
‘Sing us a song, you’re the piano pi’
Talking Piano

Team B2
Angela Chang, John Martins, Marco Acea

http://www.youtube.com/watch?v=uBEL3YVzMwk&t=3


Use-Case and Requirements
Explore music beyond physical constraints by creating human speech on a piano!

● Record user speech (via UI, that also offers playback features)

○ 200ms end-to-end latency

● Convert input speech into piano notes

○ 80% Frequency extraction accuracy

● Schedule those notes onto a piano

○ <5% of syllables missed (delayed/elongated/sped, not dropped)

● Implement a physical device that can press the keys on a piano

○ 80% Fidelity Rate

ECE Areas: Software Systems, Signals and Signals



Solution Approach



Complete Solution



Notes Scheduler

● Input: a 2-dimensional array of frequencies 
○ Each row is a timestamp
○ Each column is a key (69 columns)

● Output: a second 2-dimensional array
○ Volumes for keys at each timestamp

● Differentiate between when to re-press keys and when to keep 
them held down
○ Decay of keys
○ Separation of phonemes and syllables

● Decay modelling: a logarithmic approximation
○ Volume of the virtual piano is controlled by amplitude 

scaling
○ This makes the decay even across all volumes
○ Phenomenon in physical pianos more complex



Web Application Interface

Example of the visualization from 1 note being played

● Virtual piano plays corresponding audio file for 
each piano key as described by note scheduler

● Run Speech-Text libraries on incoming audio files to 
provide subtitles for better interpretation of 
output audio from piano

C5 (523 Hz)



Audio Processing



Risk Factors and Unknowns
● Building the physical interface

○ Might take longer than expected, therefore we’ll build a proof of concept build that 

only uses ~5 solenoids to press keys

● Blurring the audio might not extract enough information

● Upload and Download internet speed between remote server and Raspberry 

Pi introduce a bottleneck

● Our piano play rate may be too high, causing keys to be “spammed”



Alternative Design Strategies

● Virtual piano implementation: should our proof of concept for the 
piano-playing mechanism fail, we will implement a virtual piano solution.

● Near real-time speech-to-piano translation: once MVP is achieved, we hope 
to allow people to speak and hear their sentence played on the piano once 
they’re done speaking.

● Lower-latency backend: once fully committed to the physical interface, we 
can migrate the backend logic onto a Jetson if speed is a concern.



Testing, Verification, Metrics
● Web-app physical system latency

○ Use Selenium to mimic clicking on UI components
○ Measure the time between pressing a button on our frontend UI and the 

appropriate reaction of the system
○ Our goal metric is < 200ms

● Fast Fourier transform accuracy
○ Use an input audio recording we create with known frequencies and amplitudes

■ For each window we will compare the frequencies reported by our system to the known 
frequencies at that time

○ Accuracy dependent on chosen time window for FFT
■ Shorter Window=> Less Accurate
■ Longer Window => Long wait times 

○ Adjust our time window for >80% accuracy.



Testing, Verification, Metrics cont.
● Syllable timing

○ Use recordings with labeled start times for each syllable
○ Record the number of syllables whose start time does not 

match the original recordings labelled start time

● Fidelity of Output Audio
○ Generate a series of prompts and output piano 

recordings

○ Survey a group of listeners on whether or not they can 

understand the prompt given the piano audio

○ Collect data on what percentage of listeners were able to 

make out what the piano was trying to say



Updated Gantt Chart


