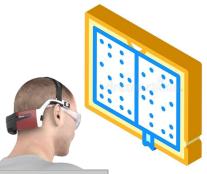
Carnegie Mellon University

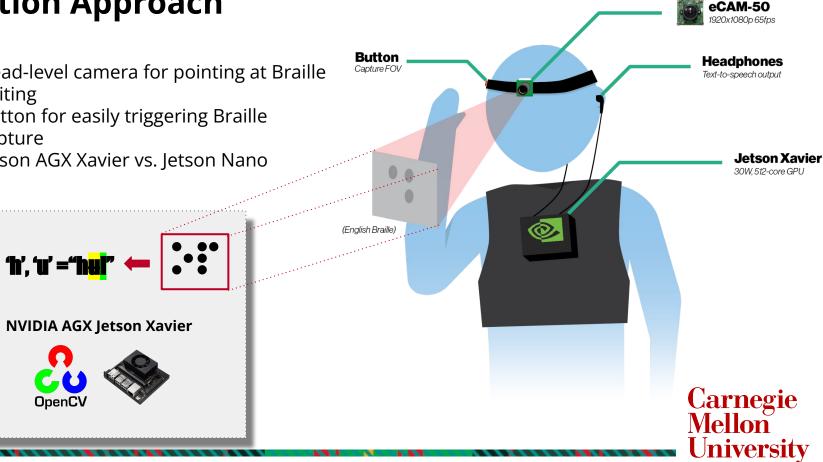

Aware-ables

Team B1: Chester Glenn, Jong Woo Ha, Kevin Xie Presented by Jong Woo (Jay) Ha

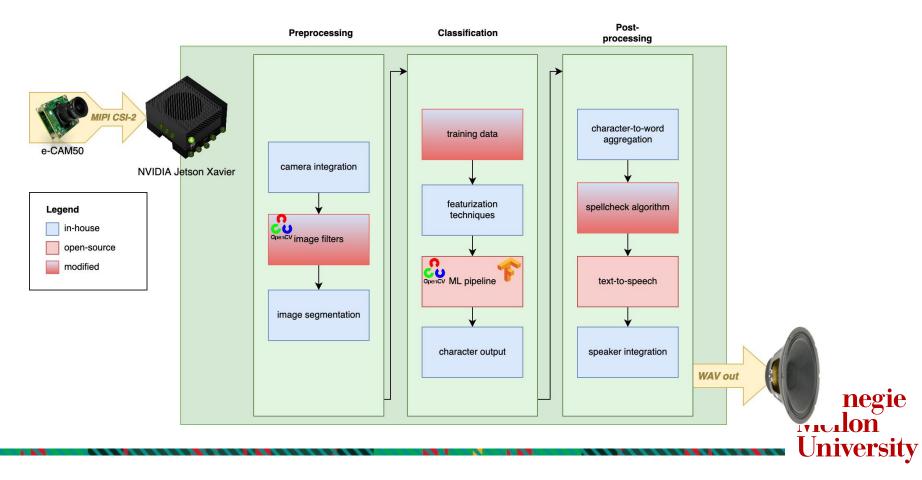
Use Case and Requirements

"A new device for auditory accessibility and assistance"

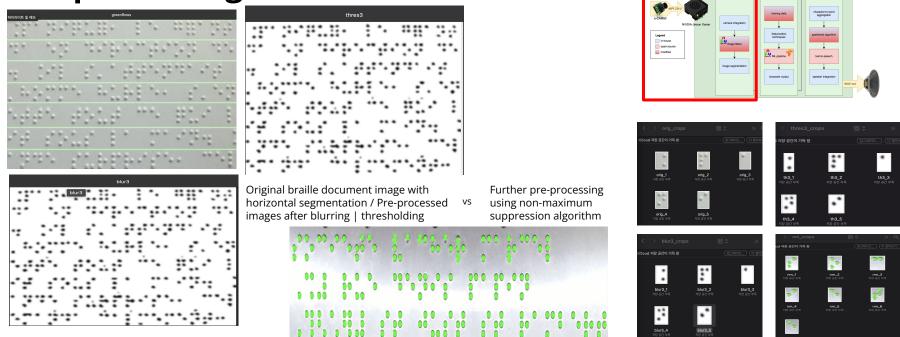
Wearable braille detection for increased awareness of surroundings and braille literacy



