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Abstract—Braille is an exclusively tactile system
of embossed or raised dots that allows individuals with
impaired vision access to inscribed forms of informa-
tion. However, given that less than 10 percent of legally
blind Americans are braille literate, a means to make
braille learning more accessible is imperative for guar-
anteeing adequate education to support a strong career.
Awareables is a solution that aims to provide those with
and without impaired vision with the ability to read
braille regardless of their education. While originally
planned to be a wearable, the completed solution is
a stationary appliance that can capture an A4-sized
braille document, then translate and read the contents
back to the user. It is our hope that this solution will
alleviate some of the current educational disadvantages
experienced by legally blind individuals.

Index Terms—Braille, Accessibility, Image Classi-
fication, Optical Character Recognition (OCR), Text-
To-Speech

1 INTRODUCTION

Historically, braille literacy in the United States has
been on a sharp decline, and recent published statistics
have shown that fewer than 10 percent of the legally blind
Americans are braille literate [1]. Therefore, the vast ma-
jority of the visually impaired individuals can not fluently
read braille text, embossed on paper or otherwise, meant
to provide pivotal guidance and assistance. Given that
braille is such an essential form of written language for the
visually-impaired individuals in both education and navi-
gation, a device that provides auditory accessibility and as-
sistance by means of text-to-speech translation could bring
about a meaningful turnaround. In order to assist visu-
ally impaired and legally blind readers in reading braille as
well as to improve braille literacy overall for educational
purposes, Aware-ables was originally envisioned to take
the form of a wearable device (Figure 1) equipped with
a mounted camera used to capture braille text a fixed dis-
tance away, then translate said braille to the user via a pair
of speakers located near their ears with a single button click
on the side of the device.

The final solution presented in this report is rescoped
as a stationary appliance (Figure 4) intended to provide
convenience and education in classrooms and libraries. Us-
ing computer vision algorithms for braille pre-processing,
machine learning for character recognition, bayesian spell-
check for post-processing, and an external text-to-speech
API, Aware-ables will ensure a smooth translation of a full
A4 page braille text within 2 seconds of button activation.

While there are currently a variety of devices and software
packages that can translate English text to braille or vice
versa in a limited capacity, no mode of direct translation
of braille to speech is provided within the open US mar-
ket. Aware-ables is designed to not only provide convenient
translation within 2 seconds, but also ease out the learning
curve of the braille language in the long run.

Figure 1: Initial vision for final demonstrable product
(Aware-ables)

2 USE-CASE REQUIREMENTS

In order for Aware-ables to effective in our suggested
context, two core requirements that must be guaranteed to
the users: a maximum of 2 seconds of translation latency
and over 90 percent translation accuracy.

For a relatively convenient and uninterrupted experi-
ence, the entire process from braille capturing to direct
speech translation will be completed within two seconds,
following the common usability standard for web wait times
[2]. Furthermore, braille readers can read at speeds rang-
ing from 200 to 400 words per minute[3], Aware-ables will
match this pace by recognizing up to 10 words each two
seconds at arms-length, reaching a maximum of 300wpm.
However, it is important to note that any rate of speech
over 200wpm can significantly impair comprehension [4].
Given that our chosen medium of delivery is speech, we
will need to tune this rate for improved comprehension.

As far as accuracy is concerned, we are targeting a 10
percent character error rate to match the conventional error
rates of traditional optical character recognition (OCR)[5],
which will be further alleviated through post-processing
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Figure 2: High level block diagram and datapath for our proposed solution.

and spell-check algorithms. Our final target word error
rate is less than ten percent, to ensure comfortable and
accurate playback for educational purposes.

3 ARCHITECTURE AND
PRINCIPLE OF OPERATION

Fig. 4 represents the team’s vision for our final proto-
type. The hardware architecture includes a Logitech C920
USB web camera; an NVIDIA Jetson AGX Xavier, a semi-
portable form-factor platform powerful enough to support
near real-time capture and inference; a button; and a USB-
to-Aux digital audio converter. On triggering the button,
a still image captured from the C920 is sent to the Jetson
running our software stack to process the input. Once the
braille has been translated, the result is read out of an au-
dio device connected to the auxiliary port (audio output
jack).

The final solution mounts the C920 camera at a con-
trolled distance away from its document tray, allowing for
optimal capture of Braille documents. Furthermore, we
control lighting using an LED lighting rig to replicate the
lighting conditions of the images used to train the machine
learning algorithms in our software stack.

Above, Fig. 2 presents a high-level block diagram for
our intended implementation. As previously mentioned,
our software stack is split into three sequential subsystems:
pre-processing, classification, and post-processing. Later
sections will dive into more detail about implementation
specifics, however it is important to note the color coding
of the blocks indicating which software components were
sourced off-the-shelf and which were be developed in-house.

Figure 3: Image of functioning final solution

Below the block diagram, we have provided a high-level
visualization of modifications being made to the input im-
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age at significant points in our datapath, however, here
again later figures will provide more detail. From the high-
level diagram, it is clear that our software stack will expect
an (1) uncropped, well lit image of a braille document,
which will then be (2) cropped, filtered, and segmented
into single characters, then (3) classified and (4) concaten-
tated into an English word, which can then be (5) read out
via the speaker.

Figure 4: Annotated diagram of final solution

4 DESIGN REQUIREMENTS

4.1 Pre-processing

The first subsystem in our software data path is the pre-
processing of captured braille images through computer-
vision and segmentation algorithms. Image of printed
braille text will be captured using Logitech C920, and trig-
ger button with the distance between camera and braille
text being approximately 30cm apart in order to adjust
the dimension of the initial physical crop to match that of
the A4-sized paper. The original image will then be pre-
processed through various computer vision algorithms of
OpenCV libraries in order to increase the overall quality
of the collected image, facilitating the next process, recog-
nition, that utilizes machine learning classification models.
The pre-processed image will then be horizontally and ver-
tically segmented, with the results being a folder of individ-
ually cropped rectangular braille characters that have been
processed and segmented from an initial braille capture to
be fed into ML pipeline in the next procedural step.

