
18-500 Design Project Report: B0 Seamless Autonotator - 14 October 2022 Page 1 of 13

Seamless Autonotator
Authors: Ryan Guan, Patrick Joyce, Vikram Marmer

Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A system capable of automatically log-
ging notation during a game of chess. This is an im-
provement on the state of the art since notation is still
largely done by hand or not done at all by more ca-
sual players as well as tournament level players. The
seamless notation is done faster than human reaction
speed, which is much faster than a human could per-
form notation manually. It is also 100% accurate, so it
is slightly more accurate than human notation which
may have some errors.

Index Terms—Chess, Hall Effect, Sensor, Move
Generation, Multiplexing

1 INTRODUCTION

Our use case is to serve as an all-in-one chess set (board
and pieces) that automatically notates moves, which can be
used by casual and professional chess players alike. It will
also record the moves played in a database and send moves
to a website where the games can be viewed.

For professional chess players, the system will be able to
be used in a tournament setting. It has a 10 hour battery
life, long enough for a day of tournament use. The board
does not require externals such as a camera, so it can be
easily transported and set up for play. It will remove the
need for professional chess players to notate their games,
freeing up some time during the game and removing the
possibility of any notation errors due to poor handwriting
or human error.

For casual players, the main benefit is providing the no-
tation itself. Many casual players do not bother to notate
their games, as it is an extra layer of work that is not enjoy-
able in and of itself. It also requires knowledge of algebraic
notation, the standard method of recording chess moves,
which beginners may have difficulty understanding. Auto-
matically notating games and storing them in a database
will provide casual players the opportunity to review games
that they otherwise would have forgotten. If at the end of
the game they think, ”I wonder if I made the right move
with my knight on turn 10,” they can find the game in our
database and export it to a chess engine or website, such as
Chess.com, to analyze it. In this way, casual players using
our system will be able to learn more and improve their
understanding of chess.

A competing technology is the new product ChessUp
[1]. It is also a chess board that can detect moves on it,
record games and store them in a database, and find legal
moves for the current board state. It also has additional
features, such as an automatic chess clock that switches

when the board detects a piece has moved, and the ability
to play online or against an AI by highlighting the oppo-
nent’s moves on the board. The main advantage of our
system over ChessUp is cost - ChessUp is $400, while our
prototype alone will likely cost under $500. Another ad-
vantage of our system is that it aims to be usable for pro-
fessional play in tournaments. The ChessUp board features
lights under the squares and built-in AI assistance, which
means it will not be approved for tournament use, so our
products have different markets.

2 USE-CASE REQUIREMENTS

Our requirements are centered around the user experi-
ence while using the system:

• The system will record notation with 100% accuracy.
If the system does not perfectly record notation, it
will not be viewed as an improvement to the cur-
rent standard of human notation in professional play.
To accomplish this, the system will check the legal-
ity of each move to ensure that illegal moves are not
recorded. Illegal moves will be highlighted to the user
so they can replay the move correctly.

• The system will take 300ms or less from the time a
move is made (signaled by a button pressed on the
board) to the system’s response of the move’s legal-
ity (with red or green LEDs on the board). This is
around human reaction time, so the system will not
be so slow that it will noticeably impede the pace of
the user’s game.

• The system will provide 10 hours of battery life on a
single charge. This is long enough for a full day of
tournament use between charges.

• The system will store the most recent 10 games for
each user. Users will be able to access these games
with an account on the system’s website.

• The system will translate completed games into ex-
portable PGNs, which can be downloaded or copied
from the website and imported into chess engines or
websites such as Chess.com for analysis.

18-500 Design Project Report: B0 Seamless Autonotator - 14 October 2022 Page 2 of 13

3 ARCHITECTURE AND PRIN-
CIPLE OF OPERATION

3.1 Chess Board

We will have a chess board style top layer for our design
made from acrylic. This will have a chess board pattern en-
graved on it so the user can play a regular chess game on
it. Underneath the top layer, we will have a printed circuit
board that contains all of our in-board electronics. Fig. 1
demonstrates the layer stackup of our design. The realiza-
tion of this board is shown in Fig. 2

Figure 1: A cross section of the chess board, showing the
PCB and sensor beneath the physical board.

Figure 2: An example of a modified chess piece with a 3D
printed holder for the magnet underneath

3.2 Sensing

In order for our autonotation system to function, our
chess board system will need to sense the color and loca-
tion of every piece on the board. To accomplish this, all
of our chess pieces will have magnets in the base. White
pieces will have the magnet oriented in one direction while
the black pieces will have the magnet flipped to create the
opposite polarity of magnetic field. The difference in mag-
netic field will be sensed by Hall effect sensors within the

chess board.

3.3 Hardware

Fig. 3 demonstrates our hardware structure. Since the
chess board must sense magnetic fields, there will be a
printed circuit board underneath the top layer that houses
Hall effect sensors that can sense magnetic fields. This PCB
will have one sensor per square, yielding 64 total sensors for
the chess board. These sensors will be grouped in 8 sets of
8 to allow for convenient 8:1 multiplexing for each column
of the board into an ADC. This ADC will communicate
with an RPi so the RPi can gather the board state. In
addition to the sensing, this PCB will also contain holders
for batteries, power regulation, and the user interface. The
power regulation and batteries will allow the board to not
be tethered to an outlet as well as last a full day of tour-
nament play per our requirements. The final aspect of the
hardware is the user interface. This consists of a button
and two LEDs for each player. These buttons and LEDs
are connected to the RPi to allow the user to interact with
the system.

