Carnegie Mellon University

Aware-ables

Team B1: Chester Glenn, Jong Woo Ha, Kevin Xie Presented by Kevin Xie

Use Case: Who is our product for?

Fewer than 10% of legally blind Americans are Braille literate.

Braille is an essential form of written language for education and navigation.

Hardware Systems Software Systems

A new device for auditory accessibility and assistance

Carnegie Mellon

University

Wearable braille detection for increased awareness of surroundings

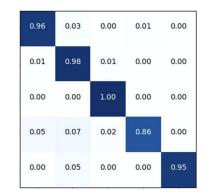
Use Case Requirements

- Latency:
 - Recognize up to 10 words per frame at arms-length (2-3ft)
 - Braille reading speed can range from 200-400 wpm
 - Braille readers are capable of reading faster than sighted readers.
 ~33.55ms per character.
 - Text-to-speech in 2 seconds or sooner
 - Two-second guideline for web pages

Carnegie Mellon

University

Use Case Requirements (2)


- Accuracy:
 - 45/50 characters recognized (10% error rate)
 - Matches the average error rate of conventional OCR
 - 52 braille characters (6bits) * ~30
 characters per second * 0.90 = 162bps

• Usability:

- Intuitive interactions/gestures that can be activated within 2 seconds without sight
- Portable/Wearable

BRAILLE ALPHABET

• 0 0 0 0 0 0 0 A	• • • •	•• •• •• •• •• •• •• •• •• •• •• •• ••	• • • • •	e E	•• •0 00 F	G G	• 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0		0● ●● 00	• 0 • 0 • 0 K	• 0 • 0 • 0 L	•• •• M
•• •• N	• • •	• • • • • •	e Q	● ○ ● ○ R	• • S	•• •• T	••• ••	• • • • • • • • • • • • • • • • • • •	• • • W	••• ••• ×	• • •	e e z
• 0 0 0 0 0 1	2	• •	•• • •	• • • • • •	6	••• 7	8	• • •	0		decimal follows	
	00 00 00	•• •• ?	•• ••		00 ●0 ●0	00	••• ••• /	• • • • • • • •	•••••	•••••••••••••••••••••••••••••••••••••••) • •	o o o o space

Carnegie Mellon University

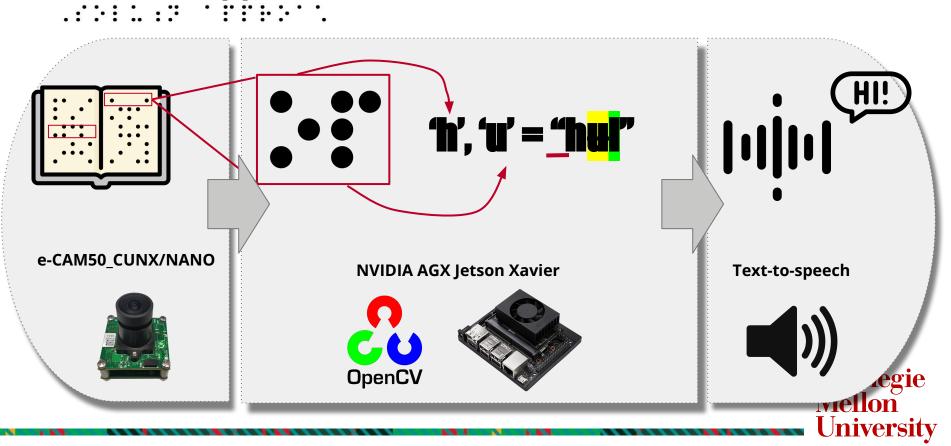
Technical Challenges

How to...

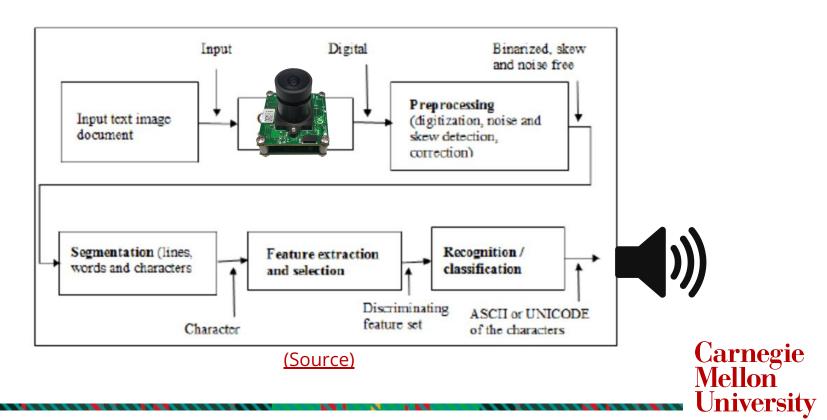
- 1. ...**properly detect and capture braille** from embossed or printed surfaces in a still image.
- 2. ...**translate** captured braille characters to speech, or other means that could be delivered through hearing.
- 3. ...achieve a reasonable latency and low error rate
- 4. ...optimization of the size of the wearable for the **comfortable daily use**.

Carnegie Mellon University

Technical Challenges (2)


Printed/Controlled Environment vs. Natural Scene Braille Detection

- Variable lighting conditions
- Unpredictable spacing, sizes, and materials
- Skewed perspective
- How to find the correct anchor?



