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Abstract—For centuries, pianos have been used to play music. 

“Player pianos”, containing mechanisms that allow them to sound 
without human control, were first introduced in the late 19th 
century. This mechanism allows the instrument to be freed from 
its traditional constraints: the number of frequencies produced is 
no longer limited to a meager number of ten fingers.  
 

Index Terms—Signals and Systems, Embedded Systems, 
Internet of Things 
 

I. INTRODUCTION 
HIS project seeks to take advantage of player pianos to 

simulate human speech. Human speech is made up of many 
frequencies, and enough keys - and their frequencies - 
combined can reproduce speech with high enough fidelity that 
a player piano can speak and be understood. 

     
    Different modules of this project will come together to 

translate the phonemes of human speech into timed key presses 
on a piano. The audio processing module will receive audio 
input. This input information will be sampled for different 
frequencies and amplitudes. A smooth average will be taken at 
each frequency that corresponds to a piano key. We will repeat 
this at each time period. The key scheduling module will thus 
take the output of the audio processing module and use the time 
and amplitude information to determine the keys that need to be 
played at different times. 

II. USE-CASE REQUIREMENTS 
There are four major requirements for our use-case 

scenario. The first thing we need access to is recordings of our 
users' voices. To achieve this, we’ll build a user interface into 
our web application that allows users to record their voice and 
send it to the backend. For the user experience to be 
pleasurable, our UI needs to have a ~200ms end-to-end 
latency. This means that for any user interaction, there should 
be at most 200ms before any new actions can be taken, for 
example, listening to the post-processed audio produced from 
a user’s voice recording. We derived this number based on 
conventional advice regarding user response. Usually, 100ms 
is a limit for the user’s flow of thought to stay uninterrupted 
and for the user to feel that the system is instantaneous. Since 
our recording system is not real-time like a website, we had 
leeway in this regard; we decided that 200ms is a reasonable 
time for a non-real-time response to feel smooth and 
acceptable. 

Next, with the recording audio of a user’s voice, we need to 
extract the frequencies that make a user’s speech. We need to 
gather information on how these frequencies change 
throughout time to generate a sequence of keys to be played. 
To achieve this, we divide the incoming audio into ‘windows’ 
which we can use to see how the frequencies of a user’s voice 
change with time. A metric of success for this requirement 
involves being able to accurately estimate the frequencies and 
amplitude of each frequency within a user’s speech for each of 
those time “windows”. We decided that an 80% estimation 
accuracy for these frequencies and amplitudes would ensure 
our audio processing transformation introduces as little error 
as possible. 

Once we have a description of the keys we need to play on 
the piano, those notes need to be scheduled over time, onto a 
physical device so that the piano keys are played correctly. 
Errors introduced in our implementation of this requirement 
can affect the intelligibility of our piano’s output. Inaccurate 
timing in our scheduler will affect the timing of syllables the 
piano needs to produce, by delaying, elongating, or speeding 
up syllables. To mitigate these errors, we’ve decided that our 
scheduler should miss less than 5% of timed syllables. This 
will ensure that any errors in timing will not affect the entirety 
of our system's output. 

Lastly, we need to implement a physical device that will 
actuate the keys on a piano and produce the sounds we aim to 
recreate. The success and accuracy of this requirement 
encapsulate the overall performance of our system’s pipeline. 
Since there is a much smaller range of notes possible with a 
piano, we understand that the output of our piano will never be 
an exact copy of a user’s speech. Therefore, we’re requiring 
our physical device to have an 80% fidelity rate. In other 
words, the output speech of our piano should be intelligible to 
a user 80% of the time. 

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 
While planning our overall system architecture, we realized 

the importance of modularity within the different subsystems. 
Allowing each subsystem to treat the others as black-boxes 
creates an opportunity to isolate subsystem tests and debugging 
with simulated inputs/outputs. We’ve grouped our subsystems 
into 4 main areas: user interface, audio processing, note 
scheduling, and physical performance. Figure 1 illustrates how 
the subsystems interact with each other. 

