
18-500 Design Review Report: Aware-ables - 14 October 2022 Page 1

B-1: Aware-ables
Authors: Chester Glenn, Jong Woo Ha, Kevin Xie

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract— Braille is an exclusively tactile system of
embossed or raised dots that allow individuals with im-
paired vision to have similar access to inscribed forms
of information. However, given how over 90 percent of
legally blind Americans are braille illiterate [5], a means
to mitigate this situation is imperative for guaranteeing
adequate education to support a strong career, as well
as navigational assistance. Aware-ables is a solution
that aims to provide those with impaired vision with
the ability to read braille regardless of their education.
The proposed solution will use a head-mounted camera
to capture an A4-sized braille document at arms-length,
then translate and read the contents back to the user.
It is our hope that this solution will alleviate some of
the current restrictions experienced by legally blind
individuals.

Index Terms— Braille, Accessibility, Wearables,
Optical Character Recognition (OCR), Text-To-Speech

1 INTRODUCTION

Historically, braille literacy in the United States has
been on a sharp decline, and fewer than 10 percent of the
legally blind Americans are braille literate [5]. Therefore,
the vast majority of the visually impaired individuals can
not fluently read braille text, embossed on paper or other
surfaces, meant to provide pivotal guidance and assistance.
Given that braille is such an essential form of written lan-
guage for the visually-impaired individuals in both educa-
tion and navigation, a device that provides auditory acces-
sibility and assistance by means of text-to-speech transla-
tion could bring about a meaningful turnaround. In order
to assist visually impaired and legally blind readers in read-
ing braille as well as to improve braille literacy overall for
educational purposes, Aware-ables will take the form of a
wearable device equipped with a mounted camera used to
capture braille text a fixed distance away, then translate
said braille to the user via a pair of speakers located near
their ears with a single button click on the side of the de-
vice.

Through the subsequent usages of computer vision algo-
rithm for braille capturing and pre-processing, ML pipeline
for character recognition, spell-check algorithm for post-
processing, and an external text-to-speech API, Aware-
ables will ensure a smooth translation of a full A4 page
braille text within 2 seconds of button activation. Cur-
rently, there are different devices that can translate English
text to braille or translate digital/limited real-world braille
text to English text, but no mode of direct translation of
braille to speech is provided within the open US market.

Aware-ables hopes to not only provide convenient transla-
tion within 2 seconds, but also ease out the learning curve
of the braille language in the long run.

Figure 1: Initial vision for final demonstrable product
(Aware-ables)

2 USE-CASE REQUIREMENTS

In order for Aware-ables to effective in our suggested
context, two core requirements that must be guaranteed to
the users: a maximum of 2 seconds of translation latency
and over 90 percent translation accuracy.

For a relatively convenient and uninterrupted experi-
ence, the entire process from braille capturing to direct
speech translation will be completed within two seconds,
following the common usability standard for loading wait
times [8]. Furthermore, braille readers can read at speeds
ranging from 200 to 400 words per minute[2], Aware-ables
will aim to match this pace by recognizing up to 10 words
each two seconds at arms-length, reaching a maximum of
300wpm. However, it is important to note that any rate
of speech over 200wpm can significantly impair compre-
hension [4]. Given that our chosen medium of delivery is
speech, we will need to tune this rate for improved compre-
hension.

As far as accuracy is concerned, we are targeting a 10
percent character error rate to match the conventional error
rates of traditional optical character recognition (OCR)[6],
which will be further alleviated through post-processing
and spell-check algorithms. Our final target word error
rate is less than ten percent, to ensure comfortable and
accurate playback for educational purposes.

18-500 Design Review Report: Aware-ables - 14 October 2022 Page 2

Figure 2: High level block diagram and datapath for our proposed solution.

3 ARCHITECTURE AND
PRINCIPLE OF OPERATION

Fig. 1 represents the team’s vision for our final pro-
totype. The hardware architecture will include the
eCAM50 CUNX, a Jetson-compatible camera which is ca-
pable of 5 megapixel (2592 x 1944) video capture at up
to 28fps; an NVIDIA Jetson, a semi-portable form-factor
platform powerful enough to support real-time capture and
inference; a button; and a mode of audio delivery. The
eCAM50 is also capable of lowering resolution to increase
framerate, which we will consider tuning as we test. On
triggering the button, a still of the video feed is sent to
a Jetson running our software stack to process the input.
Once the braille has been translated, the result is read out
of an audio device connected to the auxiliary port (audio
output jack).