Figure 3: Hardware Block Diagram

From a hardware perspective, the final product did not
change from what was presented in the design report. The
final implementation is shown in Fig. 4. A photo of the
PCBs without the acrylic is shown in Fig. 5. This shows
the sensors, multiplexers, and ADC.

18-500 Design Project Report: B0 Seamless Autonotator - 14 October 2022 Page 3 of 13

Figure 4: Annotated Final Hardware

Figure 5: Annotated Final PCBs

3.4 Legality Check

A legality check program will run on the RPi. The pro-
gram will keep track of the current board state, and when
a player makes a move, it will check if the move is legal
for the current board state. If the move is legal, a green
LED will light up on the board to tell the players that the
move is legal and it is the next player’s turn. If the move
is illegal, a red LED will light up to tell the players that
the move is illegal so the same player must make a different
move. Legal moves will be forwarded to the website and
database backend program to record the game.

3.5 Server, Website, and Database

The autonotator website will have features such as in-
dividual user login (and registration), the ability to view
current games, and the ability to view a user’s past games.
Furthermore, users should be able to upload their past
games to websites such as Chess.com for further analysis.
The website will store all data inside of the database, which
will hold the user login data for each user and the notation
of up to previous games. Altogether, the website will con-
sistently refresh to show the user notation updates that are
occurring in their current chess game (which will send data
to the website). @ Ryan for final software implementation
and how it changed from the design report

4 DESIGN REQUIREMENTS

The following design requirements are related to the
use-case requirements that are outlined in Section 2. The
system should record notation with 100% accuracy, so the
sensors must be able to differentiate between the presence
of a white piece, black piece, or no piece on each square
with 100% accuracy. The software must be able to deter-
mine which piece was moved with 100% accuracy based on
the sensor output. The software must also be able to deter-
mine the legality of the move played with 100% accuracy
to ensure that illegal moves are not recorded.

The system must take 300ms or less from the time a
move is made to the system’s response of the move’s legal-
ity. This process involves multiple subsystems and there-
fore the 300ms requirement is a limit on the sum of the
latency of several steps in the process. To ensure that the
entire process takes 300ms or less, we created latency re-
quirements for each step:

• Receiving the user button press input in firmware
(20ms).

• Collecting the sensor data (30ms).

• Translating the sensor data into a move in software
(40ms).

• Checking the legality of that move in software (30ms).

• Returning the result of that legality check by illumi-
nating a green LED or a red LED (20ms).

The latency requirements for each step are quite pes-
simistic, and even then they only sum to 140ms in total. If
the requirement for any individual step cannot be met due
to some unforeseen factor that we failed to consider when
creating these requirements, the process would still likely
take under 300ms because there is 160ms of slack.

The system should have enough battery power to func-
tion for 10 hours on a single charge. We would like our
system to be useful in a tournament setting in addition to
a casual setting. A day of tournament play could consist of
up to 10 hours of playing time, so our board would need to
last at least this full 10 hours to be useful for a tournament.

Lastly, we want the system to provide opportunities
for the user to replay past games in the future and will
therefore need a database that allows each user to store
and access at least 10 games worth of notation. Finally,
since much of this tool should be used for analysis, the
user should be able to export the games in a custom PGN
format (the input format accepted by Chess.com) such that
they can use the extensive analysis resources on Chess.com
for analysis.

5 DESIGN TRADE STUDIES

5.1 Sensor Choice

We narrowed down our sensor choice to two sensors from
Texas Instruments using the selection filters on Digikey.

18-500 Design Project Report: B0 Seamless Autonotator - 14 October 2022 Page 4 of 13

The main remaining design choice was to decide between
a unipolar and a bipolar sensor. We decided on a bipolar
sensor since it is a more robust sensing architecture. It is
more robust because we can simply differentiate between
piece color by flipping magnets rather than having to dif-
ferentiate between two different magnet strengths. This
robustness is crucial due to our 100 percent accuracy re-
quirement.

5.2 Magnet Types

We tested several different strengths and sizes of mag-
nets using a small test circuit board with our sensors
and a 7mm spacer between the magnets and the sensors.
Our findings were that the smaller magnets, regardless of
strength, were not sensed accurately in that the sensor had
trouble differentiating between them, while the larger mag-
nets were sensed with reasonable accuracy. The larger di-
ameter magnets also would lead to less sensitivity in piece
placement on a chess board square compared to small mag-
nets. This was verified in our testing as seen in Fig. 6.
The chart lists the magnets we tested along with the er-
ror, which is the difference in mT from the expected mag-
netic field strength at 7mm away compared to the mea-
sured field strength. Expected magnetic field strength was
calculated using the magnet datasheet’s value for surface
field strength and the relation that field strength drops off
with the square of distance. The measured magnetic field
strength was taken from the sensor output voltage during
testing using the datasheet value for sensitivity in Volts
per milliTesla (magnetic field strength). In the end design
with the bipolar sensors and flipping magnets, the high er-
ror magnets were avoided because the change in voltage at
the sensor was worryingly low and we did not feel confident
in the sensor’s ability to read pieces with high accuracy, es-
pecially if pieces were placed in a non-ideal location.