The primary design requirement of this subsystem is
adjoint with the classification stage’s necessities in that
Aware-ables is aiming for less than 10 percent error rate
for each optical character recognition. In order to attain
this, various approaches to computer vision pre-processing
are studied in the design studies section to not only maxi-
mize the quality of final cropped braille character images ,
but also minimize character recognition error rate.

4.2 Classification

The second subsystem in our software data path is the
classification model. This subsystem should accept an ar-
ray of images of segmented and pre-processed braille sym-
bols as described above and output a string of translated
english characters in the same order. The primary design
requirement for this subsystem is a character error-rate of
under 10%. There are a few reasons for this design require-
ment. An article from early 2021 cites an Australian study
which places average OCR character error-rate in a range of
2-10% [5]. Because braille recognition is a relatively smaller
field of research with a number of unsolved technical chal-
lenges, we are setting expectations at the higher end of this
range. Furthermore, we expect the post-processing step to
correct some of the errors that may arise from classification.

In line with latency requirements, we expected classi-
fication to be fairly low-latency on our chosen hardware.
However, it became clear during testing that classification
latency scales linearly with character count and that more
powerful hardware improves latency substantially (See sec-
tion 7.2.2)

4.3 Post-processing

Our final software subsystem is post-processing, which
includes concatenation, spellcheck, and text-to-speech gen-
eration. A 2013 study performed by Lund et al. showed
that OCR character error-rate had a detrimental effect on
word error rate, with a 1.4% CER resulting in a word
error-rate of up to 7% [6]. However, the paper does not
describe whether spellcheck or other post-recognition cor-
rections could be utilized to reverse this impact. We hope
to use an in-house spell checking algorithm to lower word
error rate when compared to character error rate.

In order to minimize the overall likelihood of falsely rec-
ognized characters from the prior classification subsystem,
we are aiming for a final accuracy of <5% for all words.

5 DESIGN TRADE STUDIES

5.1 Pre-Processing

Upon capturing the original braille image, following
steps [7] are required to pre-process, or to properly re-
fine the original image so that the ML recognition model
can correspondingly translate individual images of Grade
1 braille alphabets to English characters with the desired
character accuracy rate of 90 percent:

1. Grayscaling

2. Thresholding

3. Application of various blur filters

4. Erosion and Dilation

5. Further application of edge filters such as canny edge
filters using non-max suppression



18-500 Final Report: Team B1 - 17 December 2022 Page 4 of 17

In the figures below, further details of each procedures
and reasoning behind adoption of specific functions from
OpenCV libraries will be explored.

Initially, in step 1, cv2.imread() method is used to load
an image from the specified file location in order to load
the original image of braille text, which is the most efficient
way to load an image file to python. In step 2, grayscaling,
cv2.cvtColor(src,code[,dst[,dstCN]]) is used to convert the
original image comprised of RGB color scale into gray scale
images, which is a necessary prerequisite for thresholding
step.

Figure 5: Results of Step1: Capturing of the original image,
and Step2: Gray-scaling of the original image

Third step, thresholding, is a process of converting the
grayscaled image into a binary image that is only com-
prised of color scale values 0 and 255. Because the input
image is captured from e-cam 50 which accommodates var-
ious intensities of each pixels unlike scanned documents,
OpenCV’s adaptiveThreshold method is adopted over reg-
ular threshold to support a range of maximum value of 255
and minimum value of 0. The purpose of the fourth step,
blurring, is to reduce unwanted noise by applying various
blur filters such as median blur, Gaussian blur, or bilat-
eral filtering. Applying Gaussian Blur only have reduced
the number of unwanted noise count from 50+ to 17, and
further application of median blur have reduced the noise
count to 8 in the tested image described in Figure 4.

Figure 6: Results of Step3: Thresholding the gray scaled
image to create a binary image, and Step4: Application of
both median blur and Gaussian blur on binarized image to
reduce unnecessary noise

During step 5, erosion, a process of equating the pixel
values inside to the outside value, and dilation, a process
reverse of erosion, take place to reduce further noise. Ero-
sion procedure is to minimize the area of the black dot
and remove remaining noise from thresholding that are
still left after blurring. Then, the shrinked dots are en-
larged through dilation which allows re-visibility of braille
dots along with the elimination of noises left behind. Af-
ter completion of the erosion and dilation, the 8 remaining
noises have reduced to 6. In the last step, canny edge fil-
ters are applied through non-maximum suppression, or by
collecting the center point coordinates of individual braille
dots and drawing a colored circle with a radius found from
Hough Transform. This method is adopted to maximize
the edge contrast of the final pre-processed image, which
will facilitate the next ML recognition process.

As OpenCV library’s functions ensures optimization
and performance, the entire pre-processing procedure can
be completed between 200 to 400ms, and subsequent exe-
cution of necessary steps will gradually increase the OCR
accuracy rate tested during the ML recognition phase, ap-
proaching near the desired rate of 90 percent as shown in
figures 3,4,5.
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Figure 7: Results of Step5: Erosion and dilation for fur-
ther reduction of discrepancies by reducing(eroding) visible
noises and enlarging(dilating) individual dots, and Step6:
Application of further non-max suppression edge filter al-
gorithm for enhanced OCR accuracy rate

5.2 Classification

One important consideration made when designing the
classification subsystem was whether to use a pre-trained
model or train a new model in-house. As part of our classi-
fication subsystem design, we performed a keyword search
for existing open-source Braille classification models and
libraries. The most effective model available [8] provided a
pre-trained model with two sets of layers (excluding input
and output), each with a 2D convolutional layer, a pooling
layer, and a ReLU (rectified linear unit). Using the test
method found in Section 7.1.2, we were able to achieve,
on average, an 89.6% character accuracy, with the lowest
individual character accuracy being 73.5%. However, since
this model was likely trained against the same dataset, this
experiment tested the best case scenario for the model.