For wearability, we have chosen to secure the relatively
unwieldy Jetson (274g) device on a vest connected to a
head-mounted camera. To best capture the point-of-view
of the visually-impaired user, we have chosen to mount
the camera on a headband centered on the user’s forehead.
Anecdotally, we expect users to position the angle of their
head to point toward the braille they are attempting to
read.

Above, Fig. 2 presents a high-level block diagram for
our intended implementation. As previously mentioned,
our software stack is split into three successive subsystems:
pre-processing, classification, and post-processing. Later
sections will dive into more detail about implementation
specifics, however it is important to note the color coding
of the blocks indicating which software components will be

sourced off-the-shelf and which will be developed in-house.

Below the block diagram, we have provided a high-level
visualization of modifications being made to the input im-
age at significant points in our datapath, however, here
again later figures will provide more detail. From the high-
level diagram, it is clear that our software stack will expect
an (1) uncropped, well lit image of a braille document,
which will then be (2) cropped, filtered, and segmented
into single characters, then (3) classified and (4) concaten-
tated into an English word, which can then be (5) read out
via the speaker.

4 DESIGN REQUIREMENTS

4.1 Pre-processing

The first subsystem in our software data path is the pre-
processing of captured braille images through computer-
vision and segmentation algorithms. Image of printed
braille text will be captured using CMOS camera, ecam-50
with a resolution of 2592 pixels by 1944 pixels, and trig-
ger button with the distance between camera and braille
text being approximately 30cm apart in order to adjust
the dimension of the initial physical crop to match that of
the A4-sized paper. The original image will then be pre-
processed through various computer vision algorithms of
OpenCV libraries in order to increase the overall quality
of the collected image, facilitating the next process, recog-
nition, that utilizes machine learning classification models.
The pre-processed image will then be horizontally and ver-
tically segmented, with the results being a folder of individ-
ually cropped rectangular braille characters that have been

18-500 Design Review Report: Aware-ables - 14 October 2022 Page 3

processed and segmented from an initial braille capture to
be fed into ML pipeline in the next procedural step.

The primary design requirement of this subsystem is
adjoint with the classification stage’s necessities in that
Aware-ables is aiming for less than 10 percent error rate
for each optical character recognition. In order to attain
this, various approaches to computer vision pre-processing
are studied in the design studies section to not only maxi-
mize the quality of final cropped braille character images ,
but also minimize character recognition error rate.

4.2 Classification

The second subsystem in our software data path is the
classification model. This subsystem should accept an ar-
ray of images of segmented and pre-processed braille sym-
bols as described above and output an array of translated
english characters in the same order. The primary design
requirement for this subsystem is a character error-rate of
under 10%. There are a few reasons for this design require-
ment. An article from early 2021 cites an Australian study
which places average OCR character error-rate in a range of
2-10% [6]. Because braille recognition is a relatively smaller
field of research with a number of unsolved technical chal-
lenges, we are setting expectations at the higher end of this
range. Furthermore, we expect the post-processing step to
correct some of the errors that may arise from classification.

In line with latency requirements, we expect classifi-
cation to be fairly low-latency on our chosen hardware.
Therefore, we will not be specifically optimizing classifi-
cation for latency, instead putting emphasis on whether it
is as accurate as possible.

4.3 Post-processing

Our final software subsystem is post-processing, which
includes concatenation, spellcheck, and text-to-speech gen-
eration. A 2013 study performed by Lund et al. showed
that OCR character error-rate had a detrimental effect on
word error rate, with a 1.4% CER resulting in a word
error-rate of up to 7% [7]. However, the paper does not
describe whether spellcheck or other post-recognition cor-
rections could be utilized to reverse this impact. We hope
to use an in-house spell checking algorithm to lower word
error rate when compared to character error rate.

In order to minimize the overall likelihood of falsely rec-
ognized characters from the prior classification subsystem,
we are aiming for a final accuracy of <5% for all words.

5 DESIGN TRADE STUDIES

5.1 Pre-Processing

Upon capturing the original braille image, following
steps [9] are required to pre-process, or to properly re-
fine the original image so that the ML recognition model
can correspondingly translate individual images of Grade

1 braille alphabets to English characters with the desired
character accuracy rate of 90 percent:

1. Grayscaling

2. Thresholding

3. Application of various blur filters

4. Erosion and Dilation

5. Further application of edge filters such as canny edge
filters using non-max suppression

In the figures below, further details of each procedures
and reasoning behind adoption of specific functions from
OpenCV libraries will be explored.