Figure 6: Data showing that larger diameter magnets have
a much smaller error in sensing. Error is defined as the
difference between the actual measured field strength and
the expected magnetic field strength.

5.3 PCB Sizing

We decided to fabricate the board in four sections of two
columns instead of one single circuit board due to cost. A
full chess board for our specification is 18 in. in width and
height, this made fabrication costs prohibitively high for
our budget given the cost of our Bill of Materials. We also

wanted to have some money left over to buy extra parts if
needed towards the end. We also experimented with de-
creasing the board size, but even the minimum board size
was at the limit of what could we afford given the 600 dol-
lar budget. The four boards are connected such that they
all share common power and ground nets, and sensors on
every board can be read by the single ADC. For our proto-
type, we included batteries on one of the boards. However,
there is space for batteries to be added on all four of the
boards.

5.4 Multiplexing Architecture

The multiplexing architecture was influenced by the
PCB sizing. Since the board is being fabricated in columns,
the board must be made of columns with a modular de-
sign such that each column can function alone as well as
together. Having 8:1 multiplexing and an 8-channel ADC
makes this easier to design from a circuits perspective. Hav-
ing an 8:1 multiplexer was also optimal in terms of balanc-
ing cost with modularity.

5.5 ADC Choice

We chose our 8-bit, 8-channel ADC because we wanted
a single ADC that would efficiently sample from all 8 mul-
tiplexers. We chose an 8-bit device because we don’t need
high resolution to distinguish white pieces from black, and
the least amount of bits is optimal for fast SPI transactions
to read the sensors with low latency.

5.6 Batteries

We are sizing our batteries to last a full 10 hours, so we
want a compact solution that has a large capacity. Lithium-
ion cells satisfy both of these requirements better than lead-
acid, alkaline, or lithium-iron-phosphate. Using cylindrical
cells over lithium polymer cells also is easier because we
were able to find cell holders that are able to be soldered
directly to the PCB. This takes care of the mounting and
electrical connection aspects. Based on all of these factors
and our previous experience using 18650 cells, we will be
using these cells on our system.

5.7 Legality Check

The obvious way to check the legality of the most re-
cently played move is to identify what piece was moved,
check that the piece was moved to a position that its move-
ment ability allows it to move to (Rooks only move in
straight lines, King can only move one square, etc.), then
check the positions of other pieces on the board to deter-
mine that the move doesn’t break any other special rules.
Another method is to generate all possible legal moves from
the previous position, store them in a list, then check if
the most recently played move is in that list. The second
method clearly requires much more computation, as the
program will have to determine the legality of many moves

18-500 Design Project Report: B0 Seamless Autonotator - 14 October 2022 Page 5 of 13

(typically 40-60 moves in complex positions) instead of just
the most recent move. However, a key advantage of the sec-
ond method is that the computation can begin before the
move is played, as it only needs the previous position to
start generating legal moves. After the move is played, the
first method will need to compute its legality, while the sec-
ond method only has to check it against a list. With our
design requirement of 30ms to check the legality of the move
in mind, we care much more about the latency of legality
checking after the move is played than how much compu-
tation is done before, so we chose to implement the second
method. Running on the RPi, this legality check method
should be fast enough to comfortably support speed chess.

5.8 Legal Move Generation

Many programs exist to generate a list of legal moves
for a given chess position. One solution that was consid-
ered is Gigantua, the world’s fastest legal move generator.
Gigantua can generate over 500 thousand legal moves per
second, meaning the 40-60 moves we would need to gener-
ate for a single position would take around 0.2ms on the
RPi [2]. As noted in the previous section, there is not a
strict requirement on the latency for generating a list of le-
gal moves, because it occurs before the user has made their
move. The legal move list needs to be generated in the time
between each player making their moves, which we can rea-
sonably assume to be at least a second. In most games,
players will take several seconds, if not minutes to decide
on their next move, but it is possible to play very fast chess
and we want our system to support those types of games.
Even in very fast play, it should take at least a second for
a player to physically move a piece and press their button
to complete their move. Therefore, we do not need to se-
lect the fastest legal move generator, and can also consider
other factors: memory usage and ease of implementation.
Gigantua uses around 10MB of memory, as it achieves its
impressive speed through the use of large look-up tables.
We decided to use the legal move generation from Stock-
fish, a free and powerful chess engine. Stockfish generates
legal moves using structures called bitboards, which use 1
bit for each of the 64 squares on a chessboard to represent
piece positions, available moves, attacked squares and more
[3]. It performs operations on bitboards to generate legal
moves, which is slower than Gigantua, but still fast enough
for our purposes with much less memory usage. Stockfish
takes about 2ms to generate all the legal moves for a sin-
gle position. Stockfish is also easy to integrate with our
software, as it is well-documented and includes structs for
positions and moves that are useful in the rest of the legal-
ity check program.

5.9 Server Backend

We chose to use Django to build the server back-end for
the web application because it’s built in the REST frame-
work and because of its community support. REST frame-
work support is important because a portion of our project,

having data sent to a remote server, is done through a
REST framework. While there are many solutions to send-
ing notation from the chess board to the web server, since
our goal is to send small packets of data at discrete times,
a REST API was the least effort and most reliable to set
up.