Solution Approach

Solution Approach (2)

Testing, Verification, and Metrics

• Character Error Rate / Latency

- Trained/unit tested on open source braille alphabet dataset
- Test against educational braille alphabet tiles (26 characters, randomly sampled twice)
- Target of >90% accuracy and ~1.5s latency

Carnegie Mellon

University

• Word Error Rate / Latency

- Test against braille children's books / signs / labels
- MVP: Controlled lighting environment and perspective
- Same accuracy target, increased latency target of 2s to include text-to-speech

Tasks and Division of Labor

1. Hardware

- a. Camera integration
 - i. Jong Woo Ha
- b. Speaker integration
 - i. Chester Glenn

2. Software

- a. Image preprocessing and segmentation
 - i. Jong Woo Ha
- b. Character recognition and classification

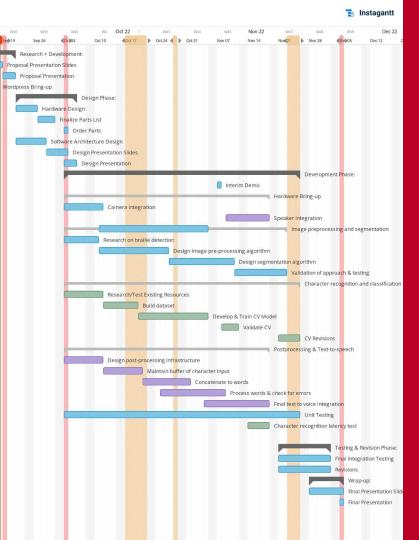
Carnegie

University

Mellon

- i. Kevin Xie
- c. Spellcheck and text-to-speech
 - *i.* Chester Glenn

3. Logistics


- a. Testing and administration
 - i. Kevin Xie

	ACTIVITIES	ASSIGNEE	EH	START	DUE	96	Sep 2 p 12
	Research + Development:			14/Sep	21/Sep	0%	
ĩ	Proposal Presentation Slides	CG, Ja, KX		14/Sep	18/Sep	0%	
2	 Proposal Presentation 	Kevin Xie		19/Sep	21/Sep	0%	
3	Wordpress Bring-up	Jay		17/Sep	17/Sep	095	
	Design Phase:			22/Sep	05/Oct	0%	
5	Hardware Design	CG, Ja, KX		22/Sep	26/Sep	096	
6	 Finalize Parts List 			27/Sep	30/Sep	0%	
7	Order Parts			03/Oct	03/Oct	096	
8	 Software Architecture Design 	CG, Ja, KX		22/Sep	28/Sep	096	
9	 Design Presentation Slides 			29/Sep	03/Oct	096	
10	 Design Presentation 			03/Oct	05/Oct	0%	
	Development Phase:			03/Oct	25/Nov	0%	
12	Interim Demo	CG, Ja, KX	2	07/Nov	07/Nov	096	
	Hardware Bring-up			03/Oct	18/Nov	095	
14	 Camera Integration 	Jay		03/Oct	11/Oct	0%	
15	Speaker Integration	Chester Glenn		09/Nov	18/Nov	0%	
	Image preprocessing and s	Jay		03/Oct	22/Nov	0%	
17	Research on braille det			03/Oct	10/Oct	095	
18	 Design image pre-proc 			11/Oct	26/Oct	0%	
19	 Design segmentation al 			27/Oct	10/Nov	0%	
20	 Validation of approach 			11/Nov	22/Nov	096	
	 Character recognition and c 	Kevin Xie		03/Oct	25/Nov	095	
22	Research/Test Existing	Kevin Xie		03/Oct	11/0ct	0%	
23	Build dataset	Kevin Xie		12/0ct	19/0ct	095	
24	 Develop & Train CV Mo 	Kevin Xie		20/Oct	04/Nov	096	
25	⊘ Validate CV	Kevin Xie		08/Nov	11/Nov	0%	
26	CV Revisions	Kevin Xie		21/Nov	25/Nov	0%	
	 Postprocessing & Text-to-sp 	Chester Glenn		03/Oct	18/Nov	0%	
28	 Design post-processing 	Chester Glenn		03/Oct	11/0ct	096	
29	Maintain buffer of char	Chester Glenn		12/Oct	20/Oct	095	
30	Concatenate to words	Chester Glenn		21/Oct	31/Oct	0%	
31	Process words & check	Chester Glenn		25/Oct	08/Nov	095	
32	 Final text to voice integr 	Chester Glenn		04/Nov	18/Nov	095	
34	Unit Testing	CG, Ja, KX		03/Oct	25/Nov	0%	
34	Character recognition I	Kevin Xie		14/Nov	18/Nov	0%	
34	Slack Time					0%	
33	Testing & Revision Phase:			21/Nov	02/Dec	0%	
37	Final Integration Testing			21/Nov	02/Dec	0%	
37	Revisions			21/Nov	02/Dec	0%	
38				21/NOV 28/Nov	02/Dec	0%	
40	Wrap-up:		~	28/Nov 28/Nov	05/Dec	0%	
40	Final Presentation Slides			28/Nov 05/Dec	05/Dec	095	
41	Final Presentation			usrDec	us/Dec		
42	Final Report					095	
43	 Final Video 					096	

W38

Sed 19

Conclusion - MVP

.....

- Head-mounted hardware device that is able to accurately detect and read braille, using a camera and computer vision software
 - Expected requirements for latency and error rate
 - Latency: 2s per image
 - Error rate: 10%
- Less focus on aesthetics and minification
- Given additional time, planning on further implementing signal processing / various other detections for sound and daily life objects

Carnegie Mellon

University