While this model represents a convenient off-the-shelf
option for our project, we do not expect to use it in our
final prototype. As cited above, testing against the train-
ing dataset is not representative for validating the model in
the real world. However, even so, the model was not able
to reach our design requirement of a 10% character error
rate. Combined with the opportunity to tailor our training
dataset to better represent the output of the preprocessing
subsystem, this provides ample motivation to train our own
in-house model. The tradeoffs for this decision will be time
and resources spent training a new model. However, we
hope that we are able to gain better accuracy in the con-
text of our solution, as well as clearer knowledge of dataset
division for cross-validation testing. While we are mov-

ing forward with an in-house solution, we may experiment
with transfer learning using this model as a foundation in
the future.

Figure 8: Abbreviated confusion matrix for a pre-trained
classification model. Green diagonal line indicates high
confidence tested against training dataset.

Since we chose a machine learning path for Classifica-
tion, it was also important to examine tradeoffs when tun-
ing different parameters of the machine learning model. For
example, how does layer depth affect latency? How does
learning rate or dataset partitioning affect model perfor-
mance? Data used to examine this trade-off can be found
in Section 6.3. As a result of our experiments, we chose
to proceed with an 18-layer ResNet convolutional neural
network.

Finally, we also examined the trade-off between the Jet-
son Nano and Jetson AGX Xavier primarily using Classifi-
cation (Section 7.3). From our results, it is clear that the
AGX Xavier has the edge in both latency and energy effi-
ciency. In our initial experiments, we expected the Jetson
Nano to provide an energy advantage due to its smaller
thermal envelope. However, we have found that the AGX
Xavier’s superior inference latency is able to outweigh its
more agressive power rating.

5.3 Post-Processing

From a workload perspective, the post-processing sub-
system is broken into the inflow of characters, error-
checking of concatenated words, and lastly the text-to-
speech. The main consideration before beginning the in-
frastructure of both software and hardware components
was understanding the individual complexities of each sub-
section in the overall subsystem. The first subsection is
trivial and can be designed by hand. The next two sections
required a deeper understanding of algorithms however. At
a deeper level the spell-checking section only requires an
understanding of software and general algorithmic think-
ing. This can be written by hand with medium complexity,
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but it will not sacrifice in any usability when done cor-
rectly. On the other hand, the difficulty of creating fluid
text-to-speech incorporates software, hardware, embedded
systems, and a deep understanding of signal processing.

In consideration of the skill sets of our team, the deci-
sion came to writing the error-checking by hand and leaving
the text-to-speech application to an API. In terms of usabil-
ity, this decision gives us access to a pre-trained and more
realistic model based on natural language processing. The
three main benefits of using an API is understandibility, ef-
ficiency, and complexity. An API has existing voice infras-
tructure that resembles natural speech, and also in a highly
efficient manner since it is scaled by larger budget corpora-
tions like Google. If we were to write the text-to-speech by
hand, it would most likely result in a crude interpretation
that is hardly understandable and barely scaleable at low
speeds.

6 SYSTEM IMPLEMENTATION

This section provides the technical details for the im-
plementation of each component of our solution.

6.1 Hardware

When choosing a hardware platform for Awareables,
meeting the latency requirement was a key determining fac-
tor. As a result, while test development began initially on
the Jetson Nano, we ultimately chose to deploy our final
product on the Jetson AGX Xavier, as originally proposed
in our Design Review. To address the compromises of the
AGX Xavier platform over the Nano, we installed drivers
[9] which allowed us to use a USB WiFi dongle for wireless
connectivity, switched from our original MIPI CSI-2 cam-
era to a USB Logitech C920 (which also provided superior
clarity) by adapting code from JetsonHacks [10], and used
a USB-to-AUX audio converter to output text-to-speech
audio. Because our final solution is stationary, weight and
power draw became less of a concern, but we were able to
compute that energy per classification inference is actually
lower on the AGX Xavier when compared to the Nano (see
section 7.3).

6.2 Pre-processing & Cropping

The primary deliverable of our pre-processing and crop-
ping subsystem is the folder of individually cropped rect-
angles each containing one braille alphabets to be passed
on to the ML recognition model for direct braille character
to English character classification and translation. In order
to properly process the initially captured braille image into
an individually cropped braille alphabets, two steps need
to be followed: 1) pre-processing of the original braille im-
age using computer vision algorithms to increase the overall
quality of the captured image. And, 2) vertical and hori-
zontal segmentation to crop the pre-processed image into
individual rectangular boxes of braille alphabets. Detailed

implementation steps of preprocessing from original cap-
ture to erosion and dilation is already covered in section
5.1) Design Trade Studies of Pre-processing Subsystem.

Figure 9: original braille image capture upon botton acti-
vation

Figure 10: Image after gray scaling and adaptive threshold

Figure 11: Image after the application of MedianBlur,
GaussianBlur filters as well as merging the canny edge de-
tection filter with blurred threshold
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Figure 12: Image after erosion and dilation to get rid of
some of the residual noises from canny edge merge

In order to further boost the classification accuracy dur-
ing our second software subsystem, OpenCV’s Connected-
ComponentsWithStats function was utilized to extract the
top,left coordinates, width, and height of the commonly
appearing components, braille dots. With these stats, an
image of braille dots can be expressed as a matrix of indi-
vidual dots comprised of its center coordinates as well as
its radius. Using these information, a green circle is drawn
on top of the preexisting braille dots as shown in figure
14. Furthermore, along with the usage of non maximum
suppression to get rid of some of the redundant dots, the
overall pre-processing procedure creates a crisp overlay that
resulted in higher classification accuracy.

