
18-500 Design Project Report: Team B-2 10/14/2022

1

Abstract—For centuries, pianos have been used to play music.

“Player pianos”, containing mechanisms that allow them to sound
without human control, were first introduced in the late 19th
century. This mechanism allows the instrument to be freed from
its traditional constraints: the number of frequencies produced is
no longer limited to a meager number of ten fingers.

Index Terms—Signals and Systems, Embedded Systems,
Internet of Things

I. INTRODUCTION
HIS project seeks to take advantage of player pianos to

simulate human speech. Human speech is made up of many
frequencies, and enough keys - and their frequencies -
combined can reproduce speech with high enough fidelity that
a player piano can speak and be understood.

 Different modules of this project will come together to

translate the phonemes of human speech into timed key presses
on a piano. The audio processing module will receive audio
input. This input information will be sampled for different
frequencies and amplitudes. A smooth average will be taken at
each frequency that corresponds to a piano key. We will repeat
this at each time period. The key scheduling module will thus
take the output of the audio processing module and use the time
and amplitude information to determine the keys that need to be
played at different times.

II. USE-CASE REQUIREMENTS
There are four major requirements for our use-case

scenario. The first thing we need access to is recordings of our
users' voices. To achieve this, we’ll build a user interface into
our web application that allows users to record their voice and
send it to the backend. For the user experience to be
pleasurable, our UI needs to have a ~200ms end-to-end
latency. This means that for any user interaction, there should
be at most 200ms before any new actions can be taken, for
example, listening to the post-processed audio produced from
a user’s voice recording. We derived this number based on
conventional advice regarding user response. Usually, 100ms
is a limit for the user’s flow of thought to stay uninterrupted
and for the user to feel that the system is instantaneous. Since
our recording system is not real-time like a website, we had
leeway in this regard; we decided that 200ms is a reasonable
time for a non-real-time response to feel smooth and
acceptable.

Next, with the recording audio of a user’s voice, we need to
extract the frequencies that make a user’s speech. We need to
gather information on how these frequencies change
throughout time to generate a sequence of keys to be played.
To achieve this, we divide the incoming audio into ‘windows’
which we can use to see how the frequencies of a user’s voice
change with time. A metric of success for this requirement
involves being able to accurately estimate the frequencies and
amplitude of each frequency within a user’s speech for each of
those time “windows”. We decided that an 80% estimation
accuracy for these frequencies and amplitudes would ensure
our audio processing transformation introduces as little error
as possible.

Once we have a description of the keys we need to play on
the piano, those notes need to be scheduled over time, onto a
physical device so that the piano keys are played correctly.
Errors introduced in our implementation of this requirement
can affect the intelligibility of our piano’s output. Inaccurate
timing in our scheduler will affect the timing of syllables the
piano needs to produce, by delaying, elongating, or speeding
up syllables. To mitigate these errors, we’ve decided that our
scheduler should miss less than 5% of timed syllables. This
will ensure that any errors in timing will not affect the entirety
of our system's output.

Lastly, we need to implement a physical device that will
actuate the keys on a piano and produce the sounds we aim to
recreate. The success and accuracy of this requirement
encapsulate the overall performance of our system’s pipeline.
Since there is a much smaller range of notes possible with a
piano, we understand that the output of our piano will never be
an exact copy of a user’s speech. Therefore, we’re requiring
our physical device to have an 80% fidelity rate. In other
words, the output speech of our piano should be intelligible to
a user 80% of the time.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
While planning our overall system architecture, we realized

the importance of modularity within the different subsystems.
Allowing each subsystem to treat the others as black-boxes
creates an opportunity to isolate subsystem tests and debugging
with simulated inputs/outputs. We’ve grouped our subsystems
into 4 main areas: user interface, audio processing, note
scheduling, and physical performance. Figure 1 illustrates how
the subsystems interact with each other.

Our system begins in the user interface, where users will
interact with our web server via a browser on their personal
devices. The user will be able to record audio files in-browser
or choose amongst previously recorded files to play on the

Sing us a song, you’re a piano pi!

