brought us to our currently agreed-upon design 
choice of hosting the user interface and audio processing on an 
AWS EC2 instance and transferring the data to a Raspberry Pi 
for playback on the physical piano interface. With these 
choices, any user can access the web application on their 
personal device for recording. These recordings are seamlessly 
sent to the audio processing subsystem also hosted on AWS. 
By hosting our audio processing subsystem on AWS, we can 
take advantage of the powerful computers of the EC2 instance 
to perform the audio processing very rapidly. Lastly, if we 
must implement our virtual piano instead of our physical 
performance interface, the rest of the subsystems will be 
already hosted on AWS, therefore transferring data to the 
virtual piano would be optimal. Ideally, if we get this system 
toolchain working with our physical piano interface and we 
still have time in our project, we will work to migrate the web 
app and audio processing to a Jetson to remove any data 
transfer lag times and take advantage of the portability of 
having a fully hardware-based system. 
D. Note Scheduling Decay Model 
The next trade off we studied was how to represent the natural 
decay of piano notes within our note scheduling module. For 
context, the note scheduling module uses a model of the 
natural sound decay when a piano note is pressed because the 
scheduler needs to determine whether a note that has already 
been played needs to either stay pressed down (thus producing 
a sound that follows the natural decay), unpressed (thus 
indicating a let go of the note and silencing the sound), or 
needs to be re-pressed (thus the sound is triggered again at the 
specified volume). The selection of which option to choose for 
each note at each timestamp comes from analyzing the 
amplitude of each piano note frequency at adjacent time 
intervals and determining how to react to change in amplitude 
of one note frequency from one time stamp to the next. The 
tradeoff study here was focused on how accurately we need to 
model the decay of piano notes. We started with a naive 
approach which simply played each note again and again at 
each time sample at the specified volume. This approach was 
the simplest to implement and resulted in the most 
reproducible, reliable program, however, was quite jittery 
sounding and was susceptible to lots of noise. Next, we looked 
at modeling a simple exponential decay for each note in which 
we would keep track of each note played and predict the 
volume of each note in the future timestamps based on this 
decay to determine whether the note should continue to be 
held down and ring, silenced, or played again. This approach 
would help smooth out the jitteriness of the audio, however it 
produced complex code, errors, and overall unreliable test 
data. Lastly, we thought about modeling a much more accurate 
decay for the piano notes based on research papers or even 
recording the audio files we had for each piano note and 
manually measuring the decay for each. This would prove 
very difficult and thus we did not implement this. In the end, 
we ended up choosing a hybrid approach of the naive one and 

a basic piano decay model. We used the basic model to test 
out our program fidelity but ended up using the naive 
approach for our final project due to its reliability in 
processing and our priorities with making the program output 
something successfully. 

E. Virtual Piano Note Visualization 
The last major design trade-off that we analyzed was how we 
would visualize the notes being played by the virtual piano. In 
our virtual piano implementation, we planned to have a piano 
keyboard visualized on the screen and show which notes are 
currently being played that produce the sound that is being 
heard by the user. One idea we had was to show the notes 
‘raining’ down on the screen as they are played as to show the 
current notes, the future notes, and provide an overall more 
engaging experience for visualizing the notes. The other 
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approach we had was to simply highlight the keys currently 
being played on the piano (as shown in figure 3). In 
understanding which idea to implement, we considered our 
original user requirements in which we ultimately wanted to 
produce the representation of the sound and focus our efforts 
on doing that well. So between audio and visuals, the audio 
was much more important. For these reasons, we chose to 
implement the latter method in which just the notes are 
highlighted red to indicate they are being played. 
Implementing this method allowed us to focus more efforts on 
producing higher quality audio playback and ultimately a 
better product as we determined was required by our users. 
 

 
Figure 3. This shows how we implemented the virtual piano 
visualization in our web app. The keys in red are the ones played to 
reproduce the sound the user would currently be hearing. 

F. Comparing Different Averaging Techniques  
To propagate as much information about the frequencies 

that make up a user’s voice throughout time, we want to 
average those frequencies around the discrete points that 
correspond to piano keys. We considered four options, each 
proposing more added benefit than the last. The first was to 
filter information at the frequencies that correspond to the 
piano keys. This approach loses the most amount of data on 
what the original frequencies of a user's voice were. However, 
this approach offers the benefit of being able to be 
implemented in hardware since the number of filters needed 
would be small.  

Our second approach was to compute a moving average of 
all the frequencies before the point where a piano key lies. 
This improves on our initial approach but lacks information 

about the frequencies that lie after the frequency of a piano 
key.  