Other Python backend frameworks such as Flask fell
short of the advantages that Django was able provide. In
Flask, it is much harder to set up a basic data storage sys-
tem to store moves. Furthermore, the documentation for
Flask falls short in comparison to the Django documenta-
tion in both depth and access. Django also allows for an
easily accessible upgrade from our initial SQLite database
(our designated database in our MVP) to a larger, more
flexible PostgreSQL database that is more suitable for pro-
duction. Lastly, the Django framework is preferred due to
the teams extensive background with the technology. Us-
ing a framework in which the team is already familiar is
preferable as that allows us to build a cohesive website in
a faster and more efficient manner (compared to learning a
new framework that does not offer our use case any bene-
fits).

Figure 7: The underside of the PCB, showing the battery
holder and structural FR-4 strips.

6 SYSTEM IMPLEMENTATION

6.1 Mechanical Board

The chess board will be built from 2 layers as demon-
strated in Fig. 1. The bottom layer is the printed circuit
board that contains all of the sensing, power, and inter-
face with the RPi. Sensors will be spaced every 2 inches
as seen in Fig. 8 in order to create a normally-sized chess
board. This sensor spacing worked perfectly by detecting
piece color in nearly every case. The one time the sens-
ing would not work properly is when pawns (the smallest
piece) were placed at the very edge of squares. However,
in our tests of playing a game, this situation never really
arose. The rest of the board worked as designed aside from
1 small fix that had to be done. The buttons that play-
ers press were connected incorrectly in the schematic. This
was easily solved post-fabrication by cutting 2 traces and
soldering a wire on the board. Finally, the interface with
the RPi also worked as expected.

Above the PCB will be an acrylic layer that is engraved
with a chess board pattern. Below each engraved square

18-500 Design Project Report: B0 Seamless Autonotator - 14 October 2022 Page 6 of 13

will be a Hall effect sensor to sense the pieces. The cir-
cuit board will have 3-D printed mounts to support itself
and keep all of the individual column boards together. The
3D printed mounts worked to stabilize the individual board
segments, but we had not considered the sag in the mid-
dle of the board and necessary supports in that area. To
remedy this, we added connective struts of FR4 to remove
stress from any PCB components and to keep the board
level.

Figure 8: Layout of the PCB, showing 2 inch spacing be-
tween sensors. The red footprint in each corner is the lo-
cation of a sensor.

6.2 Sensing Pathway

For our Hall effect sensors, we will be using the
DRV5055 from TI. The schematic for these sensors is seen
in Fig. 9. These sensors are bipolar and have a sensitivity
of 12.5 mV/mT, with an output voltage of 2.5V when no
magnetic field is applied. Each column of 8 sensors has a
dedicated 8:1 multiplexer. We chose the TMUX1208PWR
multiplexer. Since there are 8 columns in the chess board,
there are 8 multiplexers. This sensing pathway worked well.
The one unexpected modification tour our exact design was
that we needed a small delay to allow the multiplexers to
settle when acquiring data. Otherwise, sensing of pieces
functioned well.

Figure 9: Multiplexer Schematic

These 8 multiplexers feed into an 8 channel ADC, the
ADC088S052CIMT from TI. The schematic of all connec-
tions to the ADC are shown in Fig. 10. This ADC commu-
nicates to the RPi over SPI. The RPi then can process this
sensor data to compute legality and respond to the user.

Figure 10: ADC Schematic, showing the outputs of the 8
multiplexers on the ADC’s 8 input pins.

6.3 Power

Our battery will be a 2-series lithium ion battery. Our
expected maximum power use is about 8.2W, of which, the
RPi will use 5W. The rest is from the nominal values for
current draw in datasheets for the multiplexers, ADC, and
sensors. For 10 hours of play time, we will therefore need 82
Watt-hours of power. Given that the nominal voltage of our
battery cells is 3.7V, we will need a maximum of 11.1 Amp-
hours of capacity. The capacity of the Samsung 30Q is 3
A-h, so we will use 4 in parallel for a capacity of 12 Amp-
hours. Therefore, our battery will be a 2-series, 4-parallel
configuration. This power estimate was nearly perfect. The
actual power use when tested with a power supply instead
of batteries was just above 8 Watts, so the calculations for
required battery capacity hold. The board can hold up to
8 parallel of 2 series batteries, which means the board can
handle up to 24 Amp-hours of capacity, which well exceeds
the required 11.1 Amp-hours.

The battery power will be regulated to 5V using a
switching regulator (LM2576S-5.0). This 5V will power
the sensors, ADC, and the RPi. For the 3.3V reference for
the buttons, an linear regulator (LP2985AIM5-3.3) is used
to convert the 5V to 3.3V. The schematic for the power
regulation is in Fig. 12. These regulators worked well and
successfully powered everything in the system.