Our system begins in the user interface, where users will 
interact with our web server via a browser on their personal 
devices. The user will be able to record audio files in-browser 
or choose amongst previously recorded files to play on the 
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piano. The user interface handles obtaining the audio 
recording file, as a .wav file, and passes it along to the audio 
processing subsystem hosted on our backend server.  
The audio processing subsystem converts the input audio into 
the collection of frequencies that make up these sounds across 
time. The audio processor then maps the frequencies at each 
timestamp seen in the audio recording to the frequencies 
playable by each key of the piano and encodes this data in a 
text file to be sent to the note scheduler hosted on the backend 
server.  

The notes scheduler uses a socket interface to send the 
Raspberry Pi data on which piano keys to play at any given 
time. The Raspberry Pi then serializes data on which keys to 
be pressed and sends it bit by bit onto a shift register.  
On the physical interface, the shift register outputs these 
control signals in parallel to the solenoids that actuate the 
piano keys. 

IV. DESIGN REQUIREMENTS  
As noted in our use-case requirements, we have 4 main 

requirements that each influenced the choices we made when 
designing our system. 

A. Web App Latency  
We are requiring that there is a <200ms latency period 

between interacting with our web application and noticing a 
change in the playing of audio on the piano. To ensure this, we 
are hosting our audio processing subsystem on the backend of 
our web application on AWS. This will allow us to use the 

powerful computers of the AWS EC2 instance to process the 
audio very rapidly. This leaves most of our 200 millisecond 
latency time for the transmission of data from AWS to the 
Raspberry Pi via sockets. We are estimating that this should be 
plenty of time since we are condensing the scheduled note 
information being sent into simple text files of bits describing 
which keys need to be played. To improve our transmission 
speeds, we will be testing an optimal balance between the size 
and frequency of data packets to minimize sending times. 
Lastly, the Raspberry Pi will immediately begin sending the 
received stream of bits to the shift registers to get played by 
the solenoids. 

B. Frequency and Amplitude Extraction Accuracy  
We understand that there will be some inevitable loss when 

translating the frequencies of the human voice to the finite and 
relatively small number of keys on a piano. To make sure we 
are maximizing the ability to play the voice as close to the 
original recording as possible, we need to ensure that we are 
extracting the frequencies and amplitudes from the recording 
as correctly as possible. We have chosen an 80% accuracy 
rating for the extraction of frequencies and their amplitudes as 
described in section N. This information is extracted from the 
voice recording by first splitting the recording into several 
windows of time and then processing each window through a 
Fourier transform, which converts the recorded data from 
amplitude across time to amplitude across frequency. We will 
be running tests to figure out the most optimal time window 

Figure 1 Overall Architecture 
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for our Fourier transform such that the accuracy of the 
frequencies and amplitudes extracted is maximized. 

C. Note Scheduling Accuracy  
Next, we want to design our system to schedule notes to 

miss or incorrectly play less than 5% of the syllables spoken in 
the voice recording. Human speech, in English, is typically 
spoken at 10 to 15 phonemes (distinct sounds), or 4 to 7 
syllables, per second [3][4]. As our system seeks to emulate 
human speech, our rate of producing sounds should not differ 
much from this rate. Typically, a piano key on an analog 
upright piano can be pressed up to 15 times per second. This 
limitation comes from the mechanism that moves the piano’s 
hammers to its strings, known as the action. We will be using 
a digital piano, which does not have an action. However, 
digital pianos are programmed to resemble analog pianos as 
much as possible, and thus we will still use 15 times per 
second as a limitation for our piano. We have tested the 
maximum actuation rates of some test 5N solenoids and found 
that they can actuate at rates up to 16 Hz. Since the solenoids 
can fire up to 16 times per second, we will be able to create up 
to 16 distinct sounds in 1 second, allowing us to capture the 
upper bound speeds of typical English speech. 

D. Fidelity Rate of Final Piano Playback 
Lastly, we are aiming to achieve an 80% fidelity rate, 

meaning that 80% of the words spoken in the original voice 
recording will be able to be identified when listening to the 
piano playback. To ensure this, we must be able to play the 
correct frequencies at the right volume levels at the right 
times. To ensure correct frequencies can be played in the first 
place, we start with the frequency range of human voices. We 
found that the fundamental frequency for human voice can be 
as low as 85Hz and that telephone communication captures at 
frequencies up to 4000Hz. This gives us a good approximation 
of the range of human voices. By applying the equation on 
figure 2. We found that to capture the ranges of the human 
voice, we need all the keys from 20 (82Hz) to 88 (4186Hz). 
 