Our third potential solution was to compute an average 
using the neighboring points before and after the frequency for 
our piano key. We think this is our best bet since this 
averaging technique is capable of propagating all of the 
original features from the original audio, albeit without the 
same resolution. 

We considered a weighted neighbors average, where again 
we average the neighboring points around the frequency of a 
piano key but weigh each neighbor's contribution to the final 
average by their distance from the piano key’s frequency. 
Although a valid way of averaging our input, it would cause 
frequencies lying between any two piano keys to not be 
propagated. Therefore, we think that our third approach is our 
best attempt at propagating all the information regarding a 
user’s voice onto the piano keys. 

G. Solenoid Choice 
Originally, we were deciding between using 5 Newton 

solenoids and 25 Newton solenoids for actuating the piano 
keys. Looking at the solenoids available to us, the 5N 
solenoids were typically much less expensive and used less 
power to run. For our proof-of-concept design of the physical 
interface, we ordered 5N solenoids that needed 12V and 1A to 
run. We found they got quite hot when left activated for 
extended periods of time and that 5N is just barely enough to 
actuate a key at an audible level. Another problem with using 
5N solenoids is that since they need the full power to actuate 
the key, there will be no room for adjusting the volume of the 
key press to represent the amplitude differences of each 
frequency. Upon further research, we found 25N solenoids 
that were at a good price and used a reasonable amount of 
power (12V, 1.5A). We will be getting the 25N solenoids as 
they will be able to press the keys with ease and have much 
more room for adjusting the speed of the key press such that 

Figure 2. A diagram of the web application interface design and data flow 
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we can adjust the volume of the key to emulate the amplitude 
of each needed frequency. 

VI. SYSTEM IMPLEMENTATION  

A. Web Application User Interface 
 

Our web application user interface is the subsystem 
responsible for supporting controls the user can use to interact 
with our system. [Figure 3] On the web app, users will be able 
to record audio, upload past recordings, or pause/play the 
piano playback. We will be hosting our web app with Django, 
a python-based web framework, on an AWS EC2 instance. 
Using Django allows us to conveniently integrate our audio 
processing and note scheduling into our backend since those 
will be written in python as well. On the front-end user 
interface, we will be using Bootstrap for a pleasing and simple 
design and Ajax to support asynchronous calls to our audio 
processing and notes scheduler functions while maintaining 
responsive interactions.  Audio recordings will be done using 
built-in Javascript libraries that will save the file in the .wav 
format, a lossless audio format that stores the audio as 
amplitude across time. This .wav file will be then sent to the 
audio processing subsystem. The pause/play functionality will 
be implemented by sending interrupts to the notes scheduler 
whenever the user toggles the pause/play of a recording. The 
interrupts will contain information that causes the notes 
scheduler to either continue or stop sending information to the 
Raspberry Pi. 
 

B. Audio Processing 
The following implementation details are also 

illustrated in figure 3. The audio processing module takes a 
recording of a user’s voice as input. For consistency, we chose 
to only work with WAV (.wav) audio recordings. The 
incoming .wav file is converted into a numpy array 
representing the time series data of that audio, as in figure 4.  

 
Figure 4. An example of a time-based audio signal 

In order to determine what piano keys to press, we 
need information on how the frequencies in our user's voice 
change through time. To do this, we use the Sliding Discrete 
Fourier Transform (SDFT), which is a recursive 
implementation of Discrete Fourier Transform (DFT) that 
returns the power found at a specific frequency bin k [5]. 

 
Figure 5. The Sliding Discrete Fourier Transform and its inverse 

Performing a single DFT on a window of time series 
samples would return an array of evenly spaced frequency 
bins. However, with a sample rate of 48 kHz and maximum 
window size of 3200 samples, which was determined using 
the play rate, we cannot extract information about the specific 
frequencies that correspond to piano keys. Therefore, given 
some frequency F, the signal processing module will find a 
window size N smaller than the maximum window size Nmax 
such that one of its frequency bins corresponds to the 
frequency F. 

 
Figure 6. Computing power at each key throughout time 

The audio processing module finds a window size N 
and frequency bin index k for each of the 88 piano keys, (Ni , 
ki)  With these specific values (Ni , ki) we can create SDFT 
Bins (Si), not to be confused with the frequency bins returned 
from the DFT. These bins calculate the current power present 
(Xk[n]) at its corresponding frequency bin for some time 
sample x[n], using the formula for the SDFT shown in figure 
5. We parse the original audio array x[n] through each of the 
88 SDFT Bins, and then take a simple moving average of the 
power present at each play rate sample, which are the 
moments in time corresponding to the play rate of 15 Hz. The 
result is a two-dimensional matrix, representing the power 
present at each piano key throughout time. An illustration of 
this process is shown in figure 6 and 7. 