18-500 Design Project Report: B0 Seamless Autonotator - 14 October 2022 Page 7 of 13

Figure 11: Power Regulation Schematic

6.4 Hardware-User Interface

Our hardware user interface consists of one button
and two LEDs per user. The buttons in Fig. 12 are
tactile switches (TS15-1212-70-BK-160-SCR-D), and the
LEDs in Fig. 13 are green (LTL2T3TGK6) and red
(LTL2V3EV3JSR) to indicate legal and illegal moves. The
sensors, multiplexer, and ADC all run at 5V. The RPi takes
in 5V, but uses a 3.3V logic level. This means that all GPIO
inputs and outputs to the RPi must not go above 3.3V.
Therefore, the 3.3V regulator on the chess board PCB is
used with the buttons to create a 0V or 3.3V input signal.
The indication LEDs worked perfectly. They were bright
enough, and the control from the RPi worked as expected.
The buttons also worked once connections on the PCB were
fixed (as mentioned in 6.1), and the debouncing circuit in
the form of an RC low-pass filter seemed to work in con-
junction with some software low-pass filtering as well.

Figure 12: Tactile Switch Interface Schematic. There is
one switch for each player.

Figure 13: LED Control Schematic. There are 2 red and 2
green LEDS

For controlling illumination of the LEDs in Fig. 13, we
also had to work with a logic level change from the 3.3V of
the RPi to the 5V system on the board. This level change
was necessary because the forward voltage of one of the
LEDs is greater than 3.3V and the current limit of a RPi
GPIO port is 16 mA. We may not need to deliver more
current through an LED than 16 mA, but we did not want
needlessly to restrict ourselves. To solve these issues, the
outputs from the RPi control transistors (2N7002LT1G)
that connect the LEDs from 5V to ground. There are cur-
rent limiting resistors in series with the LEDs that can be
changed if we desire increased or decreased brightness while
testing the board. This level change worked well for our
setup providing all control lines were actually connected to
the RPi. If lines were left floating, the some of the tran-
sistors would turn on, and some would remain off. Using a
pull-down resistor on the transistor gate could have avoided
erroneous LEDs being lit while testing. However, this really
isn’t an issue in normal operation because the transistor
gates aren’t floating while the program is running.

6.5 PCB Interconnects

Since our circuit board is made from several identical
PCBs, they all need to be connected in order to share com-
mon signals. At the edges of each board, there are large
pads placed for all major power and signal nets. A subset
of these nets are shown in Fig 14. Jumpers (0 Ohm Resis-

18-500 Design Project Report: B0 Seamless Autonotator - 14 October 2022 Page 8 of 13

tors) can be placed between all of these pads and the pads
on the neighboring boards to connect them all. Having all
of these boards connected means that power regulation and
communication with the RPi only need to happen on one
of the boards. These interconnects worked as the electrical
linkages between boards. However, some of the jumpers
had too much stress on them before supports were added.
These components cracked and had to be replaced. Once
the supports were added underneath the board, this prob-
lem disappeared.

Figure 14: Inter-PCB Jumper Pad Locations. These
jumpers carry the output of the multiplexers to other
boards, so that the single ADC can read multiplexers, and
thereby read sensors, that are on the other boards.

6.6 Firmware

The firmware is the interface between the sensors on the
chess board and the software. The firmware will interface
with the ADC on the PCB over SPI. Data will be received
by the RPi in a format designated by the ADC. The data
will then be processed into a format that is convenient to
use for the legality check. We chose to write the firmware
in C++ for low latency and for easy integration with the
legality check software, also written in C++. The firmware
worked generally as expected. During the integration pe-
riod, we worked out some timing issues in the communi-
cation between the RPi and the ADC, but there were no
other major issues in communicating with the hardware.

6.7 Legality Check

The legality check program will be written in C++, as
it is one of the fastest and most efficient programming lan-
guages. It will implement the legal move generation from
the Stockfish chess engine. At the beginning of the game,
and after each legal move is played, the program generates
a list of every next legal move from the current position.
Once a move is played and sensor data for the move is
received, the program compares the new board state from
the sensors with the previous board state to determine what
piece was moved (source square and destination square). It
also checks that only one piece was moved, and the correct
color of piece was moved. Then, this new move is checked
against the already-generated list of legal moves for the
position. If the move is legal, the program will update the
state of the board, light up a green LED on the board and
begin generating the legal move list for the newly-updated
position. If the move is illegal, the program will throw out

the move, preserve the previous board state and already-
generated legal move list, and light up a red LED on the
board.

6.8 Server and Website

Our software infrastructure diagram is shown in Fig.
15. The website front end will use HTML and CSS to dis-
play the proper information, and use AJAX (asynchronous
javascript) to handle the consistent update logic. We chose
to use HTML and CSS for the front end visuals of the
website because not only are they industry standard, but
they also have a large existing infrastructure. Tools such
as Bootstrap allow us to build a better, visually appealing,
themed website without too much additional integration
work.

Figure 15: Software Design Architecture

The backend of the server is written using the Django
framework and will be modeled using the MVC design (the
model, view, and controller) design. This separates the
code that loads the HTML, the code that deals with the
database, and the code that handles the back end of the
server.

It should be noted that the Django framework is written
in the Python language, which, due to being an interpreted
language, is not the most latency conscious. However, the
main goals in mind when building the website are to prior-
itize being robust and usable.

We can clearly see the MVC in play above as the server
backend controls the Visual Display that the user is able to
interact with. Furthermore, the database holds the chess
notation information that allows for the user to upload
their previous games to an external analysis source (Ex.
Chess.com). Finally, the user can view the current game
being played on the web application, which receives that
information through the RPi (located on the chess board
itself) which communicates to the backend of the server
through the REST API.