 
     
 
 
 
 
 

Next, we need to make sure that we can most accurately 
map the frequencies obtained from our Fourier transform to 
the frequencies playable by the piano keys so that we can best 
determine which piano keys are needed to play a particular 
sample of the voice recording. To do this, we will be 
implementing audio blurring. This involves taking surround 
frequencies around the frequencies of each piano key, 
averaging their amplitudes and weighting them by how distant 
they are from the frequency of the piano key, and determining 
if this average passes a threshold determining that the key 
should be played. For example, in the case where the voice 
audio file contains weak amplitudes at exactly the frequency 
of note A4 of the piano (440Hz), but contains strong 
amplitudes at frequencies 437, 439, and 445, we will be able 

to capture these surrounding frequencies and determine that 
the note A4 should indeed be played to capture the slightly 
different frequencies. On top of that, humans are only able to 
discern a > 1% frequency difference between two tones.  
To best reproduce the amplitude of each frequency that makes 
up any given sample of the voice recording, we will be 
encoding the bits sent to the solenoids with a PWM signal, 
allowing us to control the volume at which the keys are 
pressed. 

V. DESIGN TRADE STUDIES  

A. Virtual vs. Physical Piano Performance  
One of the biggest challenges when initially designing the 

scope and specifications of our project was determining 
whether we would be recreating the processed speech virtually 
through a virtual piano interface or physically with solenoids 
pressing keys on a real piano. We understood that building a 
physical key pressing system would introduce a lot of 
complexity and potentially cause us to focus on mechanical 
systems that were out of the scope of our ECE-focused design 
requirements. After deliberate research and preliminary design 
of the circuitry and hardware needed to create the physical 
system, we decided that we would attempt to create the 
physical performance interface, and fall back to implementing 
the virtual performance interface if the physical system 
presented too many issues or troubles focusing on mechanical 
areas. This choice influenced several other design choices (as 
in the following section), and to plan around this fallback, we 
also derived a proof-of-concept design that we would build 
and test to help determine the feasibility of building the entire 
physical interface. Our main drive for developing this physical 
interface lay in providing the user with the most engaging 
experience possible in seeing how the piano can be used, 
outside the possibility of human players, to recreate speech 
and extend the realm of the typical use of pianos. We also 
coordinated efforts with Benjamin Opie, an electronic music 
professor here at CMU, to be able to have access to the digital 
piano practice room for the testing of our designs. 
Just recently, we implemented our proof-of-concept design 
consisting of wiring up 3 5N solenoids connected to shift 
registers and MOSFETs for actuation. We were successfully 
able to actuate the solenoids in customized patterns based on 
serial bit streams inputted to the shift registers and outputted, 
in parallel, to the solenoids. This test helped us determine our 
power consumption and strategy when scaling this up to the 
full, 69-key system. 

B. Web-Hosted vs. Hardware  
When we were deciding where we would host and store our 
programs, we identified we needed 2 main components: a 
strong computational unit capable of performing complex 
signal processing on incoming voice recording quickly, and a 
way to host a fast-responding user interface that could be used 
to record audio and interact with the system like 
pausing/playing and loading past recordings.  
    We first looked at using a Raspberry Pi for both the audio 
processing and notes scheduling portion of the system. We 
found that what we gained in low data transfer times and 