Marco Acea, Angela Chang, John Martins

Department of Electrical and Computer Engineering, Carnegie Mellon University

T

18-500 Design Project Report: Team B-2 10/14/2022

2

piano. The user interface handles obtaining the audio
recording file, as a .wav file, and passes it along to the audio
processing subsystem hosted on our backend server.
The audio processing subsystem converts the input audio into
the collection of frequencies that make up these sounds across
time. The audio processor then maps the frequencies at each
timestamp seen in the audio recording to the frequencies
playable by each key of the piano and encodes this data in a
text file to be sent to the note scheduler hosted on the backend
server.

The notes scheduler uses a socket interface to send the
Raspberry Pi data on which piano keys to play at any given
time. The Raspberry Pi then serializes data on which keys to
be pressed and sends it bit by bit onto a shift register.
On the physical interface, the shift register outputs these
control signals in parallel to the solenoids that actuate the
piano keys.

IV. DESIGN REQUIREMENTS
As noted in our use-case requirements, we have 4 main

requirements that each influenced the choices we made when
designing our system.

A. Web App Latency
We are requiring that there is a <200ms latency period

between interacting with our web application and noticing a
change in the playing of audio on the piano. To ensure this, we
are hosting our audio processing subsystem on the backend of
our web application on AWS. This will allow us to use the

powerful computers of the AWS EC2 instance to process the
audio very rapidly. This leaves most of our 200 millisecond
latency time for the transmission of data from AWS to the
Raspberry Pi via sockets. We are estimating that this should be
plenty of time since we are condensing the scheduled note
information being sent into simple text files of bits describing
which keys need to be played. To improve our transmission
speeds, we will be testing an optimal balance between the size
and frequency of data packets to minimize sending times.
Lastly, the Raspberry Pi will immediately begin sending the
received stream of bits to the shift registers to get played by
the solenoids.

B. Frequency and Amplitude Extraction Accuracy
We understand that there will be some inevitable loss when

translating the frequencies of the human voice to the finite and
relatively small number of keys on a piano. To make sure we
are maximizing the ability to play the voice as close to the
original recording as possible, we need to ensure that we are
extracting the frequencies and amplitudes from the recording
as correctly as possible. We have chosen an 80% accuracy
rating for the extraction of frequencies and their amplitudes as
described in section N. This information is extracted from the
voice recording by first splitting the recording into several
windows of time and then processing each window through a
Fourier transform, which converts the recorded data from
amplitude across time to amplitude across frequency. We will
be running tests to figure out the most optimal time window

Figure 1 Overall Architecture

18-500 Design Project Report: Team B-2 10/14/2022

3

for our Fourier transform such that the accuracy of the
frequencies and amplitudes extracted is maximized.

C. Note Scheduling Accuracy
Next, we want to design our system to schedule notes to

miss or incorrectly play less than 5% of the syllables spoken in
the voice recording. Human speech, in English, is typically
spoken at 10 to 15 phonemes (distinct sounds), or 4 to 7
syllables, per second [3][4]. As our system seeks to emulate
human speech, our rate of producing sounds should not differ
much from this rate. Typically, a piano key on an analog
upright piano can be pressed up to 15 times per second. This
limitation comes from the mechanism that moves the piano’s
hammers to its strings, known as the action. We will be using
a digital piano, which does not have an action. However,
digital pianos are programmed to resemble analog pianos as
much as possible, and thus we will still use 15 times per
second as a limitation for our piano. We have tested the
maximum actuation rates of some test 5N solenoids and found
that they can actuate at rates up to 16 Hz. Since the solenoids
can fire up to 16 times per second, we will be able to create up
to 16 distinct sounds in 1 second, allowing us to capture the
upper bound speeds of typical English speech.

D. Fidelity Rate of Final Piano Playback
Lastly, we are aiming to achieve an 80% fidelity rate,

meaning that 80% of the words spoken in the original voice
recording will be able to be identified when listening to the
piano playback. To ensure this, we must be able to play the
correct frequencies at the right volume levels at the right
times. To ensure correct frequencies can be played in the first
place, we start with the frequency range of human voices. We
found that the fundamental frequency for human voice can be
as low as 85Hz and that telephone communication captures at
frequencies up to 4000Hz. This gives us a good approximation
of the range of human voices. By applying the equation on
figure 2. We found that to capture the ranges of the human
voice, we need all the keys from 20 (82Hz) to 88 (4186Hz).