Initially, in step 1, cv2.imread() method is used to load
an image from the specified file location in order to load
the original image of braille text, which is the most efficient
way to load an image file to python. In step 2, grayscaling,
cv2.cvtColor(src,code[,dst[,dstCN]]) is used to convert the
original image comprised of RGB color scale into gray scale
images, which is a necessary prerequisite for thresholding
step.

Figure 3: Results of Step1: Capturing of the original image,
and Step2: Gray-scaling of the original image

Third step, thresholding, is a process of converting the
grayscaled image into a binary image that is only com-
prised of color scale values 0 and 255. Because the input
image is captured from e-cam 50 which accommodates var-
ious intensities of each pixels unlike scanned documents,
OpenCV’s adaptiveThreshold method is adopted over reg-
ular threshold to support a range of maximum value of 255
and minimum value of 0. The purpose of the fourth step,
blurring, is to reduce unwanted noise by applying various

18-500 Design Review Report: Aware-ables - 14 October 2022 Page 4

blur filters such as median blur, Gaussian blur, or bilat-
eral filtering. Applying Gaussian Blur only have reduced
the number of unwanted noise count from 50+ to 17, and
further application of median blur have reduced the noise
count to 8 in the tested image described in Figure 4.

Figure 4: Results of Step3: Thresholding the gray scaled
image to create a binary image, and Step4: Application of
both median blur and Gaussian blur on binarized image to
reduce unnecessary noise

During step 5, erosion, a process of equating the pixel
values inside to the outside value, and dilation, a process
reverse of erosion, take place to reduce further noise. Ero-
sion procedure is to minimize the area of the black dot
and remove remaining noise from thresholding that are
still left after blurring. Then, the shrinked dots are en-
larged through dilation which allows re-visibility of braille
dots along with the elimination of noises left behind. Af-
ter completion of the erosion and dilation, the 8 remaining
noises have reduced to 6. In the last step, canny edge fil-
ters are applied through non-maximum suppression, or by
collecting the center point coordinates of individual braille
dots and drawing a colored circle with a radius found from
Hough Transform. This method is adopted to maximize
the edge contrast of the final pre-processed image, which
will facilitate the next ML recognition process.

As OpenCV library’s functions ensures optimization
and performance, the entire pre-processing procedure can
be completed between 200 to 400ms, and subsequent exe-
cution of necessary steps will gradually increase the OCR
accuracy rate tested during the ML recognition phase, ap-
proaching near the desired rate of 90 percent as shown in
figures 3,4,5.

Figure 5: Results of Step5: Erosion and dilation for fur-
ther reduction of discrepancies by reducing(eroding) visible
noises and enlarging(dilating) individual dots, and Step6:
Application of further non-max suppression edge filter al-
gorithm for enhanced OCR accuracy rate

5.2 Classification

One important consideration made when designing the
classification subsystem was whether to use a pre-trained
model or train a new model in-house. As part of our classi-
fication subsystem design, we performed a keyword search
for existing open-source Braille classification models and
libraries. The most effective model available [3] provided a
pre-trained model with two sets of layers (excluding input
and output), each with a 2D convolutional layer, a pool-
ing layer, and a ReLU (rectified linear unit). Testing this
model against its own 20,000 image dataset, we were able to
achieve, on average, an 89.6% character accuracy, with the
lowest individual character accuracy being 73.5%. How-
ever, since this model was likely trained against the same
dataset, this experiment tested the best case scenario for
the model.

While this model represents a convenient off-the-shelf
option for our project, we do not expect to use it in our
final prototype. As cited above, testing against the train-
ing dataset is not representative for validating the model in
the real world. However, even so, the model was not able
to reach our design requirement of a 10% character error
rate. Combined with the opportunity to tailor our training
dataset to better represent the output of the preprocessing
subsystem, this provides ample motivation to train our own
in-house model. The tradeoffs for this decision will be time
and resources spent training a new model. However, we
hope that we are able to gain better accuracy in the con-
text of our solution, as well as clearer knowledge of dataset

18-500 Design Review Report: Aware-ables - 14 October 2022 Page 5

division for cross-validation testing. While we are mov-
ing forward with an in-house solution, we may experiment
with transfer learning using this model as a foundation in
the future.