Figure 2: n is the nth key of the piano starting 
from the leftmost key of an 88-key piano 
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portability, we lost heavily in computing power. We quickly 
determined this would not work. 
    We next looked at using a Jetson Nano to do the audio 
processing, while keeping the Raspberry Pi for the notes 
scheduling. In this scenario, we could probably achieve 
performance with the stronger computer on the Jetson, 
however, we needed to take into account our virtual piano 
backup plan in case things didn’t go as we wanted. If we 
needed to implement the virtual piano instead, we would need 
to transfer the processed audio data and key schedules to 
AWS, where the virtual piano would be hosted. On top of that, 
this would introduce uncertainty as to where to host our user 
interface. If we hosted it locally, users would only be able to 
record audio and access the piano system on our local 
machines, but we would be able to run commands hosted on 
our local Jetson much more quickly. If we hosted our user 
interface on AWS, this would allow any user to access the 
interface on their personal device for recording, however, we 
would need to transfer the entire audio file to the Jetson for 
processing, which could introduce a large lag time. These 
trade-offs brought us to our currently agreed-upon design 
choice of hosting the user interface and audio processing on an 
AWS EC2 instance and transferring the data to a Raspberry Pi 
for playback on the physical piano interface. With these 
choices, any user can access the web application on their 
personal device for recording. These recordings are seamlessly 
sent to the audio processing subsystem also hosted on AWS. 
By hosting our audio processing subsystem on AWS, we can 
take advantage of the powerful computers of the EC2 instance 
to perform the audio processing very rapidly. Lastly, if we 
must implement our virtual piano instead of our physical 
performance interface, the rest of the subsystems will be 
already hosted on AWS, therefore transferring data to the 
virtual piano would be optimal. Ideally, if we get this system 
toolchain working with our physical piano interface and we 
still have time in our project, we will work to migrate the web 
app and audio processing to a Jetson to remove any data 
transfer lag times and take advantage of the portability of 
having a fully hardware-based system. 
C. Audio Time Sample Window  
Next, we examined the trade-offs associated with choosing the 
window of time in which we sample our audio recording for 
processing. This time window represents the duration of each 
snippet of the voice recording that the Fourier transform gets 
performed on. We determine the total number of time 
windows, and thus Fourier transform operations, for each 
recording by the simple equation: 
 

 
Our goal with selecting an optimal time sample window is 

to minimize the Fourier transform error and the time needed to 
compute each transform as well as the whole recording. To do 
this, we will be performing tests on a range of time window 
values by inputting the same simple audio, with a range of 
different windows, through our Fourier transform. The time 
taken to perform the transform and its accuracy will be 
analyzed against a control Fourier transform with a control 

time window from a well-established python library. We 
hypothesize that a shorter time window will allow for much 
shorter audio processing times as we can run more transforms 
and send smaller packets of data to the notes scheduler more 
frequently. However, we would be sacrificing the accuracy of 
the Fourier transform in extracting the frequencies and 
amplitudes, which hinders our use case requirement. On the 
other hand, choosing larger time windows may slow down 
audio processing times since we would be computing the 
Fourier transform and sending data to the notes scheduler in 
larger packets less frequently. However, due to the larger time 
window, the Fourier transform has a larger sample of data to 
work with, thus improving the accuracy of the frequency and 
amplitude extraction. 

D. Comparing Different Averaging Techniques  
To propagate as much information about the frequencies 

that make up a user’s voice throughout time, we want to 
average those frequencies around the discrete points that 
correspond to piano keys. We considered four options, each 
proposing more added benefit than the last. The first was to 
filter information at the frequencies that correspond to the 
piano keys. This approach loses the most amount of data on 
what the original frequencies of a user's voice were. However, 
this approach offers the benefit of being able to be 
implemented in hardware since the number of filters needed 
would be small.  

Our second approach was to compute a moving average of 
all the frequencies before the point where a piano key lies. 
This improves on our initial approach but lacks information 
about the frequencies that lie after the frequency of a piano 
key.  

Our third potential solution was to compute an average 
using the neighboring points before and after the frequency for 
our piano key. We think this is our best bet since this 
averaging technique is capable of propagating all of the 
original features from the original audio, albeit without the 
same resolution. 

We considered a weighted neighbors average, where again 
we average the neighboring points around the frequency of a 
piano key but weigh each neighbor's contribution to the final 
average by their distance from the piano key’s frequency. 
Although a valid way of averaging our input, it would cause 
frequencies lying between any two piano keys to not be 
propagated. Therefore, we think that our third approach is our 
best attempt at propagating all the information regarding a 
user’s voice onto the piano keys. 

E. Solenoid Choice 
Originally, we were deciding between using 5 Newton 

solenoids and 25 Newton solenoids for actuating the piano 
keys. Looking at the solenoids available to us, the 5N 
solenoids were typically much less expensive and used less 
power to run. For our proof-of-concept design of the physical 
interface, we ordered 5N solenoids that needed 12V and 1A to 
run. We found they got quite hot when left activated for 
extended periods of time and that 5N is just barely enough to 
actuate a key at an audible level. Another problem with using 
5N solenoids is that since they need the full power to actuate 
the key, there will be no room for adjusting the volume of the 
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key press to represent the amplitude differences of each 
frequency. Upon further research, we found 25N solenoids 
that were at a good price and used a reasonable amount of 
power (12V, 1.5A). We will be getting the 25N solenoids as 
they will be able to press the keys with ease and have much 
more room for adjusting the speed of the key press such that 
we can adjust the volume of the key to emulate the amplitude 
of each needed frequency. 