Next, we need to make sure that we can most accurately
map the frequencies obtained from our Fourier transform to
the frequencies playable by the piano keys so that we can best
determine which piano keys are needed to play a particular
sample of the voice recording. To do this, we will be
implementing audio blurring. This involves taking surround
frequencies around the frequencies of each piano key,
averaging their amplitudes and weighting them by how distant
they are from the frequency of the piano key, and determining
if this average passes a threshold determining that the key
should be played. For example, in the case where the voice
audio file contains weak amplitudes at exactly the frequency
of note A4 of the piano (440Hz), but contains strong
amplitudes at frequencies 437, 439, and 445, we will be able

to capture these surrounding frequencies and determine that
the note A4 should indeed be played to capture the slightly
different frequencies. On top of that, humans are only able to
discern a > 1% frequency difference between two tones.
To best reproduce the amplitude of each frequency that makes
up any given sample of the voice recording, we will be
encoding the bits sent to the solenoids with a PWM signal,
allowing us to control the volume at which the keys are
pressed.

V. DESIGN TRADE STUDIES

A. Virtual vs. Physical Piano Performance
One of the biggest challenges when initially designing the

scope and specifications of our project was determining
whether we would be recreating the processed speech virtually
through a virtual piano interface or physically with solenoids
pressing keys on a real piano. We understood that building a
physical key pressing system would introduce a lot of
complexity and potentially cause us to focus on mechanical
systems that were out of the scope of our ECE-focused design
requirements. After deliberate research and preliminary design
of the circuitry and hardware needed to create the physical
system, we decided that we would attempt to create the
physical performance interface, and fall back to implementing
the virtual performance interface if the physical system
presented too many issues or troubles focusing on mechanical
areas. This choice influenced several other design choices (as
in the following section), and to plan around this fallback, we
also derived a proof-of-concept design that we would build
and test to help determine the feasibility of building the entire
physical interface. Our main drive for developing this physical
interface lay in providing the user with the most engaging
experience possible in seeing how the piano can be used,
outside the possibility of human players, to recreate speech
and extend the realm of the typical use of pianos. We also
coordinated efforts with Benjamin Opie, an electronic music
professor here at CMU, to be able to have access to the digital
piano practice room for the testing of our designs.
Just recently, we implemented our proof-of-concept design
consisting of wiring up 3 5N solenoids connected to shift
registers and MOSFETs for actuation. We were successfully
able to actuate the solenoids in customized patterns based on
serial bit streams inputted to the shift registers and outputted,
in parallel, to the solenoids. This test helped us determine our
power consumption and strategy when scaling this up to the
full, 69-key system.

B. Web-Hosted vs. Hardware
When we were deciding where we would host and store our
programs, we identified we needed 2 main components: a
strong computational unit capable of performing complex
signal processing on incoming voice recording quickly, and a
way to host a fast-responding user interface that could be used
to record audio and interact with the system like
pausing/playing and loading past recordings.
 We first looked at using a Raspberry Pi for both the audio
processing and notes scheduling portion of the system. We
found that what we gained in low data transfer times and

Figure 2: n is the nth key of the piano starting
from the leftmost key of an 88-key piano