Figure 13: Filtered stats(left,top,width,height) matrix from
the stats value from the OpenCv’s ConnectedCompo-
nentsWithStats function

Figure 14: overlay of green circles on top of the original
braille dots offers maximum classification accuracy

As far as the cropping is concerned, in order to meet
the initial use case requirements of 2 seconds latency
from original image capture to translated audio output,
the final processed image was manually cropped by im-
age[startHeight:endHeight, startWidth:endWidth]. Com-
pared to the Dynamic ML Crop introduced in section 6.5.1
of this report, the suggested way of cropping requires about
10 20 percent of latency.

Figure 15: resulting folder containing 560 individually
cropped braille dots

6.3 Classification

The character classification subsystem is implemented
as an 18-layer ResNet [11] convolutional neural network.
ResNet is a popular image classification neural network ar-
chitecture that uses skip connections to avoid a vanishing/-
exploding gradient and enable more reliable training. The
architecture was chosen because it was readily available
for training at different layer depths on AWS SageMaker.
When compared to the alternative option of using a pre-
trained 3-convolutional block PyTorch model from aeye-
alliance (hereon referred to as the Aeye model) [8], this
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method yielded better accuracy and comparable inference
time.

Figure 16: A Resnet building block, visualized (Credit:
[11])

Figure 17: Sample of Aeye-0 dataset

To train the ResNet, we began by writing a script to
scrape jpgs off the csv datasets from the aeye-alliance repos-
itory to a local directory (hereon referred to as the Aeye-0
dataset). This produced a total of 20,636 images labelled
with 37 classes. One caveat to the Aeye-0 dataset is that
it is labelled in English translations of each braille charac-
ter, so we used another script to relabel each class as their
unicode braille characters for future extensibility in other
languages. We then run this dataset through a version of
the pre-processing filters to create the Aeye-filtered dataset.
Additionally, the Aeye model is trained on filtered varia-
tions of a curated subset of the Aeye-0 dataset that only
includes embossed braille, not written braille (referred to as
the Aeye-1 dataset). Aeye-1 has a total 26,724 images. It
is important to note that SageMaker does not dynamically
resize training dataset images to the expected input layer
size, but instead center crops images that are larger than
the expected input. This nuance corrupted a number of
earlier experiments’ accuracy data, but still provided good
information on the relationship between layer depth and
latency. To train correctly on SageMaker, we later resized
all image datasets to a uniform 28x28.

Figure 18: Confusion matrix as a result of center-cropping
on AWS (53.50% accuracy)

After a design space search, we decided to implement
our model as an 18-layer ResNet trained on 85% and val-
idated on 5% of the Aeye-filtered dataset. 18 layers is the
shallowest ResNet architecture available on AWS and pro-
vided the best inference latency with little compromise to
accuracy. This is likely because braille is a fairly predictable
dataset which should not need as many layers for extracting
minute features. Using Aeye-filtered yielded the best accu-
racy on the Aeye-filtered dataset, but performed poorly
on Aeye-0. As a result, we then performed incremental
training on 70% of the Aeye-0 dataset, keeping 5% of the
Aeye-filtered dataset as a validation set to maintain effec-
tiveness on filtered images. This produced a model with
a good balance of accuracy and speed on both raw and
filtered images, with a combined accuracy of 93.38%.

Image classification models on SageMaker are trained
using the Apache MXNet framework, which received lim-
ited support on the Jetson Nano platform we were primar-
ily testing on during development. Since no prebuilt pack-
age image/wheel was available on the Python Pip package
manager, we attempted to build MXNet directly on the
Nano, which failed to complete after 24 hours. As a re-
sult, we used a separate host system to convert the MXNet
param/symbol files to ONNX, an Open Neural Network
Exchange framework whose runtime/deployment process
on the Jetson platform was more thoroughly documented.

Upon receiving a directory of cropped characters from
the pre-processing subsystem, the classification subsystem
runs each image through the ResNet-18 model using on-
nxruntime deployed on the Jetson AGX Xavier’s accel-
erated TensorRT platform. The TensorRT platform uses
parallel Tensor Cores specialized in matrix multiplication
to perform high performance computing in machine learn-
ing contexts. The inferences produced are concatenated
and translated using LibLouis [12], an open-source library
for translating braille to a number of supported languages;
for testing purposes, we have hardcoded this parameter to



18-500 Final Report: Team B1 - 17 December 2022 Page 9 of 17

Grade I English.

Finally, the concatenated and translated output is re-
turned to the next subsystem, along with a confidence ma-
trix containing any characters with Top-1 prediction con-
fidences under 0.9 (less than 90% confidence that a given
image belongs to the predicted class) and an associated list
of the next five most probable predictions for each.

6.4 Spell Check & Text-to-Speech

The final large subsystem includes the post-processing
to speech application. The main deliverable from the pre-
vious sub-process is ascii characters which have been in-
dividually characterized by the ML pipeline. The post-
processing deliverable provides the final output to the user
in clear and concise audio. As a whole, the post-processing
section includes 2 main components. The first step involves
the sequential checking of words after initial concatenation
for basic error correction. Lastly, the text will be converted
to speech via the Google text-to-speech API.

Figure 19: Subsystem C error checking flow chart.

In order to create a working spellcheck model, several
key factors have to be considered. The first indication is
whether or not a word is in need of error checking after
pre-processing and classification. As stated in the classifi-
cation deliverable, a confidence matrix is provided to the
post-processing section in the form of a dictionary. This
dictionary provides the indices of characters below the 90%
confidence threshold we determined, and their 5 character
array of possible options.

Figure 20: Confidence Matrix being applied to correct char-
acters ’h’ and ’q’.