 
Figure 7. Change in frequency throughout time 

The note scheduler, and our virtual interface have no 
notion of power, therefore the 2-D matrix is normalized using 
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the largest power present throughout time, as shown in figure 
8. Note how the shape of the three-dimensional plot is similar, 
however the z-axis corresponding to power has been replaced 
with note strength. 

 
Figure 8. Normalized Frequencies through time as key strength 

As an additional feature of the signal processing module, it 
can also return a reconstructed version of the original audio 
only using the frequency components represented by piano 
keys, as opposed to the broad spectrum of frequencies our 
voice can utilize. A plot of the reconstructed audio signal is 
shown in figure 9. 

 
Figure 9. Reconstructed Audio 

C. Notes Scheduler  
We define the notes scheduler as the module that takes 

input from the audio processing module and converts it into a 
format our physical piano interface can use to create the 
replication of human speech. By definition, this requires the 
notes scheduler to translate time-indexed arrays of frequencies 
and their corresponding amplitudes into presses of piano keys 
at different time intervals with an appropriate level of force. In 
more specific terms, this module will translate the output of 
the audio processing system in the form of a text file with tab-
separated integers. Each line of the file represents a 
timestamp, and each column represents a frequency. The 
integer at line x and column y represent the volume of 
frequency y at time x. 

A consideration is that even though an arbitrary frequency, 
a, may be active at time t, the piano key does not necessarily 
need to be pressed at that time. It may have been pressed 
during a previous timestamp and still producing sound. 
Therefore, the note scheduler must account for which keys are 
already sounding while pressing new ones to produce a 
smooth sound that evokes human speech, as opposed to 
stuttering, choppy noise. The module will accomplish this task 
by computing, for each frequency, the difference between 
amplitudes for the current timestamp compared to the previous 
timestamp, as well as keeping track of which keys are 
currently pressed and for how long. If the frequency is 
significantly louder from one timestamp to the next, or if it has 
been long enough such that the sound has already faded, the 
key will be pressed again. Conversely, if the key is currently 
pressed but its amplitude is insignificant, the solenoid will 
lift.  

D. Physical Performance Scheduler  
For the physical performance interface, we will be 

implementing a circuit containing a Raspberry Pi as the signal 
driving unit, 9 serial-in parallel-out (SIPO) shift registers, 69 
MOSFETs, and 69 cylindrical 25N solenoids. Data from the 
note scheduler, in the form of a 69-bit value where the nth bit 
represents if the nth key will be played or not. This 69-bit 
value will be split into 9 Bytes, where each byte will be loaded 
into one of the 8-bit shift registers. We will be using 9 GPIO 
pins of the Raspberry Pi to serially load the 69 bits into the 9 
shift registers in the correct order such that the LSB is the 
lowest frequency note and the MSB is the highest frequency. 
As the data is being serially loaded into each shift register, a 
GPIO pin of the Raspberry Pi drives a shift clock signal to all 
of the shift registers such that for each bit sent to the shift 
register, the clock outputs a positive edge signal indicating to 
the shift registers to intake a bit and shift the values. Once all 
shift registers are filled with data (8 clock cycles), a latch 
signal is sent from another GPIO pin telling all the shift 
registers to output their values in parallel to the 69 MOSFETs. 
Each MOSFET acts as a transistor controlling the flow of 
current from our 12V power source to the 25N solenoid.  

Some specifics: We need to actuate solenoids and produce a 
sound with a period of the time window we select for our 
audio processing since each of the 69-bit values represents the 
notes comprising a particular time window sample of the 
audio recording. This means we have to be able to play audio 
at a frequency of 1/Tw (Tw = window of time). Since we need 
to load 8 bits of our data into the shift registers within each of 
those solenoid actuation periods, our bit streams and clock 
signals need to be 8 times faster than the solenoid actuation 
frequency. This value is given by 8 * (1/Tw). Lastly, to 
determine the total power consumption of our system, we 
must calculate the power of a single solenoid and multiply it 
by 69 since each solenoid will be wired in parallel. For one 
25N solenoid, we will need 12V and a maximum of 1.5 A of 
current. With this, we will need a 12V supply capable of 
outputting ~(1.5 * 69) = ~103 A of current. This would require 
a 1200 Watt power supply since power (Watts) is V*I = 
~12*100. 
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VII. TEST, VERIFICATION AND VALIDATION 
In order to test the accuracy of our Fourier transform 