Figure 6: Abbreviated confusion matrix for a pre-trained
classification model. Green diagonal line indicates high
confidence tested against training dataset.

We also examined the tradeoff between using a neural
network and a classical tree-model machine learning algo-
rithm. From our review of pre-trained models available on
the web, we found that neural networks, deep or convolu-
tional, were far more prevalent than tree-models for image
classification. One possible reason for this is that tree-
models are generally geared towards tabulated data. Fur-
thermore, neural networks gain far greater accuracy from
training on larger, more complex datasets without over-
fitting or needing to be pruned. The downside of using a
neural network is that the resulting models and weights are
often opaque, making it difficult to test and verify possi-
ble edge cases. Furthermore, it requires more pathways to
be activated before an inference can be made, leading to
higher latency and power consumption when compared to
tree-models.

Because we are working on an AGX Xavier to begin
with, we believe we have the computing overhead to use a
neural network. In our initial experiments, we have seen
inference times between 10-30ms for a given segmented im-
age. Choosing neural networks allows us to use existing
literature on OCR and braille recognition as a foundation
for our classifier. Using our customized training dataset,
we believe that it will be easier to train and tune a neural
network to reach an error rate requirement of 10%. How-
ever, here again we will reevaluate our options to optimize
once we have a working demonstration. For example, we
may choose to manually extract features based on certain
heuristics (bump count, average bump position, etc.) and
feed the resulting feature vector into a tree-model.

5.3 Post-Processing

From a workload perspective, the post-processing sub-
system is broken into the inflow of characters, error-
checking of concatenated words, and lastly the text-to-
speech. The main consideration before beginning the in-
frastructure of both software and hardware components
was understanding the individual complexities of each sub-
section in the overall subsystem. The first subsection is
trivial and can be designed by hand. The next two sections
required a deeper understanding of algorithms however. At
a deeper level the spell-checking section only requires an
understanding of software and general algorithmic think-
ing. This can be written by hand with medium complexity,
but it will not sacrifice in any usability when done cor-
rectly. On the other hand, the difficulty of creating fluid
text-to-speech incorporates software, hardware, embedded
systems, and a deep understanding of signal processing.

In consideration of the skill sets of our team, the deci-
sion came to writing the error-checking by hand and leaving
the text-to-speech application to an API. In terms of usabil-
ity, this decision gives us access to a pre-trained and more
realistic model based on natural language processing. The
three main benefits of using an API is understandibility, ef-
ficiency, and complexity. An API has existing voice infras-
tructure that resembles natural speech, and also in a highly
efficient manner since it is scaled by larger budget corpora-
tions like Google. If we were to write the text-to-speech by
hand, it would most likely result in a crude interpretation
that is hardly understandable and barely scaleable at low
speeds.

6 SYSTEM IMPLEMENTATION

This section provides the technical details for the im-
plementation of each component of our solution.

6.1 Hardware

We expect hardware bring-up to be secondary to the de-
velopment of our software stack. The eCAM50 communi-
cates with the Jetson via a MIPI CSI-2 connector. Because
the AGX Xavier does not natively support MIPI CSI-2, we
have ordered a CSI-2 to USB adapter from DigiKey to en-
sure that we are able to use the camera. Once the camera
has been integrated and the feed can be readily accessed,
we will use a button to trigger still capture of the feed to
send to the pre-processing subsystem. Finally, we will use
a USB to auxilary interface for audio output.

Once we have achieved our minimum viable product,
we hope to begin optimizing hardware size and power ef-
ficiency. One of the ways to do this would be to tran-
sition our platform to a Jetson Nano. The Jetson Nano
solves many of the problems described above, such as na-
tive MIPI CSI-2 support, aux jack, and WiFi connectivity
(also absent on the AGX Xavier). However, we have chosen
to begin by working on the AGX Xavier to maximize the
performance overhead for our software stack.

18-500 Design Review Report: Aware-ables - 14 October 2022 Page 6

6.2 Pre-Processing

The primary deliverable of our pre-processing and seg-
mentation algorithms is the folder of individually cropped
rectangles each containing one braille alphabets to be
passed on to the ML recognition model for direct braille
character to English character translation. In order to
properly pre-process the initially captured braille image
into an individually cropped braille alphabets, two steps
need to be followed: 1) pre-processing of the original braille
image using computer vision algorithms to increase the
overall quality of the captured image. And,2) vertical and
horizontal segmentation to crop the pre-processed image
into individual rectangular boxes of braille alphabets. De-
tailed implementation details of step 1 is already covered
in section 5.1) Design Trade Studies of Pre-processing Sub-
system.