University

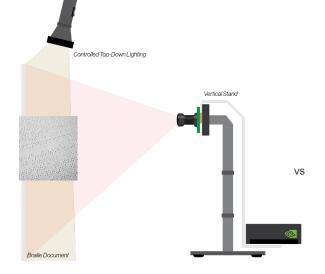

Requirement	Target (units)	Justification
Text-to-Speech latency	2s	Common usability standard for loading wait times
Words per Frame	>10	~300wpm to match braille reading speed *NOTE: 150wpm is a comfortable speaking speed
Character Error Rate	10%	Matches error rate of traditional OCR
Word Error Rate	<10%	Errors should be corrected from spellcheck

Solution Approach


- Head-level camera for pointing at Braille writing
- Button for easily triggering Braille . capture
- Jetson AGX Xavier vs. Jetson Nano •

Block Diagram

Pre-processing



- Primary Goal: ~50ms inference latency / attain minimum thresholds for classification phase's ~30ms latency
- Initial cropping -> Pre-processing -> Segmentation ; result: folder of individually cropped brailes
- cv2.cvtColor(src,code[,dst[,dstCn]])
- cv2.blur() / cv2.GaussianBlur() / cv2.medianBlur() / cv.bilateralFilter()
- cv2.threshold(), cv2.adaptiveThreshold()
- non-maximum suppression

Carnegie Mellon University

Pre-processing - Design choices for Initial Cropping given Natural Scene Braille Detection

Approach with controlled dimensional guidances

	1	9.6×3.2	
	2	5.6 x 7.2	
	3	7.2×5.3	
	4	99×732	
	5	56 X 73	
	6		
	7	99×372	
	8	876× 56	
	9	33.2×66	
	10	9.1 × 7.3	
		D D I C T	S.C. 1993. (1998)

clockwise.

2

3

4.

5

Example of ML based recognition Images starting from above going

sample image

horizontal lines

extracted images

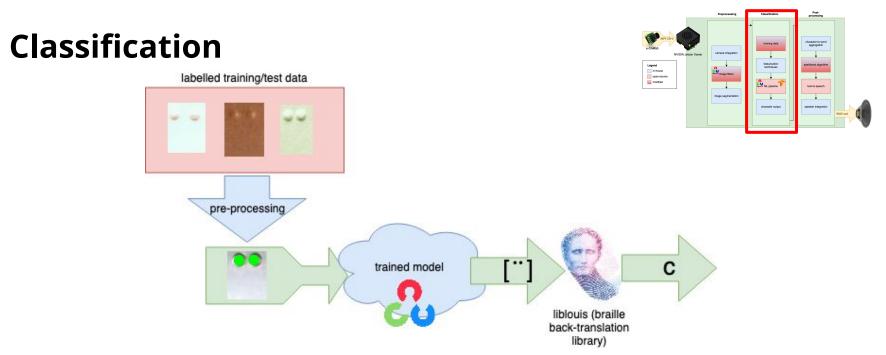
containing only boxes

vertical lines

1 I I	
1	
1	

1 9.6 × 3.2 2 5.6 × 7.2

7.2×5.3

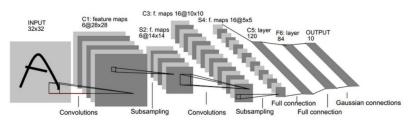

Carnegie

braille document image source:

https://www.researchgate.net/profile/Giovanni-Farinella/publication/2872 22520/figure/fig1/AS:583701360574466@1516176657486/Example-of-Brai lle document Each character consists of a maximum-of six dots arranged

braille document image source:

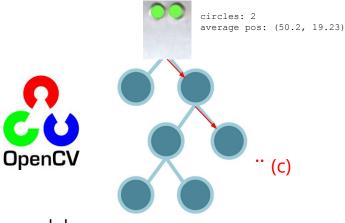
https://upload.wikimedia.org/wikipedia/commons/thumb/e/ee/Braille_tex t.jpg/749px-Braille_text.jpg ml based recognition example source: https://medium.com/coinmonks/a-box-detection-algorithm for an Ong -containing-boxes-756c15d7ed26



Carnegie Mellon

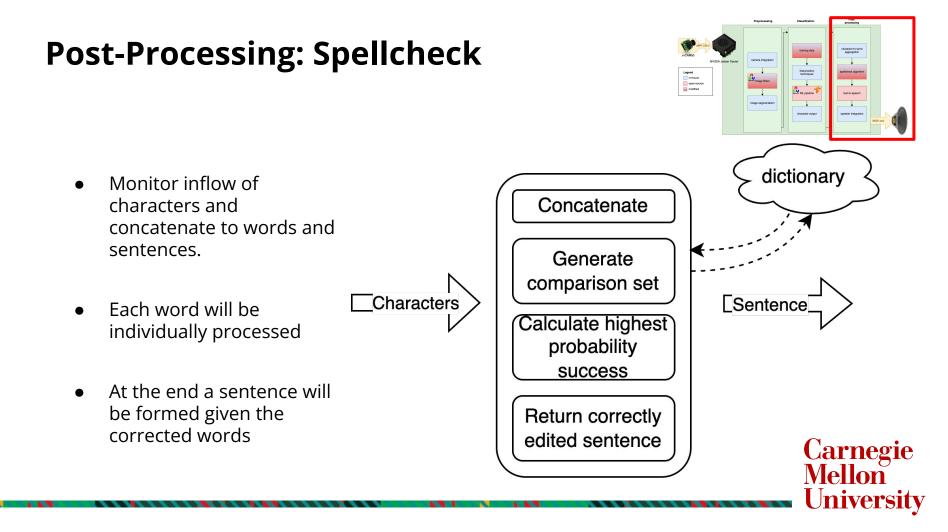
University

- 30,000 image open-source dataset
- ~30ms inference latency based on some experiments
- Open-source braille back-translation library for future extensibility


Classification: DNN vs. Tree-model

Gradient-based learning applied to document recognition. LeCun et al., 1998

Neural Networks:

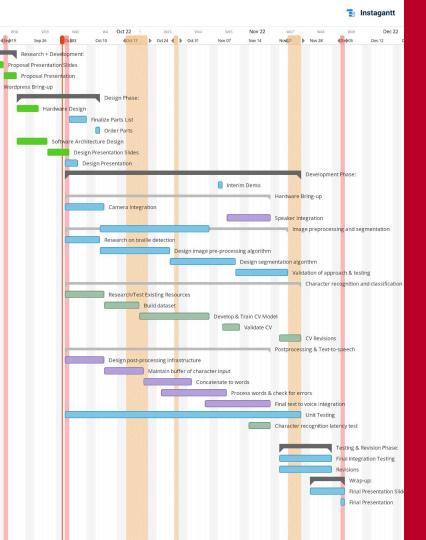

- Good for large datasets
- Much larger training overhead
- Likely better accuracy
- Opaque

Tree-model:

- More controllable feature selection
- More interpretable result
- Likely faster inference

Post-Processing: text-to-speech

- Complexity analysis showed that installing a text to speech API would be significantly more efficient and logical for usability
 - Text to speech requires in-depth signal processing and ML for smooth life like speech.
- API will generate WAV files for direct connection to USB speaker (headphones, earbuds, speaker)



