
Historically, braille literacy in the United States has been on a sharp decline, and fewer
than 10 percent of the legally blind Americans are braille literate [1]. Therefore, the vast
majority of the visually impaired individuals can not fluently read braille text,
embossed on paper or other surfaces, meant to provide pivotal guidance and assistance.

Braille is an exclusively tactile system of embossed or raised dots that allow individuals
with impaired vision to have similar access to inscribed forms of information. However,
given how over 90 percent of legally blind Americans are braille illiterate, a means to
mitigate this situation is imperative for guaranteeing adequate education to support a
strong career, as well as navigational assistance. Aware-ables is a solution that aims to
provide those with impaired vision with the ability to read braille regardless of their
education. The proposed solution will use a bird’s eye view camera on top of the
wooden apparatus to capture an A4-sized braille document, then translate and read the
contents back to the user. It is our hope that this solution will alleviate some of the
current restrictions experienced by legally blind individuals.

Introduction & Abstract System Description s System Description
1. Pre - processing

System Evaluation

Add your information, graphs and images to this section.

System Architecture & Block Diagram

We are excited to present Aware-ables, an educational and functional appliance
for reading and learning braille via text-to-speech. The completed solution uses
OpenCV image preprocessing, machine learning image classification, and a
custom spell check to deliver reliable Braille reading to its users. Looking
toward the future, we hope this system can be adapted as a wearable device to
not only personalize education but enable vision impaired users to learn braille
while navigating the world. We would like to acknowledge Aeye Alliance,
AngelinaReader, Google, AWS, LAMP, and Capstone staffs for their resources
in guiding us toward a working solution.

————————————————————————————————

[1]. Jernigan Institute. “The Braille Literacy Crisis in America.” In: A Report to
the Nation by the National Federation of the Blind (Mar.2009).

Conclusion & Acknowledgements

Use Case Requirements

2. Classification

3. Post - processing

4. Integrated System

Software sub-system 1. Pre - processing

Software sub-system 2. Classification

Software Sub-System 3. Post - processing

Figure 1. Initial Design Figure 2. Final Design

 Figure 3. Use Case Requirements Figure 4. Final Product

Figure 5. System Block Diagram

 Figure 6. Data path for our proposed solution

Fig. 5 presents a high-level block diagram for our intended implementation. Our
software stack is split into three successive subsystems: pre-processing, classification,
and post-processing. Later sections will dive into more detail about implementation
specifics, however it is important to note the color coding of the blocks indicating
which software components will be sourced off-the-shelf and which will be developed
in-house.

Below the block diagram, in Fig. 6, we have provided a high-level visualization of
modifications being made to the input image at significant points in our data path,
however, here again later figures will provide more detail. From the high-level diagram,
it is clear that our software will expect an (1) uncropped, well lit image of a braille
document, which will then be (2) cropped, filtered, and segmented into single braille
characters, then (3) classified, and (4) concatenated into an English word, which can
then be (5) read out via the speaker.

→

 ↓

←

——

→

 ↓

←

Figure 7. Original braille image capture upon button activation Figure 8. Image after gray scaling, adaptive thresholding

Figure 10. Image after erosion and dilation. Figure 9. Image after application of MedianBlur, GaussianBlur,
. canny edge detection filter merged with blurred threshold

Figure 11. Filtered stats (left, top, width, height) matrix from Figure 12. Image after drawing circles using filtered stats on top of

 the openCV’s ConnectedComponentsWithStats() function. the pre-processed image

Figure 14. Resulting folder containing individually cropped braille Figure 13. Color contrast for the higher classification accuracy

 ↓

——
——

Figure 15. 20,000 image dataset

(Source : https://github.com/HelenGezahegn/aeye-alliance/tree/master/Labelled%20Data)

Figure 17. 4-fold cross-validation technique

(Source : https://www.researchgate.net/publication/328461242_Empirische_Evaluationsmethoden_Band_22)

 Figure 18.

Software sub-system 2. Classification, continued

 Figure 19. Abbreviated confusion matrix for a pre-trained classification model (on the left) and

 In-house ResNet-18 model (on the right). Green diagonal line indicates high

 Confidence tested against training dataset. Pre-trained model exhibits around 89% classification

 Accuracy whereas in-house ResNet-18 model exhibits around 99% classification accuracy

——
——

 Figure 20. Subsystem C error checking flow chart (on the left)

 In order to create a working spellcheck model, several key factors have to be considered. The first

 Indication is whether or not a word is in need of error checking after pre-processing and

 Classification. As stated in the classification deliverable, a confidence matrix is provided to the

 Post-processing section in the form of a dictionary that provides the indices of characters below the

 90% confidence threshold we determined, and their 5 character array of possible options.

 Figure 21. Normal Bayesian model (on the right top) vs Added confidence matrix (on the right bottom)

 Right bottom - confidence matrix being applied to correct characters ‘h’ and ‘q’

 The main algorithmic approach to the spellchecking subsection involves generating the set of all

 Possible single character different “words” as specified by the confidence matrix, that are also

 Contained in the static dictionary checker provided. The second key factor in development is the

 “Dictionary” checker of choice. After each word has been processed and the text is completely

 Synthesized, the data will be sent as a request to the Google REST API, and a respective .WAV file

 Will be processed and sent through the speaker or headphones connected as stereo output.

——
——

Experimental Software Features: Dynamic ML Crop, Cursor Reading

 Figure 21. Combining the bounding boxes that can be extracted from AngelinaReader and Google’s MediaPipe

 Hand pose estimation model, users can further extend their braille learning experience as moving

 Their fingers over individual braille characters will give an audio feedback of which character it is.

Figure 22. Performance and latency table for various design choices models

Figure 23. Inference Latency over Latency Depth tested under Jetson Nano

Figure 24. (On the left), Word Error Rate and Latency

 For various post-processing models

Figure 24. (On the right),

(Source : https://pubs.acs.

org/cms/10.1021/acs.

jproteome.1c00859

/asset/images/large/pr1c00859_0006.jpeg)

Figure 25. Integrated Systems :

Validation & verification

Aware-ables

Chester Glenn, Kevin Xie, Jong Woo Ha

Carnegie Mellon University, CIT, ECE

——

———

———

https://github.com/HelenGezahegn/aeye-alliance/tree/master/Labelled%20Data
https://www.researchgate.net/publication/328461242_Empirische_Evaluationsmethoden_Band_22