6.9 Database

For the MVP, we will choose to use a local SQLlite
database. While this initial database doesn’t have great

18-500 Design Project Report: B0 Seamless Autonotator - 14 October 2022 Page 9 of 13

scalability, it works great for a few users and under <10000
total games stored. This is due to the built in nature of the
SQLlite database into the Django framework: it takes lit-
tle time to set up, and works well for a smaller production
environment. Using a database with a SQL protocol allows
for easy query access, which is a primary usage of our web
application (say that a user wanted to query the database
for all games which they played at the black position before
2022).

7 TEST & VALIDATION

7.1 Accuracy Tests

To test accuracy, we will first make sure that chess
pieces that are placed off center (up to 37.5% or 3/8” off
center) are still detectable with perfect accuracy. Next, we
played through several games of at least 30 moves. In these
games, we did not have a single move detected incorrectly.
This met our goal of 100% sensing accuracy driven by the
need for correctness in the success of our system. One way
we could exceed the accuracy metric is if we increase the
distance pieces are placed off-center. This could lead to
greater tolerances in the sensing system. In terms of our
project development, our iterations of sensing were done
early on with different magnets and sensors. Our selection
of sensor and magnet yielded the best results out of all the
options we tested, but with more time we could have tried
other options and likely found something better.

7.2 Latency Tests

To test the latency of the legality check, we ran the
board through several moves of pieces, and used high frame
rate video to time the latency from each move being made
(user pushes button) to the legality output (LED on board
lights up). Moves will be selected to create high-complexity
positions, where the legality check will be slower due to
a higher number of legal moves. In our testing with 480
frames per second video, we found latency to be at a max-
imum of 5 milliseconds. This greatly exceeds our require-
ment of 300 ms. However, about 1 in 30 moves would take
much longer (2-5 seconds) for a response. We were able
to identify that this time was spent after the button was
pressed but before the sensors are read by the RPi. This
leads us to believe that while the firmware is idling and
simply waiting for a button input, the RPi may begin run-
ning other tasks, and wakes the firmware up after a short
time. We could improve thelatency and overall feel of the
game by eliminating these long waits, which may be ac-
complished by telling the RPi kernel that the firmware is
a high priority process that should not be interrupted, if
possible.

7.3 Power Tests

To test power usage, we measured power usage at idle
and and peak computation of the RPi and sensors using a

power supply in place of our batteries. This usage will be
extrapolated to 10 hours since that is our design require-
ment. With the power supply, we saw a power draw of
about 8W continuous. This power matches our design esti-
mate, so the 2 series, 4 parallel designed configuration will
be enough to give the board 10 hours of battery life using
the Samsung 30Q cell. To exceed 10 hours of battery life,
we can simply add more cells in parallel. The board can
hold up to 8 parallel of 2 series batteries, which means the
board can handle up to 24 Amp-hours of capacity, which
would provide around 20 hours of battery life.

7.4 User Input Tests

To test the overall usability of the system, we will have
a suite of user tests. Users will be asked to play a set of 3
games:

• One Blitz Game (with a time control between 3-5
minutes)

• One Rapid Game (with a time control between 10-15
minutes)

• One longer-paced game (with a time control between
30-60 minutes)

Between the second and third games, we will ask the users
to attempt to register and login to the web application.
They will then attempt to view their past games, and pull
up a continuously updating view for their current game. Fi-
nally, after they finish playing the third (and longest game),
we will ask a series of questions that measure various com-
ponents of usability.

• Latency

– “Did you feel any noticeable lag between press-
ing the clock and the legality checker?”

• Intuitiveness

– “Did you find the website to be confusing or un-
intuitive to use?”

• Normality

– “Did the experience feel irregular, or differ from
a normal over-the-board chess game?”

The goal of the above set of questions is to measure
whether the technology that we built into the chess board
fundamentally changed the usability and playing experi-
ence that a normal player might have. We want to in-
centivize players to use our chess board because it reflects
normal usability, but also has many of the initial features
that we attempted to implement (automatic notation, chess
database). Users will be periodically tested during the im-
plementation phase of the project. Finally, a measure of
success (after testing 6 different users) will be to receive
less than 2 “No” responses on the total of 18 total ques-
tions asked (16/18).

18-500 Design Project Report: B0 Seamless Autonotator - 14 October 2022 Page 10 of 13

7.4.1 Results

Ultimately, out of 3 candidates, we found that there was
no noticeable lag between pressing the clock and the legal-
ity checker. The main criticism that we received were that
the pieces were too magnetic. We also address this concern
in the end results of the program; one improvement is to
find magnets that are both larger in size and weaker with
regards to magnet strength. The software was intuitive and
easy to use, but on more than one occasion, the candidates
noted the absence of decoration (CSS, JavaScript).

We interpret these results in a positive light, we are
overall ecstatic that our project was able to fulfill all of
the basic user needs out of an autonation chess set (and
application). However, one of our primary motivations for
making this was to prioritize the user experience. Unfortu-
nately the lack of aesthetics on the website and the overall
over-magnetization of the pieces caused the user experience
to fall short of what we desired it to be.