VI. SYSTEM IMPLEMENTATION  

A. Web Application User Interface 
 

Our web application user interface is the subsystem 
responsible for supporting controls the user can use to interact 
with our system. [Figure 3] On the web app, users will be able 
to record audio, upload past recordings, or pause/play the 
piano playback. We will be hosting our web app with Django, 
a python-based web framework, on an AWS EC2 instance. 
Using Django allows us to conveniently integrate our audio 
processing and note scheduling into our backend since those 
will be written in python as well. On the front-end user 
interface, we will be using Bootstrap for a pleasing and simple 
design and Ajax to support asynchronous calls to our audio 
processing and notes scheduler functions while maintaining 
responsive interactions.  Audio recordings will be done using 
built-in Javascript libraries that will save the file in the .wav 
format, a lossless audio format that stores the audio as 
amplitude across time. This .wav file will be then sent to the 
audio processing subsystem. The pause/play functionality will 
be implemented by sending interrupts to the notes scheduler 
whenever the user toggles the pause/play of a recording. The 
interrupts will contain information that causes the notes 
scheduler to either continue or stop sending information to the 
Raspberry Pi. 
 

B. Audio Processing 
The following implementation details are also illustrated in 
figure 5. The audio processing module takes in as input a 
recording of our user's voice.  
 

 
Figure 4. Incoming Audio Plotted as Time Series Data. 

The incoming .wav file is converted into an array containing 
time-series data, as in figure 3. To collect information on how 
the frequencies of our audio change over time, we divide the 
incoming array into a series of sample windows containing a 
collection of samples from the time series array. For more 
information on how we determined the size of this window, 
refer to the third section of our design trade studies.  
Then, for each sample window array, we calculate the Fast 
Fourier Transform (FFT) of that window’s time series data, 
which returns an array containing information about the 
sample's spectral density. This process is repeated for every 
sample window within the original time series array, and the 

Figure 3. A diagram of the web application interface design and data flow 
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result is an array describing how the frequencies of our 
original audio recording change over time. This result is 
illustrated on the spectrogram in figure 5.  

 
Replicating these frequencies throughout time using a piano is 
a ‘lossy’ transformation, meaning that it is impossible to 
reproduce all of the frequencies we’re able to extract using 
only the keys on a piano. Therefore, to propagate this 
information from our original recording through a piano we 
average the surrounding frequency magnitudes available to us 
at the points that correspond to keys on the piano. There are 
several ways of doing this, all of which effectively blur the 
incoming audio recording. We use the term blur to reference 
the notion that averaging the surrounding pixels of every pixel 
in an image creates a blurred version of the original image. 
We are still considering the effectiveness of different blurring 
techniques. For more information, please refer to the fourth 
section of our design trade studies.  

Averaging the incoming frequency information onto the 
points in the frequency domain that correspond to piano keys, 
results in an array that describes what piano notes should be 

played as well as with what strength, across time. This 
information is condensed into a tab-separated value (.tsv) file, 
containing information about the moments in time where non-
zero (i.e moments where at least one key should be pressed) 
keys are being played and at what strength. This text file is 
stored to memory to be used by the note scheduler process.  
C. Notes Scheduler  

We define the notes scheduler as the module that takes 
input from the audio processing module and converts it into a 
format our physical piano interface can use to create the 
replication of human speech. By definition, this requires the 
notes scheduler to translate time-indexed arrays of frequencies 
and their corresponding amplitudes into presses of piano keys 
at different time intervals with an appropriate level of force. In 
more specific terms, this module will translate the output of 
the audio processing system in the form of a text file with tab-
separated integers. Each line of the file represents a 
timestamp, and each column represents a frequency. The 
integer at line x and column y represent the volume of 
frequency y at time x. 

A consideration is that even though an arbitrary frequency, 
a, may be active at time t, the piano key does not necessarily 
need to be pressed at that time. It may have been pressed 
during a previous timestamp and still producing sound. 
Therefore, the note scheduler must account for which keys are 
already sounding while pressing new ones to produce a 
smooth sound that evokes human speech, as opposed to 
stuttering, choppy noise. The module will accomplish this task 
by computing, for each frequency, the difference between 
amplitudes for the current timestamp compared to the previous 
timestamp, as well as keeping track of which keys are 

Figure 5. An overview of the audio processing module. 