University

Metric	Test Input	Risk Factors / Unknowns
Character Error Rate (10%)	Braille tiles and open-source dataset	ML model may overfit to training data (would need to retrain/prune model)
Word Error Rate (<10%)	Braille books / signs	Needs to ensure that spellcheck is accurate and accounts for Braille quirks
Latency (2 sec)	Braille books / signs	Will need to tune text-to-speech speed for comfortable comprehension (~150wpm)
Usability (MVP+)	Power efficiency / wearable form factor	Xavier power draw, weight

	ACTI	VITIES	ASSIGNEE	EH	START	DUE	96	Sep 2: p 12
	Res	earch + Development:			14/Sep	21/Sep	100%	
ĩ	0	Proposal Presentation Slides	CG, Ja, KX		14/Sep	18/Sep	100%	
ź	0	Proposal Presentation	Kevin Xie		19/Sep	21/Sep	100%	
3	0	Wordpress Bring-up	Jay		17/Sep	17/Sep	100%	
	Des	ign Phase:			22/Sep	10/Oct	58%	
5	0	Hardware Design	CG, Ja, KX	-	22/5ep	26/Sep	100%	
6	\odot	Finalize Parts List			04/Oct	07/Oct	0%	
7	\odot	Order Parts			10/Oct	10/Oct	096	
8	0	Software Architecture Design	CG, Ja, KX		22/Sep	28/Sep	100%	
9	0	Design Presentation Slides			29/Sep	03/Oct	100%	
10	\odot	Design Presentation			03/Oct	05/Oct	0%	
	Dev	elopment Phase:			03/Oct	25/Nov	0%	
12	\odot	Interim Demo	CG, Ja, KX	2	07/Nov	07/Nov	096	
	\odot	Hardware Bring-up			03/Oct	18/Nov	095	
14	-	Camera Integration	Jay		03/Oct	11/Oct	0%	
15		Speaker Integration	Chester Glenn		09/Nov	18/Nov	095	
	\bigcirc	Image preprocessing and s	Jay		03/Oct	22/Nov	0%	
17	-	Research on braille det			03/Oct	10/Oct	0%	
18		 Design image pre-proc 			11/Oct	26/Oct	0%	
19		 Design segmentation al 			27/Oct	10/Nov	096	
20		 Validation of approach 			11/Nov	22/Nov	096	
		Character recognition and c	Kevin Xie		03/Oct	25/Nov	0%	
22	~	Research/Test Existing	Kevin Xie		03/Oct	11/0ct	0%	
23		 Build dataset 	Kevin Xie		12/0ct	19/0ct	096	
24		 Develop & Train CV Mo 	Kevin Xie		20/Oct	04/Nov	096	
25		Validate CV	Kevin Xie		08/Nov	11/Nov	095	
26		CV Revisions	Kevin Xie		21/Nov	25/Nov	0%	
	\odot	Postprocessing & Text-to-sp	Chester Glenn		03/Oct	18/Nov	0%	
28	~	 Design post-processing 	Chester Glenn		03/Oct	11/Oct	096	
29		Maintain buffer of char	Chester Glenn		12/0ct	20/Oct	095	
30		 Concatenate to words 	Chester Glenn		21/Oct	31/Oct	0%	
31		Process words & check	Chester Glenn		25/Oct	08/Nov	096	
32		 Final text to voice integr 	Chester Glenn		04/Nov	18/Nov	096	
	\odot	Unit Testing	CG, Ja, KX		03/Oct	25/Nov	0%	
34	~	Character recognition I	Kevin Xie		14/Nov	18/Nov	0%	
35	\odot	Slack Time					0%	
	~	ing & Revision Phase:			21/Nov	02/Dec	0%	
37	\odot	Final Integration Testing			21/Nov	02/Dec	0%	
38	\odot	Revisions			21/Nov	02/Dec	0%	
		p-up:			28/Nov	05/Dec	0%	
40	\odot	Final Presentation Slides		2	28/Nov	05/Dec	096	
41	\odot	Final Presentation			05/Dec	05/Dec	095	
42	0	Final Report					0%	
43	0	Final Video					096	
4.4	0	Public Demo					0%	