18-500 Design Project Report: Team B-2 10/14/2022

4

portability, we lost heavily in computing power. We quickly
determined this would not work.
 We next looked at using a Jetson Nano to do the audio
processing, while keeping the Raspberry Pi for the notes
scheduling. In this scenario, we could probably achieve
performance with the stronger computer on the Jetson,
however, we needed to take into account our virtual piano
backup plan in case things didn’t go as we wanted. If we
needed to implement the virtual piano instead, we would need
to transfer the processed audio data and key schedules to
AWS, where the virtual piano would be hosted. On top of that,
this would introduce uncertainty as to where to host our user
interface. If we hosted it locally, users would only be able to
record audio and access the piano system on our local
machines, but we would be able to run commands hosted on
our local Jetson much more quickly. If we hosted our user
interface on AWS, this would allow any user to access the
interface on their personal device for recording, however, we
would need to transfer the entire audio file to the Jetson for
processing, which could introduce a large lag time. These
trade-offs brought us to our currently agreed-upon design
choice of hosting the user interface and audio processing on an
AWS EC2 instance and transferring the data to a Raspberry Pi
for playback on the physical piano interface. With these
choices, any user can access the web application on their
personal device for recording. These recordings are seamlessly
sent to the audio processing subsystem also hosted on AWS.
By hosting our audio processing subsystem on AWS, we can
take advantage of the powerful computers of the EC2 instance
to perform the audio processing very rapidly. Lastly, if we
must implement our virtual piano instead of our physical
performance interface, the rest of the subsystems will be
already hosted on AWS, therefore transferring data to the
virtual piano would be optimal. Ideally, if we get this system
toolchain working with our physical piano interface and we
still have time in our project, we will work to migrate the web
app and audio processing to a Jetson to remove any data
transfer lag times and take advantage of the portability of
having a fully hardware-based system.
C. Audio Time Sample Window
Next, we examined the trade-offs associated with choosing the
window of time in which we sample our audio recording for
processing. This time window represents the duration of each
snippet of the voice recording that the Fourier transform gets
performed on. We determine the total number of time
windows, and thus Fourier transform operations, for each
recording by the simple equation:

Our goal with selecting an optimal time sample window is

to minimize the Fourier transform error and the time needed to
compute each transform as well as the whole recording. To do
this, we will be performing tests on a range of time window
values by inputting the same simple audio, with a range of
different windows, through our Fourier transform. The time
taken to perform the transform and its accuracy will be
analyzed against a control Fourier transform with a control

time window from a well-established python library. We
hypothesize that a shorter time window will allow for much
shorter audio processing times as we can run more transforms
and send smaller packets of data to the notes scheduler more
frequently. However, we would be sacrificing the accuracy of
the Fourier transform in extracting the frequencies and
amplitudes, which hinders our use case requirement. On the
other hand, choosing larger time windows may slow down
audio processing times since we would be computing the
Fourier transform and sending data to the notes scheduler in
larger packets less frequently. However, due to the larger time
window, the Fourier transform has a larger sample of data to
work with, thus improving the accuracy of the frequency and
amplitude extraction.

D. Comparing Different Averaging Techniques
To propagate as much information about the frequencies

that make up a user’s voice throughout time, we want to
average those frequencies around the discrete points that
correspond to piano keys. We considered four options, each
proposing more added benefit than the last. The first was to
filter information at the frequencies that correspond to the
piano keys. This approach loses the most amount of data on
what the original frequencies of a user's voice were. However,
this approach offers the benefit of being able to be
implemented in hardware since the number of filters needed
would be small.

Our second approach was to compute a moving average of
all the frequencies before the point where a piano key lies.
This improves on our initial approach but lacks information
about the frequencies that lie after the frequency of a piano
key.

Our third potential solution was to compute an average
using the neighboring points before and after the frequency for
our piano key. We think this is our best bet since this
averaging technique is capable of propagating all of the
original features from the original audio, albeit without the
same resolution.

We considered a weighted neighbors average, where again
we average the neighboring points around the frequency of a
piano key but weigh each neighbor's contribution to the final
average by their distance from the piano key’s frequency.
Although a valid way of averaging our input, it would cause
frequencies lying between any two piano keys to not be
propagated. Therefore, we think that our third approach is our
best attempt at propagating all the information regarding a
user’s voice onto the piano keys.

E. Solenoid Choice
Originally, we were deciding between using 5 Newton

solenoids and 25 Newton solenoids for actuating the piano
keys. Looking at the solenoids available to us, the 5N
solenoids were typically much less expensive and used less
power to run. For our proof-of-concept design of the physical
interface, we ordered 5N solenoids that needed 12V and 1A to
run. We found they got quite hot when left activated for
extended periods of time and that 5N is just barely enough to
actuate a key at an audible level. Another problem with using
5N solenoids is that since they need the full power to actuate
the key, there will be no room for adjusting the volume of the

18-500 Design Project Report: Team B-2 10/14/2022

5

key press to represent the amplitude differences of each
frequency. Upon further research, we found 25N solenoids
that were at a good price and used a reasonable amount of
power (12V, 1.5A). We will be getting the 25N solenoids as
they will be able to press the keys with ease and have much
more room for adjusting the speed of the key press such that
we can adjust the volume of the key to emulate the amplitude
of each needed frequency.