Figure 6. Spectrogram displaying input audio frequencies changing 
with time. X-axis, time in seconds. Y-axis, power. 
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currently pressed and for how long. If the frequency is 
significantly louder from one timestamp to the next, or if it has 
been long enough such that the sound has already faded, the 
key will be pressed again. Conversely, if the key is currently 
pressed but its amplitude is insignificant, the solenoid will 
lift.  

D. Physical Performance Scheduler  
For the physical performance interface, we will be 

implementing a circuit containing a Raspberry Pi as the signal 
driving unit, 9 serial-in parallel-out (SIPO) shift registers, 69 
MOSFETs, and 69 cylindrical 25N solenoids. Data from the 
note scheduler, in the form of a 69-bit value where the nth bit 
represents if the nth key will be played or not. This 69-bit 
value will be split into 9 Bytes, where each byte will be loaded 
into one of the 8-bit shift registers. We will be using 9 GPIO 
pins of the Raspberry Pi to serially load the 69 bits into the 9 
shift registers in the correct order such that the LSB is the 
lowest frequency note and the MSB is the highest frequency. 
As the data is being serially loaded into each shift register, a 
GPIO pin of the Raspberry Pi drives a shift clock signal to all 
of the shift registers such that for each bit sent to the shift 
register, the clock outputs a positive edge signal indicating to 
the shift registers to intake a bit and shift the values. Once all 
shift registers are filled with data (8 clock cycles), a latch 
signal is sent from another GPIO pin telling all the shift 
registers to output their values in parallel to the 69 MOSFETs. 
Each MOSFET acts as a transistor controlling the flow of 
current from our 12V power source to the 25N solenoid.  

Some specifics: We need to actuate solenoids and produce a 
sound with a period of the time window we select for our 
audio processing since each of the 69-bit values represents the 
notes comprising a particular time window sample of the 
audio recording. This means we have to be able to play audio 
at a frequency of 1/Tw (Tw = window of time). Since we need 
to load 8 bits of our data into the shift registers within each of 
those solenoid actuation periods, our bit streams and clock 
signals need to be 8 times faster than the solenoid actuation 
frequency. This value is given by 8 * (1/Tw). Lastly, to 
determine the total power consumption of our system, we 
must calculate the power of a single solenoid and multiply it 
by 69 since each solenoid will be wired in parallel. For one 
25N solenoid, we will need 12V and a maximum of 1.5 A of 
current. With this, we will need a 12V supply capable of 
outputting ~(1.5 * 69) = ~103 A of current. This would require 
a 1200 Watt power supply since power (Watts) is V*I = 
~12*100. 

VII. TEST, VERIFICATION AND VALIDATION 
As previously stated, our goal for the web app-to-physical 

system latency is 200ms or less. We will test this by 
measuring the time between pressing a button on our frontend 
UI, waiting for the system to interact and output to the UX, 
and measuring the response time. This will be done with the 
Selenium browser automation tool. 
    The fast Fourier transform accuracy will also be tested. We 
will create input audio with randomly generated frequencies 
and amplitudes. This input will be fed through the fast Fourier 
and the output accuracy measured in terms of the number of 

correct frequencies and corresponding amplitudes. By 
definition, FFTs are more accurate with a longer chosen 
window, but this will incur higher latency. We will adjust the 
latency to achieve an accuracy of 80%. 

We also have standards for syllable timing. We wish to 
record the start times and end times for various syllables when 
spoken and compare those to the start times and end times 
when sounded by the piano. We do not need a very stringent 
requirement for this, as speech with “incorrectly” timed 
syllables is often still intelligible - immigrants who speak 
second languages with non-L1 accents can still be understood; 
British and American anglophones can still understand each 
other, and many machine-generated voices sound “robotic” 
due to their timing. However, we still wish to somewhat 
faithfully replicate the speech of the specific user. Thus, we 
will aim for a syllable timing fidelity rate of 75%, but this will 
be more of a goal than a requirement. 

Finally, as the overarching goal of this project is to evoke 
human speech, we wish for our piano to be understood as it 
speaks. We will test this by surveying groups of volunteers 
who will listen to prompts given by the piano and try to 
decipher what it says. We aim for a high success rate of 95% 
here, as it is the main goal of the project. 