The pre-processed braille image then needs to be ver-
tically and horizontally segmented. For either vertical or
horizontal segmentation, two end points of each line needs
to be known, and Hough transform allows a binary edge
map to be taken as input, locating the coordinates of edges
placed as straight lines. Before applying Hough Transform
for line detection, pre-processed images have their edges de-
fined with OpenCV Canny edge detectors and the Hough
Lines are drawn in between each edges that comprise each
lines, practically segmenting the processed braille image
into (row x col) rectangles. Now that the coordinates of
each rectangular boxes can be identified, individual boxes
can be cropped using OpenCV’s numpy slicing, resulting in
a following folder of processed and cropped braille alpha-
bets ready to be sent to ML pipeline.

Figure 7: Folder of processed and cropped rectangles of
braille alphabets, to be sent to ML pipeline for classifica-
tion

6.3 Classification

As mentioned in section 5.2, our classification model
will be a neural network trained on a variation of the 20,000
image dataset provided by [3] that has been passed through
filters to resemble the output of our pre-processing pipeline.
The dataset will be divided into sets with which to train
and sets with which to test and validate. By training and
testing with different sets, we guarantee that our model will
not be overfitted or biased to the data it is trained with,
and is instead a valid general solution for classifying braille.
Our choice of neural network hidden layer configuration is
guided by the existing solution as well: we will be normal-
izing the dimensions of the image to 28 x 28, then inputting
the image into an input layer of 3 x 28 x 28 (3 color chan-
nels), which will run through two sets of hidden layers (2D
convolutional, pooling, rectified linear unit) and through
an output layer of 37 classes of braille symbols. We will
make adjustments and optimizations based on two heuris-
tics: (1) hidden layer nodes should be close to sqrt(input
layer nodes * output layer nodes) and (2) to keep on adding
layers until test error does not improve any more.

Figure 8: Block diagram for classification subsystem

We have initially been training simple models on local
hardware (RTX 3080). However, long training times have
become a blocker and we are investigating cloud training so-
lutions like AWS SageMaker. To deploy the trained model,
we will be using OpenCV’s built-in functionality to main-
tain consistency between pre-processing and classification
subsystems, reducing the overhead of adapting data classes
between frameworks. According to initial testing, we are
able to achieve between 10-30ms of latency for each infer-
ence.

Unlike existing OBR solutions, we will not be classify-
ing braille characters directly to their english translations.
Instead, we are relabelling our dataset to correspond to
the braille symbols, then sending the inference through
an open-source braille translation library called LibLouis
(http://liblouis.org/) to translate from the braille symbol
to English. By first classifying the braille character as its
unicode symbol equivalent, we leave room to extend our
solution to different languages of braille, which all use the
same symbols but translate to different written characters.

18-500 Design Review Report: Aware-ables - 14 October 2022 Page 7

The classified symbols will be outputted to the next sub-
system in the data path as an array of English characters.

6.4 Post-Processing

The final large subsystem includes the post-processing
to speech application. The main deliverable from the pre-
vious sub-process is ascii characters which have been in-
dividually characterized by the ML pipeline. The post-
processing deliverable provides the final output to the user
in clear and concise audio. As a whole, the post-processing
section includes 3 main components. The first and rela-
tively simple action is to take in characters and concatenate
into words. The second step involves the continuous check-
ing of concatenated words against the english dictionary for
basic error correction. Lastly, the text will be converted to
speech via a REST API.

Figure 9: Subsystem C error checking flow chart.

In order to create a working spellcheck model, several
key factors have to be considered. The first and most ob-
vious implication is the dictionary of choice. A single ref-
erence source file for each word to be checked against effi-
ciently and within a reasonable time frame. For this con-
sideration, a static text file will be allocated with the full
dictionary alphabetized and ordered. This dictionary can
be used to compare against each word before proceeding
forward with error correction. In terms of error correction,
we opted for a simplistic model that would be beneficial for
both the necessity for efficiency and relative error rates in
classification. This model assumes that the possibility of
errors resulting in one character less or one character more
for a word are 0%. Using this theory we can greatly mini-
mize the set of possible words resulting in a single character
error. Due to the sheer quantity of possible combinations
of words with 2-character errors, and the relatively low er-
ror rate of single characters that we are aiming for, it is
safe to say statistically that words will only see errors once
every 10 characters.

