

http://www.youtube.com/watch?v=uBEL3YVzMwk&t=3

Use-Case and Requirements
Explore music beyond physical constraints by creating human speech on a piano!

e Record user speech (via Ul, that also offers playback features)
o 200ms end-to-end latency
e Convert input speech into piano notes
o 80% Frequency extraction accuracy
e Schedule those notes onto a piano
o <5% of syllables missed (delayed/elongated/sped, not dropped)
e |mplement a physical device that can press the keys on a piano
o 80% Fidelity Rate

ECE Areas: Software Systems, Signals and Signals



Solution Approach
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Risk Factors and Unknowns

e Building the physical interface
o Might take longer than expected, therefore we'll build a proof of concept build that
only uses ~5 solenoids to press keys

e Blurring the audio might not extract enough information

e Upload and Download internet speed between remote server and Raspberry
Pi introduce a bottleneck

e Our piano play rate may be too high, causing keys to be “spammed”



Alternative Design Strategies

e Virtual piano implementation: should our proof of concept for the
piano-playing mechanism fail, we will implement a virtual piano solution.

e Near real-time speech-to-piano translation: once MVP is achieved, we hope
to allow people to speak and hear their sentence played on the piano once
they’re done speaking.

e |ower-latency backend: once fully committed to the physical interface, we
can migrate the backend logic onto a Jetson if speed is a concern.



Testing, Verification, Metrics

e Web-app physical system latency
o Use Selenium to mimic clicking on Ul components

o Measure the time between pressing a button on our frontend Ul and the
appropriate reaction of the system
o Our goal metricis < 200ms

e Fast Fourier transform accuracy

o Use aninput audio recording we create with known frequencies and amplitudes
m Foreachwindow we will compare the frequencies reported by our system to the known
frequencies at that time
o Accuracy dependent on chosen time window for FFT
m Shorter Window=> Less Accurate
m Longer Window => Long wait times
o Adjust our time window for >80% accuracy.




Testing, Verification, Metrics cont.

e Syllable timing
o Userecordings with labeled start times for each syllable
o Record the number of syllables whose start time does not
match the original recordings labelled start time

e Fidelity of Output Audio
o Generate a series of prompts and output piano
recordings
o Survey a group of listeners on whether or not they can
understand the prompt given the piano audio
o Collect data on what percentage of listeners were able to
make out what the piano was trying to say
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