VI. SYSTEM IMPLEMENTATION

A. Web Application User Interface

Our web application user interface is the subsystem
responsible for supporting controls the user can use to interact
with our system. [Figure 3] On the web app, users will be able
to record audio, upload past recordings, or pause/play the
piano playback. We will be hosting our web app with Django,
a python-based web framework, on an AWS EC2 instance.
Using Django allows us to conveniently integrate our audio
processing and note scheduling into our backend since those
will be written in python as well. On the front-end user
interface, we will be using Bootstrap for a pleasing and simple
design and Ajax to support asynchronous calls to our audio
processing and notes scheduler functions while maintaining
responsive interactions. Audio recordings will be done using
built-in Javascript libraries that will save the file in the .wav
format, a lossless audio format that stores the audio as
amplitude across time. This .wav file will be then sent to the
audio processing subsystem. The pause/play functionality will
be implemented by sending interrupts to the notes scheduler
whenever the user toggles the pause/play of a recording. The
interrupts will contain information that causes the notes
scheduler to either continue or stop sending information to the
Raspberry Pi.

B. Audio Processing
The following implementation details are also illustrated in
figure 5. The audio processing module takes in as input a
recording of our user's voice.

Figure 4. Incoming Audio Plotted as Time Series Data.

The incoming .wav file is converted into an array containing
time-series data, as in figure 3. To collect information on how
the frequencies of our audio change over time, we divide the
incoming array into a series of sample windows containing a
collection of samples from the time series array. For more
information on how we determined the size of this window,
refer to the third section of our design trade studies.
Then, for each sample window array, we calculate the Fast
Fourier Transform (FFT) of that window’s time series data,
which returns an array containing information about the
sample's spectral density. This process is repeated for every
sample window within the original time series array, and the

Figure 3. A diagram of the web application interface design and data flow

18-500 Design Project Report: Team B-2 10/14/2022

6

result is an array describing how the frequencies of our
original audio recording change over time. This result is
illustrated on the spectrogram in figure 5.

Replicating these frequencies throughout time using a piano is
a ‘lossy’ transformation, meaning that it is impossible to
reproduce all of the frequencies we’re able to extract using
only the keys on a piano. Therefore, to propagate this
information from our original recording through a piano we
average the surrounding frequency magnitudes available to us
at the points that correspond to keys on the piano. There are
several ways of doing this, all of which effectively blur the
incoming audio recording. We use the term blur to reference
the notion that averaging the surrounding pixels of every pixel
in an image creates a blurred version of the original image.
We are still considering the effectiveness of different blurring
techniques. For more information, please refer to the fourth
section of our design trade studies.

Averaging the incoming frequency information onto the
points in the frequency domain that correspond to piano keys,
results in an array that describes what piano notes should be

played as well as with what strength, across time. This
information is condensed into a tab-separated value (.tsv) file,
containing information about the moments in time where non-
zero (i.e moments where at least one key should be pressed)
keys are being played and at what strength. This text file is
stored to memory to be used by the note scheduler process.
C. Notes Scheduler

We define the notes scheduler as the module that takes
input from the audio processing module and converts it into a
format our physical piano interface can use to create the
replication of human speech. By definition, this requires the
notes scheduler to translate time-indexed arrays of frequencies
and their corresponding amplitudes into presses of piano keys
at different time intervals with an appropriate level of force. In
more specific terms, this module will translate the output of
the audio processing system in the form of a text file with tab-
separated integers. Each line of the file represents a
timestamp, and each column represents a frequency. The
integer at line x and column y represent the volume of
frequency y at time x.

A consideration is that even though an arbitrary frequency,
a, may be active at time t, the piano key does not necessarily
need to be pressed at that time. It may have been pressed
during a previous timestamp and still producing sound.
Therefore, the note scheduler must account for which keys are
already sounding while pressing new ones to produce a
smooth sound that evokes human speech, as opposed to
stuttering, choppy noise. The module will accomplish this task
by computing, for each frequency, the difference between
amplitudes for the current timestamp compared to the previous
timestamp, as well as keeping track of which keys are

Figure 5. An overview of the audio processing module.