The main algorithmic approach to the spellchecking
subsection involves generating the set of all possible single
character different ”words”, that are also contained in the

static dictionary. Initially, the set of words with one single
character different is quite large, however, this is greatly
reduced when considering words that are in the English
dictionary. Overall, each word will then be assigned a prob-
ability of correction and the max word will be returned and
re-added to the sentence.

After each word has been processed and the text is com-
pletely synthesized, the data will be sent as a request to the
Google REST API, and a respective .WAV file will be re-
turned. The subsequent .WAV file will be processed and
sent through the speaker or headphones connected to the
device as stereo output. With the addition of the Google
API, there are multiple features that allow for custom ma-
nipulation of speech. This includes custom voice recogni-
tion, as well as pitch and volume manipulation for optimal
user interpretation.

7 TEST & VALIDATION

Use-case Requirements: In order to validate the
usability of our product as a real-world application, there
are several key metrics that need to be measured. For test-
ing, the two categories of focus are Latency (wpm), and
Error rate (% incorrect). As defined in both the design
and use-case requirements, these are the metrics that will
determine the overall applicability to our end user. In addi-
tion to error rate and latency, several other considerations
must be taken to ensure full usability.

Taking into account the user and the real-world, we
must also consider wearability and average battery life of
the product (hours). We believe these will be difficult to
qualitatively test, and will be assumed upon initial calcula-
tion of battery life to average power draw. This being said,
our testing process will require coordination between the
pre-processing, classification, and post-processing subsys-
tems as a whole. In order to validate error rate and latency
of the product, the testing process will include multiple
stages in a controlled environment which will be described
further below for each individual test.

For the purpose of testing our solution in a controlled
environment, our product will be mounted like depicted in
Fig. 10. The camera will be aligned perpendicular to the
ground such that it is pointing in a horizontally towards
the selected document. In order to guarantee optimal light-
ing conditions, the environment will consist of an overhead
light aligned with the camera and diagonally pointing at
the document in front of the camera.

Design Requirements: In addition to the use-case
testing, our product will undergo consistent validation to
meet rigorous timing and error related constraints in sub-
system modules. In order to maintain parallel components
in software while obtaining similar latency described in the
use-case, each subsystem must be tested individually.

18-500 Design Review Report: Aware-ables - 14 October 2022 Page 8

Figure 10: Controlled testing environment.

7.1 Tests for Latency

In order to validate the latency of our product based
on the quantitative requirements set forth in section 2, 20
randomly chosen pages of 50 braille words will be tested
in sequence. These braille documents will be sourced from
the Library of Accessible Media (LAMP) and other public
resources. Each page will be placed at the same distance
from the camera 1.5 ft away, with the center point of the
document aligned with the center of the camera. The la-
tency of a single page will be determined based on the time
from initial image capture to the completion of the last
spoken word. Assuming a wpm spoken rate of 150 wpm
will allow us to quantify the processing time required by
subtracting the time spoken for 50 words.

7.2 Tests for Error Rate

Similar to latency validation, the test specifications for
error rate will rely on a set of 20 randomly chosen pages
of 50 braille words. Due to the nature of this experiment,
this can be run in parallel to use-case A by quantifying
the number of words incorrectly processed in comparison
to the number of possible words. This will give us an over-
all sample of 50 words per page, and 1000 words processed
total.

7.3 Tests for Design Specification A

In conjunction with the pre-processing subsystem de-
scribed in section 6, one of the predicted errors involved
in the image segmentation is cropping offset. In order to
limit possible unnecessary false identifications in the ML
pipeline, systematic dimension testing will be done on a
set of unprocessed braille documents and compared to a
standard. To guarantee accuracy and consistency, the suc-
cess of this design testing will be measured in vertical and

horizontal offset (mm) rather than by pixel. This model
assumes the rotation is fixed as well.

7.4 Tests for Design Specification B

In parallel with the pre-processing done in subsystem A,
the classification of characters will be verified through test-
ing of a large subset of manually processed and cropped
braille images. The bulk of our character error rate will
most likely be incurred in the ML pipeline, which is why
testing is essential for understanding the overall picture.
During development and optimization of our neural net-
work model, we will maintain an exclusive testing and vali-
dation set (that does not contain the training set data) for
cross-validation of our machine learning model. Doing so
will ensure that we are working toward a general solution
that is not over-fitted or biased toward training data. Be-
ing able to control what data our model is trained on is one
of the tradeoffs set forth in 5.

