
Team B0:
Seamless
Autonotator
Vikram Marmer, Patrick Joyce, Ryan Guan

Problem Statement/Use Case

● Notation is the way chess moves are recorded

(Nc3, Bxf6)

● Notation is useful

● Possibility of errors and time-consuming

○ Handwriting

○ Forgetting to notate

● Solution: Create a system that makes it easier for
chess players to notate

Requirements

● Record notation with 100% accuracy

● Report move legality in 300ms or less

● Provide 10 hours of battery life

● Access previous 10 games through website

● Provide exportable PGNs through website for analysis on Chess.com

Block Diagram

HW Unchanged Changed GET Request

Complete Final Solution-Custom Board

● Chess board made from acrylic
● Plastic pieces

○ Magnet on bottom of each piece in a 3d-printed base

● PCB with hall-effect sensors directly under the board
○ Bipolar sensors for simplification
○ One sensor per square, multiplex into ADC

● Raspberry Pi reads sensors and controls LEDs on the board
● Power

○ Integrated batteries under board
○ Internal voltage regulation

● When user presses a button, the C++ program will:

○ Read every sensor on the board

○ Compare the new board state to the old board state, and
determine the source and destination squares of the move

○ Compare the move against the legal move list (with Stockfish)

■ If legal, translate move to Standard Algebraic Notation
(eg. c3d5 -> Nxd5), Light green LED and wait for next move

■ If illegal, light red LED and wait for the move to be corrected

Complete Solution-Legality Check

Complete Solution: Software

● Implemented framework using Django
○ Used AJAX for asynchronous updating
○ Viewed past games using SQLite Database
○ Sent data from Pi using Python requests

■ Used GET Requests to transmit data
○ Deployed using repl.it

Testing Verification - Notation and Latency

● Requirements (revisited)

○ Move pieces at playing speed and test for accuracy of notation

○ Goal: 100% notation accuracy - if it’s not reliable, it’s useless

● Met this goal in preliminary tests - 3 games, over 30 moves total

○ Sensor thresholds need to be adjusted, as squares are sometimes reported
empty when pieces were off center - causing legal moves to appear illegal

● Latency was not tested quantitatively, but feels very fast

● Plan: play through 3 long games that will target specific edge cases in legality
and notation

○ Record video, and analyze to determine latency

Power Testing

● Power Usage: <= 8W

○ Tested with a power supply

○ Pi + Sensors + ADC

● Target: 10 Hours

○ 80 Wh minimum capacity

● 2 series 3Ah lithium battery

○ 3.6V nominal

○ 11.1 Ah capacity required

● Therefore: Need 4 parallel

○ Have space for 8 on board

Design Tradeoffs

Magnet Choice vs. Software Complexity

● Larger magnet more accurately detected
○ Hard to find magnet strength variety at size

● Use simple piece color detection over type
● Software tracks piece type

Software Tradeoffs

● Server Framework: Django vs Flask vs NodeJS
○ Many of these features that differentiate these frameworks don’t make a difference for our

MVP
○ Chose framework based on familiarity

● Database: SQLite vs MySQL Database
● Rest API vs GET Request

Schedule

Conclusion
● Tasks before final demo

○ More “User” Testing

○ Record actual latency to confirm calculations

○ Play more games to stress test board

○ Test latency of website display

● Takeaways

○ Planning for slack time is crucial

○ Magnets really really like to stick together

Accuracy 100% (given current testing)

Latency for
Legality

 50 ms (per our calculations)

Battery Life 20 Hours

Board Size 18” x 18”

Stockfish
Version

11 (Jan 2020 release)