Figure 6. Spectrogram displaying input audio frequencies changing
with time. X-axis, time in seconds. Y-axis, power.

18-500 Design Project Report: Team B-2 10/14/2022

7

currently pressed and for how long. If the frequency is
significantly louder from one timestamp to the next, or if it has
been long enough such that the sound has already faded, the
key will be pressed again. Conversely, if the key is currently
pressed but its amplitude is insignificant, the solenoid will
lift.

D. Physical Performance Scheduler
For the physical performance interface, we will be

implementing a circuit containing a Raspberry Pi as the signal
driving unit, 9 serial-in parallel-out (SIPO) shift registers, 69
MOSFETs, and 69 cylindrical 25N solenoids. Data from the
note scheduler, in the form of a 69-bit value where the nth bit
represents if the nth key will be played or not. This 69-bit
value will be split into 9 Bytes, where each byte will be loaded
into one of the 8-bit shift registers. We will be using 9 GPIO
pins of the Raspberry Pi to serially load the 69 bits into the 9
shift registers in the correct order such that the LSB is the
lowest frequency note and the MSB is the highest frequency.
As the data is being serially loaded into each shift register, a
GPIO pin of the Raspberry Pi drives a shift clock signal to all
of the shift registers such that for each bit sent to the shift
register, the clock outputs a positive edge signal indicating to
the shift registers to intake a bit and shift the values. Once all
shift registers are filled with data (8 clock cycles), a latch
signal is sent from another GPIO pin telling all the shift
registers to output their values in parallel to the 69 MOSFETs.
Each MOSFET acts as a transistor controlling the flow of
current from our 12V power source to the 25N solenoid.

Some specifics: We need to actuate solenoids and produce a
sound with a period of the time window we select for our
audio processing since each of the 69-bit values represents the
notes comprising a particular time window sample of the
audio recording. This means we have to be able to play audio
at a frequency of 1/Tw (Tw = window of time). Since we need
to load 8 bits of our data into the shift registers within each of
those solenoid actuation periods, our bit streams and clock
signals need to be 8 times faster than the solenoid actuation
frequency. This value is given by 8 * (1/Tw). Lastly, to
determine the total power consumption of our system, we
must calculate the power of a single solenoid and multiply it
by 69 since each solenoid will be wired in parallel. For one
25N solenoid, we will need 12V and a maximum of 1.5 A of
current. With this, we will need a 12V supply capable of
outputting ~(1.5 * 69) = ~103 A of current. This would require
a 1200 Watt power supply since power (Watts) is V*I =
~12*100.

VII. TEST, VERIFICATION AND VALIDATION
As previously stated, our goal for the web app-to-physical

system latency is 200ms or less. We will test this by
measuring the time between pressing a button on our frontend
UI, waiting for the system to interact and output to the UX,
and measuring the response time. This will be done with the
Selenium browser automation tool.
 The fast Fourier transform accuracy will also be tested. We
will create input audio with randomly generated frequencies
and amplitudes. This input will be fed through the fast Fourier
and the output accuracy measured in terms of the number of

correct frequencies and corresponding amplitudes. By
definition, FFTs are more accurate with a longer chosen
window, but this will incur higher latency. We will adjust the
latency to achieve an accuracy of 80%.

We also have standards for syllable timing. We wish to
record the start times and end times for various syllables when
spoken and compare those to the start times and end times
when sounded by the piano. We do not need a very stringent
requirement for this, as speech with “incorrectly” timed
syllables is often still intelligible - immigrants who speak
second languages with non-L1 accents can still be understood;
British and American anglophones can still understand each
other, and many machine-generated voices sound “robotic”
due to their timing. However, we still wish to somewhat
faithfully replicate the speech of the specific user. Thus, we
will aim for a syllable timing fidelity rate of 75%, but this will
be more of a goal than a requirement.

Finally, as the overarching goal of this project is to evoke
human speech, we wish for our piano to be understood as it
speaks. We will test this by surveying groups of volunteers
who will listen to prompts given by the piano and try to
decipher what it says. We aim for a high success rate of 95%
here, as it is the main goal of the project.