7.5 Tests for Design Specification C

Lastly, the characters identified through the classifica-
tion subsystem will be checked as words in subsystem C.
In order to measure validity of the spellchecking algorithm,
sets of 50 words will be processed at a time with either no
errors or single character offsets. The test is limited to sin-
gle character offsets to mimic regularity in classification as
well as limit the processing speed needed by the spellcheck-
ing algorithm. Success will be measured in both the false
positive rate as well as ability to correctly return the edited
incorrect words.

8 PROJECT MANAGEMENT

8.1 Schedule

Our development cycle is split into three phases. Phase
one focuses on the research and development of concep-
t/requirements. This is the initial proposal period when
pitching the overall use-case and idea for our product. This
phase spans two weeks, and transitions into phase two, de-
sign. The design phase is focused on coloring in the speci-
fications of our solution with more detail for both our soft-
ware and hardware components. This phase lasts a total
of 3 weeks, culminating in the design review and report.
The most significant portion of our project is spent on the
development of the solution. Through parallel workflows,
each individual develops their section of software with the
understanding of the deliverables from the preceding sub-
system as well as what is to be delivered to the next subsys-
tem. The breakdown of work will be further described in
the following subsection. The schedule is shown in Fig. ??.

8.2 Team Member Responsibilities

There are three subsystems involved in the full prod-
uct’s main processing, and the overarching hardware de-

18-500 Design Review Report: Aware-ables - 14 October 2022 Page 9

velopment which is split between all three members. For
the first subsystem, Jong Woo Ha is responsible for coordi-
nating the pre-processing of images through openCV. The
deliverable is an array of cropped single braille characters
under non-max suppression filtering. Kevin Xie is then
in charge of classifying individual images into characters
using a ML pipeline. Lastly, Chester Glenn is responsi-
ble for the text-to-speech integration, which involves error-
checking words and a smooth text-to-speech application.

8.3 Bill of Materials and Budget

The estimated Bill of Materials and overall cost of the
project are included in Table 1.

8.4 Risk Mitigation Plans

One risk we considered when initially choosing to pur-
sue this project is the limited experience that our team
members had with computer vision and machine learning.
As machine learning is at the core of our project for clas-
sification and computer vision for pre-processing, one way
we have chosen to mitigate this risk is to assign team mem-
bers to specifically focus on these concepts. By assigning
”topic specialists” instead of spreading expertise among
team members, we hope to be able to improve develop-
ment efficiency and decrease areas of risk between parallel
workloads.

9 RELATED WORK

From the initial brainstorming to the creation of our rel-
atively finalized design, there were several industry paths
that branched off from the key components of our product.
In the current field, OCR, Machine Learning, Augmented
Reality, and accessibility technology are all well-researched
disciplines. Although our product may not necessarily rep-
resent all of these fields to a large degree, there are seg-
ments of each that can be compared to our initial creation
and have also been used in part as inspiration to the design.

There are various assistive technology products listed
on the websites of the American Foundation for the Blind
(AFB) and National Federation of the Blind (NFB), in-
cluding various types of braille translators such as Braille-
Master, Duxbury Braille Translator, GOODFEEL Braille
Music Translator, or Toccata [1]. All of these translators
execute quick and accurate of braille to text or braille to
text translations or even translate music to braille music,
but braille to speech translations is not supported.

10 SUMMARY

The goal of the Aware-able product is to aid in the
reading and understanding of braille literature for both vi-
sually impaired individuals as well as the generally braille-
illiterate sighted population. This product will be beneficial

in improving overall braille literacy rates, and therefore in-
formation symmetry, among all individuals. This product
can also be used as a teaching tool for non-visually impaired
persons to learn the language.

Moving forward, there are still several challenges that
we will need to overcome in order to meet our requirements.
In terms of latency and error rate calculations, these are
both general challenges that we are cognizant about. One
of the hardware constraints we need to keep in consider-
ation are the necessity for WiFi in our Jetson, as well as
making sure the power draw and battery life are within
reasonable use-case requirements. The initial product de-
sign uses the Jetson AGX Xavier, which requires Ethernet
to be connected because it does not provide WiFi. The
alternative suggested in 6 to swap platforms to the Jetson
Nano would provide WiFi and better efficiency, but at the
cost of limited performance in comparison.