The main algorithmic approach to the spellchecking
subsection involves generating the set of all possible sin-
gle character different ”words” as specified by the confi-
dence matrix, that are also contained in the static dictio-
nary checker provided. Initially, the set of all possible words
with one single character different is quite large. However,
this is greatly reduced when only considering the indices
and characters specified by the confidence matrix and fur-
ther only words that are in the English dictionary. Overall,
each word will then be assigned a probability of correction
and the max word probability will be returned and re-added
to the sentence.

The second key factor in development is the ”dictio-
nary” checker of choice. A single reference source file for
each word to be checked against efficiently and within a
reasonable time frame. For this consideration, a static
text file will be allocated with the full dictionary alpha-
betized and ordered along with pre-generated volumes of
text from classic works to simulate usage probability. The
best way to represent the simulated usage probability is
through the Bayesian statistical model that defines more
data as a means to achieve a stronger statistical average
and distribution. By supplementing an English dictionary
with large volumes of English text, we can assume word
frequency as well as account for edge case possibilities.

This dictionary can be used to compare against each
word before proceeding forward with error correction. In
terms of error correction, we opted for a simplistic model
that would be beneficial for both the necessity for efficiency
and relative error rates in classification. This model as-
sumes that the possibility of errors resulting in one char-
acter less or one character more for a word are 0%. This
is based on the use case of translation rather than tran-
scription. Using this theory, we can greatly minimize the
set of possible words resulting in a single character error.
Due to the sheer quantity of possible combinations of words
with 2-character errors, and the relatively low error rate of
single characters that we are aiming for, it is safe to say
statistically that words will only see errors once every 10
characters.

After each word has been processed and the text is com-
pletely synthesized, the data will be sent as a request to the
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Google REST API, and a respective .WAV file will be re-
turned. The subsequent .WAV file will be processed and
sent through the speaker or headphones connected to the
device as stereo output. With the addition of the Google
API, there are multiple features that allow for custom ma-
nipulation of speech. This includes custom voice recogni-
tion, as well as pitch and volume manipulation for optimal
user interpretation.

6.5 Experimental Features

Figure 21: Experimental features (bounding boxes from
Dynamic ML Crop and finger detection from Finger Cur-
sor)

For the purposes of public demonstration, a number
of features were quickly prototyped using modified off-the-
shelf libraries and very little testing. The following is a
brief description of each implementation.

6.5.1 Dynamic ML Crop

To implement a more dynamic cropping mechanism
that leverages machine learning for detecting braille charac-
ters in a scene, we adapted and modified AngelinaReader’s
inference pipeline [13] to extract the bounding boxes of each
braille character. AngelinaReader uses a PyTorch Reti-
naNet to run object detection on embossed braille char-
acters on a white page. RetinaNet is an object detection
model particularly suited to detecting scenes densely pop-
ulated with objects that the model needs to detect when
compared to more lightweight models such as YOLOv5.

We initially attempted to use AngelinaReader’s dataset
and the DSBI (double-sided braille image dataset) [14] to
train our own RetinaNet on a AWS’s EC2 P3 machine, but
the results were less than satisfactory given the time re-
maining in our timeline. As a result, we chose to adapt the
existing pretrained model, though future implementations
could experiment further with fine tuning a custom trained
model. One drawback to note about AngelinaReader is
that the model is trained on images of braille embossed
on white paper lit from above. As such, in order for the
model to recognize braille characters, lighting conditions
and material must be matched, which is not the case for

our classification model. Given more time, a custom model
may be trained to be more flexible.

Figure 22: An example of promising training loss curve
for one attempt at training a custom RetinaNet on P3, fol-
lowed by the incorrect bounding boxes of an inference (each
bounding box should be associated with a single character)

6.5.2 Cursor Reading

Cursor Reading allows the user to learn braille by run-
ning their fingers over the braille and hearing each braille
character translated back to them in real time. This feature
was devised in response to ethical concerns that were raised
that users may become overreliant on the appliance and
choose not to learn braille at all. By associating the tactile
action of touching the braille character with its translation,
it is our hope that users will be able to more effectively learn
braille.

Cursor Reading is implemented using Google Medi-
aPipe’s hand pose estimation model [15] and the cropped
bounding box output of the chosen cropping pipeline.
When the top of the user’s index finger is within the bound-
ing box of a cropped character for the first time, its trans-
lation is read aloud to the user. This feature was imple-
mented quickly for demonstration purposes and therefore
was not tested for reliability or accuracy.
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Table 1: System testing data when using Dynamic Crop

Document # Word Count Average Latency (s) WER (no Spellcheck) WER (Spellcheck)
Ad 91 4.4594 1.099% 0.366%
Publishing 9 0.9357 7.407% 7.407%
Ending 54 2.744 2.469% 0.617%
Synopsis 31 1.7920 1.08% 0%
Title Page 14 1.1806 9.523% 7.143%
Overall 2.222 4.315% 3.107%

7 TEST & VALIDATION

Through extensive testing and validation, the overall
system, as well as each constituent subsystem was mea-
sured for accuracy and latency.

Figure 23: Table showing use-case requirements met when
using static crop (all but latency are met when using dy-
namic ML crop unless word count is capped at 35 words)

7.1 Results for Accuracy

7.1.1 Pre-Processing

To examine the accuracy of the pre-processing phase,
two factors are being considered; 1) ratio of individual
braille dots that have been properly overlaid with green
circle through OpenCV’s connectedComponentsWithStats
and non maximum suppression functions. 2) ratio of proper
crops for individual braille characters. For all five braille
documents tested(Ad - 91 word count, Publishing - 9 word
count, Ending - 54 word count, Synopsis - 31 word count,
Title page - 14 word count), the average green circle overlay
accuracy exceeds over 95 percent, and as far as cropping is
concerned, the accuracy is near 100 percent.