VIII. PROJECT MANAGEMENT 

A. Schedule 
Given that the physical device is our biggest single-point 

failure, we’re frontloading our efforts into confirming that it is 
possible to build this device. To do this, we’ve spent the first 
3-4 weeks of our project working on a series of “proof of 
concept” milestones that demonstrate we can control the 
physical interface in the way we expect to. These milestones, 
if not met, mean we should pivot towards the virtual interface 
and use the rest of our allotted time for the physical interface 
on the virtual alternative. If the proof-of-concept milestones 
are met, by our fifth week of development we will decide 
whether or not to pivot. In the case where we do not pivot, 
each of us has a portion of the physical device that we will 
contribute to. Marco will build the frame and printed circuit 
board. John will design and test the circuit. Angela will 
implement the firmware that controls the solenoids. In the case 
where we do pivot, the virtual piano becomes an additional 
feature to the web application, with development led by John 
and the help of others if needed. 
    Concurrently, the three of us will lead the work being done 
in our respective areas. Marco will develop the audio 
processing, John will implement the web application, and 
Angela will implement the notes scheduler. Four weeks before 
the end of the semester, we’ll spend two weeks regrouping and 
assembling the physical device, integrating our individual 
workloads, and running tests on the effectiveness of our 
resulting system. We’ve allocated two weeks of “slack time” 
for any issues that may come up along the way. 
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B. Bill of Materials and Budget 
Please refer to Table 1 for more information. 

IX. RELATED WORK 
Player pianos have been around for many years, however 

only recently have they begun to be built using 
electromechanical devices. Edelweiss Pianos sells player 
pianos within the range of $20,000 USD. Mark Rober, a 
former NASA and Apple engineer, now Youtuber, posted a 
video introducing his self-talking piano which inspired this 
project. 

X. SUMMARY 
Our goal is to create a self-talking piano. In order to achieve 

this, we’ll record a user’s voice via a web-app based user 
interface. Once we have this data, we will extract the 
frequencies that make up a user’s voice across time. We will 
average these frequencies onto the frequencies that correspond 
to piano keys and output that data onto a tab separate file. A 
notes scheduler will parse this file and control a series of 
solenoids that can actuate the keys on a piano. The result 
should be series of notes being played on the piano that mimic 
the sound of a human voice. 

GLOSSARY OF ACRONYMS 

• Play rate, the rate at which the keys on the piano are 
being pressed.   

• Phoneme,  the atomic unit of speech, can be typically 
represented by a letter in English.  
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[1] World Leaders in Research-Based User Experience. “Response Time 

Limits: Article by Jakob Nielsen.” Nielsen Norman Group, 
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[2]“Piano Key Frequencies.” Wikipedia, Wikimedia Foundation, 29 Aug. 

2022, https://en.wikipedia.org/wiki/Piano_key_frequencies.  
 
[3]Haskins Laboratories. (n.d.). Alvin M. Liberman, 82, Speech and 

Reading Scientist. Retrieved December 19, 2011, from 
http://www.haskins.yale.edu/staff/amlmsk.html 

 
[4]Peelle, Jonathan E., and Matthew H. Davis. “Neural Oscillations Carry 

Speech Rhythm through to Comprehension.” Frontiers in Psychology, vol. 3, 
2012, https://doi.org/10.3389/fpsyg.2012.00320. 
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Bill of Materials 

Description Manufacturer 
Model 

Number Quantity 
Cost 

[$USD] 
Shipping 
[$USD] 

Total 
[$USD] 

25N 12V Solenoids 
MannHwa Smart 
Home Electrical TAU-1039B 70 $2.52 $161.61 $338.01 

Shift Register Kit BOJACK SN74HC595N 1 $6.99 $0.00 $6.99 
5.6A 100V 
MOSFET 
Transistor Kit BOJACK IRF510N 1 $7.99 $0.00 $7.99 
24V 50A Power 
Supply 

Weiattle Trading 
Company Ltd. Store N/A 1 $65.99 $3.01 $69.00 

8020 T-Slot 
Extrusion 80/20 N/A N/A N/A N/A $50 

PLA 3D Printing N/A N/A N/A N/A N/A $50 

     
Grand 
Total $521.99 

 

Table 1 