Once we’ve completed our minimum viable product as
described in this report, we hope to tackle these further
technical challenges in a measured and intentional manner,
ultimately in service of creating the ideal solution for im-
proving braille literacy and navigational awareness for the
visually impaired.

Glossary of Acronyms

Include an alphabetized list of acronyms if you have lots
of these included in your document. Otherwise define the
acronyms inline.

• BOM - Bill of materials

• CER – Character error-rate

• OBR - Optical braille-recognition

• OCR – Optical character recognition

• WER – Word error-rate

References

[1] American Foundation of the Blind(AFB). In: Home/
Blindness and Low Vision / Using Technology / As-
sistive Technology products (). url: https:https://
www.afb.org/blindness-and-low-vision/using-

technology / assistive - technology - products /

braille-translators.

[2] Susan Ford. “Braille Reading Speed”. In: National
Federation of the Blind (). url: https://nfb.org/
images/nfb/publications/bm/bm99/bm990604.htm.

[3] Helen Gezahegn. Aeye (Ai4socialgood final project).
url: https://github.com/HelenGezahegn/aeye-
alliance.

[4] Roger Griffiths. “Speech Rate and Listening Com-
prehension: Further Evidence of the Relationship”.
In: TESOL Quarterly 26.2 (1992), pp. 385–390. doi:
https://doi.org/10.2307/3587015.

18-500 Design Review Report: Aware-ables - 14 October 2022 Page 10

Table 1: Bill of materials

Description Model # Manufacturer Quantity Cost @ Total
Jetson AGX Xavier F21072 NVIDIA 1 $0.00 $0.00
e-CAM50 CUNX F21004 e-con Systems 1 $0.00 $0.00
ADAPTER CSI-2 TORADEX IXORA CARR 14908 Allied Vision, Inc. 1 $33.75 $33.75
Tactile Switch SPST-NO Top Actuated 1241.1055.8000 SCHURTER Inc. 1 $4.50 $4.50
USB External Stereo Sound Adapter AU-MMSA SABRENT 1 $8.99 $8.99
Apple Wired EarPods 057-00-2070 Apple 1 $0.00 $0.00

$47.24

[5] Jernigan Institute. “The Braille Literacy Crisis in
America”. In: A Report to the Nation by the National
Federation of the Blind (Mar. 2009). url: https://
nfb.org/images/nfb/documents/pdf/braille_

literacy_report_web.pdf.

[6] Kenneth Leung. Evaluate OCR output quality with
character error rate (CER) and word error rate
(WER). 2021. url: https://towardsdatascience.
com / evaluating - ocr - output - quality - with -

character - error - rate - cer - and - word - error -

rate-wer-853175297510.

[7] William B. Lund. “Combining Multiple Threshold-
ing Binarization Values to Improve OCR Output”. In:
Proceedings of SPIE - The International Society for
Optical Engineering (Feb. 2013). doi: https://doi.
org/10.1117/12.2006228.

[8] Jacob Nielsen. “Response Times: The 3 Important
Limits”. In: Nielsen Norman Group (Jan. 1993). url:
https://www.nngroup.com/articles/response-

times-3-important-limits/.

[9] Joko Subur. “Braille Character Recognition Using
Find Contour Method”. In: Conference: 2015 Inter-
national Conference on Electrical Engineering and
Informatics (ICEEI) (Aug. 2015). url: https : / /

www.researchgate.net/publication/308829784_

Braille _ character _ recognition _ using _ find _

contour_method.

18-500 Design Review Report: Aware-ables - 14 October 2022 Page 11

F
ig
u
re

11
:
A

fu
ll
-p
a
g
e
ve
rs
io
n
o
f
th
e
sa
m
e
sy
st
em

b
lo
ck

d
ia
g
ra
m

a
s
d
ep
ic
te
d
ea
rl
ie
r.

18-500 Design Review Report: Aware-ables - 14 October 2022 Page 12

F
ig
u
re

12
:
O
u
r
G
an

tt
ch
a
rt

is
sp
li
t
in
to

th
re
e
d
is
ti
n
ct

p
h
a
se
s
a
n
d
p
a
ra
ll
el
iz
ed

b
et
w
ee
n
su
b
sy
st
em

s.