7.1.2 Classification

To examine classification accuracy, we ran each trained
model over the Aeye-0 and Aeye-filtered datasets and vi-
sualized their performance using a confusion matrix. The
final model, trained on 85% of Aeye-filtered and 70% of
Aeye-0 was able to achieve an accuracy of 99.86% on Aeye-0
and 86.89% on Aeye-filtered, averaging to 93.375% (6.625%
character error-rate).

Figure 24: 99.86% accurate confusion matrix of our final
model on Aeye-0 dataset.

Figure 25: 86.89% accurate confusion matrix of our final
model on Aeye-filtered dataset.

Furthermore, because we chose to train our model on
85% of Aeye-filtered and 70% of Aeye-0, it was important
to verify that our final model architecture was not over-
fitting to the dataset it was trained on. To do this, we
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performed 4-fold cross validation by training four models,
each on 75% of the Aeye-0 dataset, leaving four disjoint
training datasets each representing 25% of Aeye-0. Eval-
uating across these four models, we found that accuracy
remained consistently above 99% (99.86, 99.88, 99.84, and
99.78), indicating that the model is learning to recognize
important features rather than overfitting to the dataset.

7.1.3 Post-Processing

The post-processing error checking accuracy is based on
the algorithms ability to correctly replace errors in English
words with single to multiple errors provided per word. In-
dividual metrics are based on sets of 100-150 words with
single to multiple character errors. The average results gave
a statistical correctness of 97% for the final system imple-
mentation.

7.1.4 Overall

Overall accuracy was assessed as word error-rate
(WER) using printed single-sided braille pages obtained
from the online braille book repository, Braille Bookstore.
After translating each page manually, we assessed average
word error rate by scanning and cross-referencing the pro-
duced string with the actual solution. Overall we had five
pages of varying lengths that were assessed for accuracy
and latency. Table 1 collates all of the data collected over
3 trials per page (15 trials in total).

From the 15 experiments, we find a WER average of
4.315% without spellcheck, and 3.107% after spellcheck.
Where WER maxes out at 9.523% without spellcheck,
spellcheck lowers this maximum to 7.143% and reaches an
ideal minimum of 0%. We find that while the classification
subsystem’s raw output fulfills our WER requirement of
less than 10%, spellcheck does a good job of lowering the
WER further by 1.39x on average in real-world usage.

For these experiments, we decided to use the dynamic
ML crop feature due to its reliability over varying page po-
sitions, allowing us to test more quickly in a variety of situa-
tions. Static crop requires highly controlled page alignment
in the document tray, which may not reflect real-world us-
age, despite it plausibly being able to yield better latency
or accuracy.

7.2 Results for Latency

7.2.1 Pre-Processing

The latency of the pre-processing phase was measured
through python’s time.time() function. As specified in Ta-
ble 1 in section 7.1.2 above, the average latency for the
model with ML boundary cropping would vary between 2
to 5 seconds whereas the average latency for models with
manual cropping parameters was less than 0.5s. Although
the ML cropping with green circles overlaid on top of the
original images may take slightly longer than the initial use
case requirements, given how primary users of our device
are legally blind, enhancing the usability of our apparatus

through ML boundary cropping outweighs couple seconds
of extra latency.

7.2.2 Classification

Classification pipeline latency was assessed by timing
the inferences performed during accuracy tests, then divid-
ing by the number of images fed to the model to produce
an average latency. Latency was assessed across different
layer depths to examine the trade-off between model accu-
racy and model latency. It is important to note that we
were unable to test ResNet-152 on the TensorRT provider
due to memory constraints on the Jetson Nano. Classifica-
tion latency was also used to assess hardware performance
differences and the trade-off between power and latency
between the Nano and the AGX Xavier.

Figure 26: Inference latency on the Nano as layer depth
increases.

Figure 27: Inference latency on the AGX Xavier as layer
depth increases.

From these findings, the relationship between layer
depth and inference time is similarly linear on the AGX
Xavier, however, the 30 watt operating power provided a
substantial boost in baseline latency. As a result, ResNet-
18 inferences using TensorRT outperformed the 3-layer
Aeye model on the Jetson Nano.
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7.2.3 Post-Processing

The main latency trade offs for the post processing sub
section were centered around the usage of a confidence ma-
trix versus normal error checking as discussed in system
implementation. In order to measure the time it took to
correct errors when given a confidence matrix and when
not, we tested the algorithm on 3 sets of 100 words with
single character errors. As the baseline, this relies on the re-
liability of the classification, and focuses more on the speed
of correction. Overall, the tests showed that with the con-
fidence matrix, the overall error correction sub section took
only 0.5 seconds for 100 words as compared to 1.0 seconds
without it.

One important note in testing the latency of the confi-
dence matrix individually is that our given threshold is at
90%. This indicates that we assume any character classi-
fied with above 90% confidence will be correct. Although
this is a slight over assumption, it helps to simplify testing
for the individual sub system.

7.2.4 Overall

Overall latency when using dynamic ML crop was as-
sessed in parallel with WER (Table 1). Latency here is
defined as the time spent between capturing the initial im-
age and sending the final string to Google’s text-to-speech
API. Using this configuration and metric, latency varied
greatly between a low of 0.8897s and a high of 5.4812s,
achieving an average of 2.222s. When compared to latency
measured over 6 trials using static crop, static crop took
the lead in both variance and overall performance. When
using static crop, the average latency of 1.736s falls under
the established design requirement of 2s of latency, with
the added detail that latency never goes above the 2s limit.

Figure 28: Comparing overall latency between dynamic ML
crop and static crop.