frequency extraction, we wanted to compare the original audio 
signal to a reconstructed audio signal using only the frequency 
components extracted using the SDFT. We used a qualitative 
approach and a quantitative approach. The qualitative 
approach was to write the reconstructed audio signal to a 
WAV file and listen to it. The reconstructed WAV file was 
created by multiplying the reconstructed samples with an 
exponential decay function so that the frequencies could be 
sustained for long enough like they would be on a piano. 
Figure 10 is an example of the original audio, Figure 11 is the 
reconstructed audio using the exponential function y=Ae^((-
0.001)x), and Figure 12 uses the exponential decay function 
y=Ae^((-0.0001)x). The spectrogram of the reconstructed 
audio looks similar to the original spectrogram for most 
recordings, even going as far as to propagate the 20kHz noise 
band that was introduced by our microphone. Upon listening 
to the audio we found that we could hear the user's voice in 
the reconstructed audio. Our qualitative approach was to 
calculate the average error between two signals, and then 
compute the average of these errors for a collection of audio 
recordings and their corresponding reconstructed audio. In our 
results, there was a large average error, however our 
qualitative results gave us confidence that the frequencies we 
were extracting were in fact sufficient to hear what a user was 
saying. What was most important in being able to hear a user’s 
voice making the decay long enough. 

 
Figure 10. The original audio recording 

 
Figure 11. Reconstructed Audio using a y=e^((-0.001)x) 

 
Figure 12. Reconstructed Audio using y=e^((-0.0001)x) 

 
 For the end-to-end delay on actions made on the web app, 
the largest delay we found was from the initial processing of a 
user’s voice. On average, most recordings were around 5 
seconds long, and took around 80 seconds to process. This is 
because the input audio is parsed 88 times in order to generate 
frequency information for each of the keys on a piano. Had we 
implemented parallelism into the processing algorithm, we 
expect the average voice recording of 5 seconds to take around 
8-10 seconds to be processed, assuming the host machine has 
more than 8 cores. 

 

VIII. PROJECT MANAGEMENT 

A. Schedule 
Through the semester, we initially scheduled our time and 
resources with the intention of creating a physical piano 
interface using an array of solenoids, shift registers, and a 
raspberry pi. We allotted time to order parts, build a proof of 
concept, design, and build the final physical product. This was 
mostly pushed towards the end of the semester with the 
beginning of the semester reserved for implementing the audio 
processing pipeline, web app, and note scheduling interface. 
We pivoted to a virtual piano implementation about halfway 
through the semester, causing us to need to shift all our 
schedule and timeline around to account for needing to build 
the virtual piano and integrate it in the web app. Luckily, we 
had built in a few weeks of slack time such that all the time 
allotted for building/designing the physical piano interface 
along with this slack time was used for designing and 
implementing the virtual piano. We also used this time to 
integrate our parts together and fully test our code we could. 
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B. Team Member Responsibilities 
1) Angela 

Angela was responsible for implementing the note scheduler 
that refines the raw frequency data from Marco’s work by 
implementing algorithms that use heuristics to determine what 
keys to press at what time. 
 

2) John 
John was responsible for creating the web app user interface, 
integrating the audio processing and note scheduler within the 
web app back end, and designing/implementing the virtual 
piano interface. 
 

3) Marco 
Marco was responsible for creating the audio processing 
module, which involved implementing the Sliding Discrete 
Fourier Transform library, and a library of functions that 
interface with the web app backend. 

C. Bill of Materials and Budget 
After our shift to a virtual piano interface, our cost of 

materials and billing drastically changed. Originally, we had 
many physical parts, but now our only expense was AWS 
credits for hosting our piano interface. The bill of materials 
and costs are shown here: 

Please refer to Table 1 for more information. 

IX. RELATED WORK 
Player pianos have been around for many years, however 

only recently have they begun to be built using 
electromechanical devices. Edelweiss Pianos sells player 
pianos within the range of $20,000 USD. Mark Rober, a 
former NASA and Apple engineer, now Youtuber, posted a 
video introducing his self-talking piano which inspired this 
project. 

X. SUMMARY 
Our goal is to create a self-talking piano. In order to achieve 

this, we’ll record a user’s voice via a web-app based user 
interface. Once we have this data, we will extract the 
frequencies that make up a user’s voice across time. We will 
average these frequencies onto the frequencies that correspond 
to piano keys and output that data onto a tab separate file. A 
notes scheduler will parse this file and control a series of 
solenoids that can actuate the keys on a piano. The result 
should be series of notes being played on the piano that mimic 
the sound of a human voice. 

GLOSSARY OF ACRONYMS 

• Play rate, the rate at which the keys on the piano are 
being pressed.   

• Phoneme,  the atomic unit of speech, can be typically 
represented by a letter in English.  
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Item Cost Description 

AWS 
Credits 

$5.00 Credits used to host the AWS instance of our web app used for testing and 
attempting to get working by the final demo. 

 

Table 1 