8 PROJECT MANAGEMENT

8.1 Schedule

The schedule in Fig 16 is organized to accommodate
the individual contributions of each teammate. Each team-
mate’s role in the project is, for the most part, individual.
The firmware, hardware, and software of the final chess
board can be built in parallel, and there are multiple weeks
allotted at the end of the schedule for integration among
the three parts. Furthermore, there is a break week allotted
for fall break to allow for flexibility: if team members feel
that they are ahead of schedule, they can take the break
accordingly, and if team members feel that they are behind
schedule, they can use the week to catch up on remaining
work. Lastly, proper time is allotted for tests and valida-
tion (most crucial for hardware), shipping, and the physical
construction of the board.

Our schedule went through a couple changes post-fall
break. The chess board mechanical work extended until
the second-to-last week of the semester because it didn’t
block much of the testing and integration, so the integra-
tion was prioritized. For firmware and software, the com-
pletion dates on components were pushed back 1-2 weeks,
which then pushed the integration timeline into extending
two more weeks. The final testing stage and some final in-
tegration therefore used up the slack time we had planned
for in the last 2 weeks before final presentations.

8.2 Team Member Responsibilities

Vikram is responsible for the hardware portion of the
project. This includes the mechanical chess board design
and the circuits and PCB design. Patrick is responsible
for the firmware interface with the hardware as well as the
legality check and state machine logic of the system. Ryan
is responsible for the software portion of the project that
includes the the server, database, and web interface as well

as the RPi’s interface with the server. As individual por-
tions of the project are completed, we begin the integration
process. Integration will include making the hardware and
RPi work together and then making the whole hardware
and firmware system work with the software. The final
step that will be done together is testing and validating
our system and making any necessary revisions to any as-
pect of the design.

We ensure that all parts are as parallelizable as possi-
ble, by building interfaces that act between each individual
part. Vikram’s work will interact with Patrick’s firmware,
and Patrick’s firmware will interact with Ryan’s software.
However, significant progress can be completed as the ma-
jority of the work can be done without extensive knowledge
of the interfaces.

Throughout the project, these individual responsibili-
ties remained constant. The division of work between hard-
ware, software, and the interfaces in between proved to be
a feasible setup for the semester.

8.3 Bill of Materials and Budget

Our bill of materials in Fig. 17 consists of all of the PCB
components, PCBs, acrylic sheets, and the chess pieces.
The total cost comes out to $301.95. We are comfortably
within the $600 budget, and we have enough money left to
buy a second revision of the PCBs or more spare compo-
nents if absolutely necessary. The breakdown of the BOM is
in Fig. 17. Some costs that were hard to estimate were the
3D prints used to support the board and hold the magnets.
In comparison to the cost of the boards and electronics,
this cost is small.

8.4 Risk Mitigation Plans

The largest risk from the hardware perspective is that
the PCB does not work as expected. To mitigate some of
this risk, I had the group review the schematics to make
sure everything made sense. Additionally, the board is
large enough and only 2 layers. This means manual alter-
ations to the board are possible, but not necessarily easy.
Another solution is that we could order a second revision
of the PCB and reuse the existing bill of materials that
we already bought. A benefit of the modular PCB design
is that the cost allows for a second revision while staying
under the 600 dollar budget. Stock is no longer a risk since
we have purchased all of our PCB components, and nothing
was backordered. In the end, we did not need to order a
second revision of the board. One or two small changes to
the board were made by adding wires and cutting traces,
but these were minor enough to not warrant a new board
revision.

The largest risks from software include packet loss. It
is important to note that while the code can be tested,
and the website can be made hard to bypass, it is possible
that information from the RPi might be lost in transit or
corrupted while being transferred to the website. We can

18-500 Design Project Report: B0 Seamless Autonotator - 14 October 2022 Page 11 of 13

Figure 16: Gantt Chart

Figure 17: Bill of Materials

18-500 Design Project Report: B0 Seamless Autonotator - 14 October 2022 Page 12 of 13

manage this data loss by creating a checksum, or a sec-
ondary verification that the move sent did not corrupt in
transit. This checksum works by checking to see whether
the given information packet details a valid board state,
and can be derived from a hash of the board. This cre-
ates a quick and reliable method of double checking the
validity of an information packet sent from the RPi. In the
case that an information packet sent from the RPi is valid,
the website will send a confirmation to the RPi that the
proper information is received. If the confirmation is not
received within a given time period, the RPi will send the
information once more.

In terms of personnel and timeline resource and risk
management, the main risks were that some section of the
project would not get done on time and we could not fin-
ish by the demo. To mitigate these risks, we planned slack
time into our schedule to compensate for busy weeks and
overflow of work. We ended up using all of the slack time,
so it was good that we planned for it. Additionally, we
were able to make up some work during the fall break to
get the team back on track and on schedule.

One of the risks that we did not foresee was sending
too many requests to the website during the demo. We
ultimately decided to deploy the website to repl.it rather
than using the website locally as that would allow for guests
to access the website and create their own accounts. How-
ever, during the demo, with some live users, the website
went down due to volume of traffic pushed through (this is
due to repl.it offering free but limited deployment services).
Ultimately, during the demo we had to revise the number
of seconds between each refresh of the page to lower the
stress on the website. To mitigate this risk in the future,
we should deploy to an EC2 instance which is much more
robust and offers larger flexibility.

9 ETHICAL ISSUES

There are a couple important considerations about the
morality of our project. Since this board will be used in a
tournament context, we want to ensure that our board pre-
serves the integrity and secrecy of the games being played.