Comparing the two crop latencies relative to the number
of words processed, static crop performs 560 crops, which,
when divided by the average character count for a given
English word (4.7 characters + 1 space) yields 98 words.
Meanwhile, a 91 word document required an average of

4.45s when using the dynamic ML crop. Here, we see a
clear trade-off where dynamic crop provides more flexibil-
ity at the cost of meeting our latency requirement.

7.3 Results for Energy Efficiency

While not initially a design requirement, we combined
datasheet information and average classification latency
across all models tested to roughly assess the energy ef-
ficiency of the Jetson Nano and AGX Xavier.

Figure 29: Comparing latency, power, and energy-per-
inference between Jetson Nano and AGX Xavier

Based on the average energy per inference of the AGX
Xavier compared to the Jetson Nano, we were able to jus-
tify switching platforms for our final implementation.

8 PROJECT MANAGEMENT

8.1 Schedule

Our development cycle was split into three phases.
Phase one focused on the research and development of con-
cept/requirements. This was the initial proposal period
when pitching the overall use-case and idea for our prod-
uct. This phase spanned two weeks, and transitioned into
phase two, design. The design phase was focused on color-
ing in the specifications of our solution with more detail for
both our software and hardware components. This phase
lasted a total of 3 weeks, culminating in the design review
and report. The most significant portion of our project was
spent on the development of the solution. Through parallel
workflows, each individual developed their section of soft-
ware with the understanding of the deliverables from the
preceding subsystem as well as what is to be delivered to
the next subsystem. The breakdown of work will be fur-
ther described in the following subsection. The schedule is
shown in Fig. 31.

8.2 Team Member Responsibilities

There are three subsystems involved in the full prod-
uct’s main processing, and the overarching hardware de-
velopment was initially assigned to all three members. For
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the first subsystem, Jong Woo Ha was responsible for co-
ordinating the pre-processing of images through openCV.
The deliverable is an array of cropped single braille char-
acters under non-max suppression filtering. Kevin Xie was
then in charge of classifying individual images into char-
acters using a ML pipeline. Lastly, Chester Glenn was re-
sponsible for the text-to-speech integration, which involves
error-checking words and a smooth text-to-speech applica-
tion.

During development, each member was involved in test-
ing their own subsystems. Kevin took charge of the ma-
jority of hardware bring-up and integration, with Chester
helping with audio integration. Jong Woo was responsible
for designing and prototyping the wooden rig and mea-
suring the best height and lighting conditions for capture.
Overall testing was completed as a team, implemented and
collated by Kevin. In order to add more interactivity to
the public demo, Kevin also prototyped the Experimental
Features (Section 6.5).

8.3 Bill of Materials and Budget

The estimated Bill of Materials and overall cost of the
project are included in Table 2.

8.4 AWS Usage

As part of our budget, Awareables was assigned $100
AWS credits for use. Using these credits, AWS Sage-
Maker, S3, and EC2 were employed to train and host CNN
models and datasets. Specifically, we used AWS Sage-
Maker to train a customMXNet Image Classification model
(ResNet) for classifying braille characters. Using the utili-
ties available through SageMaker and CloudWatch, we were
able to fine-tune and track parameters and test different
layer depths to help us choose the optimal model configu-
ration for our needs.

In addition to the MXNet Model, we also used P3 ac-
celerated computing machines on EC2 to experiment with
training a custom PyTorch RetinaNet for detecting and la-
beling braille characters from a page. Using EC2’s built-in
PyTorch 13.0 AMI configuration meant that setting up our
environment was easy and we could focus on training our
model.

For both of these applications, S3 buckets were our cen-
tral repository for training data and model checkpoints.
Configuring S3 for access from different systems was well
documented, making it easy to batch upload 20,000+ image
datasets without hassle.

8.5 Risk Management

Project risks encountered were handled on a case-by-
case basis. Because each team member was responsible for
one subsystem, we were able to handle risks independently
if they only affected our subsystem. However, communi-
cation was key in maintaining information parity between

subsystem leaders and ensuring no subsystem fell behind
in development.

One key risk identified early on in the project’s design
was that despite our enthusiasm, the team overall lacked
experience in computer vision, machine learning, and nat-
ural language processing – topics key to implementing our
final solution. To diffuse this risk, we split the task into
subsystems and assigned a ”designated expert” for each
one. In doing so, each member was only responsible for
learning a sub-section of the more complex task, increasing
efficiency and reducing risk of overburdening or confusing
task-switching between novel topics.

One risk identified during development was the diffi-
culty of hardware bring-up. Originally, we had planned to
develop on the AGX Xavier, giving us ample performance
overhead. However, we had trouble using SDK Manager
to flash the AGX Xavier for use. As a result, we quickly
swapped to the Jetson Nano. Kevin was responsible for
bringing up the Jetson Nano, followed by the Jetson AGX
Xavier. Upon encountering driver installation issues with
the Jetson Nano, this was quickly communicated to the
team via group chat. In response, the team formulated
alternate strategies and decided to swap from the CUNX
eCAM-50 to the Logitech C920.

Overall, the team did a good job of managing risks
encountered throughout the development process. Any
blockers were identified quickly and communicated with the
team, who in response was eager to help formulate alternate
strategies.

9 ETHICAL ISSUES

From the initial debate on the ethics of our product,
we had several main concerns. As the original scope of
our product was a wearable device for users, our concerns
focused on privacy, security, information integrity, safety,
and overreliance. In comparison to the wearable device,
several of our concerns were mitigated due to the altered
use case, but we still want to guarantee each ethical com-
ponent meets a reasonable standard or has been considered
in the final design.

Any system that relies on a camera will find that it is
essential to guarantee the privacy and security of a user’s
personal life and interactions. Whether or not the device
is plugged in, it should not be storing information on the
user, or recording without consent. Initially, the wearable
camera device provided a much stronger case against user
privacy, as it relied on the user to wear the camera and
interact within their daily lives. This provides a threat to
personal information being stored or used by a malicious
adversary. In order to prevent this, our stationary build
guarantees a fixed camera that only takes in the frame
of braille/documents provided. In addition, no external
image storage or additional processing beyond the camera
capture for pre-processing is necessary due to the already
pre-trained classification model.