VIII. PROJECT MANAGEMENT

A. Schedule
Given that the physical device is our biggest single-point

failure, we’re frontloading our efforts into confirming that it is
possible to build this device. To do this, we’ve spent the first
3-4 weeks of our project working on a series of “proof of
concept” milestones that demonstrate we can control the
physical interface in the way we expect to. These milestones,
if not met, mean we should pivot towards the virtual interface
and use the rest of our allotted time for the physical interface
on the virtual alternative. If the proof-of-concept milestones
are met, by our fifth week of development we will decide
whether or not to pivot. In the case where we do not pivot,
each of us has a portion of the physical device that we will
contribute to. Marco will build the frame and printed circuit
board. John will design and test the circuit. Angela will
implement the firmware that controls the solenoids. In the case
where we do pivot, the virtual piano becomes an additional
feature to the web application, with development led by John
and the help of others if needed.
 Concurrently, the three of us will lead the work being done
in our respective areas. Marco will develop the audio
processing, John will implement the web application, and
Angela will implement the notes scheduler. Four weeks before
the end of the semester, we’ll spend two weeks regrouping and
assembling the physical device, integrating our individual
workloads, and running tests on the effectiveness of our
resulting system. We’ve allocated two weeks of “slack time”
for any issues that may come up along the way.

18-500 Design Project Report: Team B-2 10/14/2022

8

B. Bill of Materials and Budget
Please refer to Table 1 for more information.

IX. RELATED WORK
Player pianos have been around for many years, however

only recently have they begun to be built using
electromechanical devices. Edelweiss Pianos sells player
pianos within the range of $20,000 USD. Mark Rober, a
former NASA and Apple engineer, now Youtuber, posted a
video introducing his self-talking piano which inspired this
project.

X. SUMMARY
Our goal is to create a self-talking piano. In order to achieve

this, we’ll record a user’s voice via a web-app based user
interface. Once we have this data, we will extract the
frequencies that make up a user’s voice across time. We will
average these frequencies onto the frequencies that correspond
to piano keys and output that data onto a tab separate file. A
notes scheduler will parse this file and control a series of
solenoids that can actuate the keys on a piano. The result
should be series of notes being played on the piano that mimic
the sound of a human voice.

GLOSSARY OF ACRONYMS

• Play rate, the rate at which the keys on the piano are
being pressed.

• Phoneme, the atomic unit of speech, can be typically
represented by a letter in English.

REFERENCES
[1] World Leaders in Research-Based User Experience. “Response Time

Limits: Article by Jakob Nielsen.” Nielsen Norman Group,
https://www.nngroup.com/articles/response-times-3-important-limits/.

[2]“Piano Key Frequencies.” Wikipedia, Wikimedia Foundation, 29 Aug.

2022, https://en.wikipedia.org/wiki/Piano_key_frequencies.

[3]Haskins Laboratories. (n.d.). Alvin M. Liberman, 82, Speech and

Reading Scientist. Retrieved December 19, 2011, from
http://www.haskins.yale.edu/staff/amlmsk.html

[4]Peelle, Jonathan E., and Matthew H. Davis. “Neural Oscillations Carry

Speech Rhythm through to Comprehension.” Frontiers in Psychology, vol. 3,
2012, https://doi.org/10.3389/fpsyg.2012.00320.

18-500 Design Project Report: Team B-2 10/14/2022

9

Bill of Materials

Description Manufacturer
Model

Number Quantity
Cost

[$USD]
Shipping
[$USD]

Total
[$USD]

25N 12V Solenoids
MannHwa Smart
Home Electrical TAU-1039B 70 $2.52 $161.61 $338.01

Shift Register Kit BOJACK SN74HC595N 1 $6.99 $0.00 $6.99
5.6A 100V
MOSFET
Transistor Kit BOJACK IRF510N 1 $7.99 $0.00 $7.99
24V 50A Power
Supply

Weiattle Trading
Company Ltd. Store N/A 1 $65.99 $3.01 $69.00

8020 T-Slot
Extrusion 80/20 N/A N/A N/A N/A $50

PLA 3D Printing N/A N/A N/A N/A N/A $50

Grand
Total $521.99

Table 1

