

http://www.youtube.com/watch?v=uBEL3YVzMwk&t=3

Use-Case and Requirements
Explore music beyond physical constraints by creating human speech on a piano!

e Record user speech (via Ul, that also offers playback features)
o 200ms end-to-end latency
e Convert input speech into piano notes
o 80% Frequency extraction accuracy
e Schedule those notes onto a piano
o <5% of syllables missed (delayed/elongated/sped, not dropped)
e |mplement a physical device that can press the keys on a piano
o 80% Fidelity Rate

ECE Areas: Software Systems, Signals and Signals

Solution Approach

N

Audio Processing

/

Notes Scheduler
Server

Notes Scheduler
Client

~

Frontend Ul

Physical
Interface

User

Web Application Interface

Front-end

Back-end

Audio
>

$

Record Audio

Processing

Pass Audio
File to Audio Processing

Replay Past
Recordings

User

> =

Grab Audio Processing

Output from Memory Notes

Scheduler

>l

Pause/Play

4O,

Send Interrupts
to Notes Scheduler

Audio Processing

Ul
Backend

m—

Incoming Audio
Recording

X(£)

A

Audio Processing

<

Notes Scheduler
Server

() a
=y KC\] Backend Frontend Ul
=Y averaqe
powe

.
o

Extract Time Series
Data from .wav file

Perform Fourier Transform
to extract key frequencies

ime | (Key, Power)
(0,70) (1,65) (2,70) ...

(3,25) (4,30) ...

Notes

|
|
|
} Scheduler
|

Generate text file
with information about what keys
should be played at what time

e}
Notes Scheduler
Client

Physical
Interface

—A

User

A

Audio Processing

CJ

Notes Scheduler
Server

Notes Scheduler

Server-Side

Ny

Time and Key information
are sent in batches to
client

Client-Side
Audio
Processing

Backend

Time | (Key, Power)
| (0,70) (1,65) (2,70) ...
| (3,25) (4,30) ...

|
| ees
0 |

Incoming file from
Audio Processing

Web
Frontend

Piano Interface

Replayed Audio

Incoming Power

for keys are converted Micro-controller
into duty cycles waits to send signals
for PWM signal to the Piano Interface

Server stops sending
’ l I keys to the client

Playback controls

Server resumes
sending keys to
the client

Gl

Notes Scheduler
Client

Frontend Ul

Physical
Interface

User

A @ (o)
Notes Scheduler Notes Scheduler Physical
Server Client Interface

Audio Processing - = = = <!

N -

Physical Interface

Notes Scheduler @ E
'n—n—n' Serial in _ o
JUL \4
JUuUL

Encoded signals

nQ [sleted

Shift registers toggle
transistors at PWM frequency
to control current to solenoids

Solenoids press piano
Shift Registers keys at force determined
by PWM encoding

Risk Factors and Unknowns

e Building the physical interface
o Might take longer than expected, therefore we'll build a proof of concept build that
only uses ~5 solenoids to press keys

e Blurring the audio might not extract enough information

e Upload and Download internet speed between remote server and Raspberry
Pi introduce a bottleneck

e Our piano play rate may be too high, causing keys to be “spammed”

Alternative Design Strategies

e Virtual piano implementation: should our proof of concept for the
piano-playing mechanism fail, we will implement a virtual piano solution.

e Near real-time speech-to-piano translation: once MVP is achieved, we hope
to allow people to speak and hear their sentence played on the piano once
they’re done speaking.

e |ower-latency backend: once fully committed to the physical interface, we
can migrate the backend logic onto a Jetson if speed is a concern.

Testing, Verification, Metrics

e Web-app physical system latency
o Use Selenium to mimic clicking on Ul components

o Measure the time between pressing a button on our frontend Ul and the
appropriate reaction of the system
o Our goal metricis < 200ms

e Fast Fourier transform accuracy

o Use aninput audio recording we create with known frequencies and amplitudes
m Foreachwindow we will compare the frequencies reported by our system to the known
frequencies at that time
o Accuracy dependent on chosen time window for FFT
m Shorter Window=> Less Accurate
m Longer Window => Long wait times
o Adjust our time window for >80% accuracy.

Testing, Verification, Metrics cont.

e Syllable timing
o Userecordings with labeled start times for each syllable
o Record the number of syllables whose start time does not
match the original recordings labelled start time

e Fidelity of Output Audio
o Generate a series of prompts and output piano
recordings
o Survey a group of listeners on whether or not they can
understand the prompt given the piano audio
o Collect data on what percentage of listeners were able to
make out what the piano was trying to say

Gantt Chart

Legend
Marco
PROJECT NAME UNIVERSITY CLASS Angeia
MEMBERS DATE John
Al

PHASE FOUR - Slack and Pelishing

PHASE ONE - Design and Early Implemnentaticn PHASE THREE - Wrap Up MVP and Testing

TASCTLE

M T WRFMTWRF M T WRFMTWRPFMTWRFMTWRFMTWRFMTWRFMTWRTFMTWRTFMTWRF

Audio Processing MA

Systemn Design and Specifications

Audio Fie to data structure with Pydub

Fovrier vasforn (data svuctrs) G EEEEE

Faurier transform (optimization; AC

Fifter frequencies to piano keys

Data struct for velocities and key:

Text to piano backend
Piano Performance Scheduler AC

System Desion and Specificatons EEEEE

feb app and audic processing interface MA

et face for web app and
microcontroller communication

M

Audio stream sesializer
‘Web App ™M
System Design and Specifications

ate Boiler-plate Back/Front End

Playback interaction
Upload and record

Content Recommendadtion ol Ba EH
Text to piana input MA ;
User Prafies AC

Physical Interface Al

Frame Design A

Prepare Bill of Materials X

Proof of concept A

PC8 Design MA

Powes Ansly]

PYIM Control / Velacity Calculation AC RN

Shift Regater Loading and control AC EREEE

Assembly (chasis) A

Assembly (scleroids) A

Assembly (wiring) It

Testing and Validation
Performance Metric Vabdation

Testing implementation

Slack