In addition to privacy and security, several concerns we
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Table 2: Bill of materials

Description Model # Manufacturer Quantity Cost @ Total
Jetson AGX Xavier F21072 NVIDIA 1 $0.00 $0.00
USB Webcam C920 Logitech 1 $0.00 $0.00
Tactile Switch SPST-NO Top Actuated 1241.1055.8000 SCHURTER Inc. 1 $4.50 $4.50
Prototyping Board N/A Treedix 1 $0.00 $0.00
USB External Stereo Sound Adapter AU-MMSA SABRENT 1 $8.99 $8.99
Apple Wired EarPods 057-00-2070 Apple 1 $0.00 $0.00
LED Film Light CamLux Pro Dracast 1 $0.00 $0.00
Tripod 49-inch Tripod Manfrotto 1 $0.00 $0.00
Braille Book Snow Goose Blind in Mind 1 $12.95 $12.95
Wood apparatus N/A Self-made 1 $0.00 $0.00
AWS Credits N/A Amazon Web Services 1 $100.00 $100.00

$160.19

had stemmed from the importance of integrity around data
and information. As our use case states, we aim to provide
braille literacy and to help aid the community to improve
recognition of the language. In order to help educate the
user and public, it is important that data integrity is a main
concern of ours going forward. With the addition of both
character classification confidence and word error checking
in the post-processing sub section, we aim to minimize the
possibility of misleading information or misidentified infor-
mation that could lead to improper use or falsification of
data.

Continuing with the importance of our use case in help-
ing to educate the public in braille literacy, another concern
of ours was an increase in over-reliance. Given the acces-
sibility and usability of our product as an overall text-to-
speech translation, it could lead users to rely heavily on the
processing of material rather than actually learning braille.
In order to help minimize this likelihood, we introduced a
feature that allowed individuals to identify character-by-
character on the page and have it read out loud to them.
This greatly increases the likelihood of character recogni-
tion by helping the user to directly correlate each braille
character with a distinct letter/symbol.

Lastly, with any hardware, there are safety concerns.
Especially with our initial use case centered around the
wearability of our product, there were concerns that mis-
use or lack of precise user accessibility could result in sig-
nificant costs to the product and user. After rescoping to
the stationary build, this problem was greatly mitigated to
a more manageable framework. Not only does this allow
for us to focus on the design and control more specifically
how an individual uses our product, it minimizes human
contact with the more valuable pieces of the project like
the Jetson Xavier or the camera mount.

10 RELATED WORK

From the initial brainstorming to the creation of our rel-
atively finalized design, there were several industry paths
that branched off from the key components of our product.

In the current field, OCR, Machine Learning, Augmented
Reality, and accessibility technology are all well-researched
disciplines. Although our product may not necessarily rep-
resent all of these fields to a large degree, there are seg-
ments of each that can be compared to our initial creation
and have also been used in part as inspiration to the design.

There are various assistive technology products listed
on the websites of the American Foundation for the Blind
(AFB) and National Federation of the Blind (NFB), in-
cluding various types of braille translators such as Braille-
Master, Duxbury Braille Translator, GOODFEEL Braille
Music Translator, or Toccata [16]. All of these translators
execute quick and accurate of braille to text or braille to
text translations or even translate music to braille music,
but braille to speech translations is not supported.

11 SUMMARY

Overall, we consider our product to have satisfied the
design requirements we set forth at the beginning of the
semester as well as through to the design review/report.
One of the main concerns that we had was with the over-
all latency of the full pipeline processing times, especially
when considering the wearable device. With a 2s latency
from image capture to full post-processing spell check, we
knew that this would be the primary bottleneck that could
also affect the reliability of our error checking as well. In or-
der to minimize the timing constraints of the final product,
the Jetson AGX Xavier provided substantially improved
performance in comparison to the Jetson Nano, helping us
to reach our goal within a small margin of error. Due to
the rescope to the stationary frame, the Jetson Xavier is
no longer a concern for wearability.

11.1 Future work

Although we feel that our product could be a very useful
tool for educational purposes and for the visually impaired
community, we have not yet decided whether or not we
would like to continue working on it going forward. Consid-
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ering that we will all be graduating in the coming months,
our main priority is on the new jobs we are coming in to
and our future careers in the industry.

One thing that was brought to our attention during the
final demo is that this product may be patent worthy as
software or even sponsored by the university/related dis-
ability services. Going forward, we still feel like we are
focusing on our own careers beyond the product, and the
work it would need to be truly marketable is not within a
reasonable time frame for us.

11.2 Lessons Learned

To conclude, the semester has led us on a tumultuous
journey of learning about openCV, Machine Learning, Em-
bedded Systems hardware, and spell-checking challenges.
We had a lot of difficulties in the beginning of the semester
integrating with the hardware we wanted, and in general
it was never easy to test/use the Jetson products perfectly.
We highly recommend any future groups to work diligently
together to set up their hardware before hand so that all
team members can test on the hardware independently, and
try not to work in a way that relies to heavily on prior seg-
ments. By working in parallel most of the semester, we
were able to each polish our individual sub sections and
connect them together for the final pipeline.

Glossary of Acronyms

Include an alphabetized list of acronyms if you have lots
of these included in your document. Otherwise define the
acronyms inline.

• AWS - Amazon Web Services

• BOM - Bill of Materials

• CER - Character Error Rate

• CNN – Convolutional Neural Network

• OCR – Optical Character Recognition

• OBR – Optical Braille Recognition

• WER - Word Error Rate
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