The primary concern of this board is that in a tourna-
ment scenario, one which we would imagine that our board
would be use frequently, our board may generate a false
positive. That is to say, that the board may say that an il-
legal move is legal (the opposite is also concerning, but has
much smaller ramifications). In this case, if both of the
players fail to notice, then the chess game would proceed
in an illegal manner. Especially if this was a tournament
with incentives, this would cause conflict and would be the
fault of the board.

The second concern that we had in mind was the se-
crecy of the games played in a private setting. One of the
features we implemented was the ability to share games.
In this sense, we wanted users to be able to share their
notation in a tournament setting (removing the need for
either player to take notation). However, while this fea-

ture certainly makes life easier in a tournament setting,
malicious players can certainly gain an advantage by view-
ing the preparations of their opponent before an important
match. With this in mind, we prevent unnecessary notation
by designating each game with an owner. Being the owner
allows for the owner of the board to end games played dur-
ing a tournament setting so that no extraneous notation is
written to the end of the game.

10 RELATED WORK

As mentioned in the Introduction, a similar product is
ChessUp. It is also a custom chess board that can detect
moves made on it. It includes a built-in chess engine, which
finds possible moves and can recommend the strongest ones
to the user. While it has some features that our product
does not, the cost of our board is lower. Given the allo-
cated time for this project, the scope of our design is more
reasonable. Our final project is very similar to what we set
out to do, so ChessUp is still a similar product to what we
created.

11 SUMMARY

The Chess Autonotator system is an all-in-one product
that offers the familiar look and feel of a standard chess set
with the conveniences of automatic game notation, legality
checking, and a website to review past games and export
them for analysis. The notation and legality checking will
be too fast to even be noticeable by most player and will
be perfectly accurate. The board will also offer 10 hours of
playing time.

We were able to meet the specifications of our design.
Two things from the hardware standpoint that could eas-
ily improve the design are slightly decreasing the square
size or increasing the magnet diameter. Both of these op-
tions help the issues of smaller pieces (pawns) being placed
far off-center and then being undetectable by the sensor.
One potential issue that could arise is that pieces would be
more likely to attract or repel each other due to the internal
magnets. Therefore, doing some simple searching to find a
larger, but weaker magnet would be useful.

From a software perspective, we focused a lot of our
effort on making the game interface efficient and smooth
from a user perspective. The priority on the software side
was to build a MVP of the system that could efficiently
play games, rather than to spend time making the web-
site look as good as possible. As a result then, the website
is plain HTML, but functions well in the context of the
system (satisfies the use case requirements). One of the
biggest improvements that we can make to our overall vi-
suals is to use a CSS Framework (Ex. Bootstrap or React)
to improve the look of our website.

While we defaulted to using a GET request to send
moves to the server, using a REST API (a slight improve-
ment from a GET request) would improve on the overall

18-500 Design Project Report: B0 Seamless Autonotator - 14 October 2022 Page 13 of 13

parallelism of the server (improving the performance under
load). While this was not relevant for our demo (as there
was a very light load), when thinking about our project
in a commercial lens, we would want to implement a more
robust system using a REST API.

As mentioned in the testing section, we would like to
eliminate the rare long-latency moves. This would likely
require some more in-depth learning about the RPi and its
operating system. We would also like to add support for
starting games from any position, as multiple visitors to
our demos expressed interest in this. This could be imple-
mented with an input on the website that accepts a FEN
string, which encodes a chess board position. The software
could easily accept a FEN string to begin a new game from
the given position. Another possibility would be having a
chess board UI on the website where users can set up the
game, just like on Chess.com or other chess websites, and
have the website backend translate that position to a FEN
string.

One lesson learned was that we needed to validate a
hardware sensing architecture early. We did this by order-
ing a variety of magnets to test on the sensors early on in
the semester to give us confidence that the final product
would work. This contributed to a much easier integration
timeline because we knew sensing would work with mini-
mal effort on the mechanical side. One aspect we should
have tested more was the tolerance on square size and how
close the magnets had to be to attract each other. This was
largely not an issue in the end, but we had not validated
this in advance.

A lesson learned on the software side was that small
changes to the overall system can cause large rippling
changes in the overall software. Much of our design process
had to be changed when different issues were raised. The
original software design was inflexible, and would not have
allowed the current game setup (where users were able to
add games created by other people). As a design princi-
ple, software is much easier to modify than hardware, and
therefore should be designed with flexibility as a top prior-
ity.

A lesson learned from the firmware development was to
test the needed functionality of IO libraries early on. The
firmware was initially written with a library that sounded
very convenient, but hadn’t been supported since this Jan-
uary and was no longer completely functional on the RPi.
Finding other libraries to accomplish the same function was
not too difficult, but rewriting the firmware to account for
the changes between libraries was tedious.

Glossary of Acronyms

Include an alphabetized list of acronyms if you have lots
of these included in your document. Otherwise define the
acronyms inline.

• RPi – Raspberry Pi

• PCB - Printed Circuit Board

• API - Application Programming Interface

• ADC - Analog to Digital Converter

• SPI - Serial Peripheral Interface

• GPIO - General Purpose Input Output

• HTML - Hyper Text Markup Language

• CSS - Cascading Style Sheets

• JS - JavaScript

• REST - Representational State Transfer

• MVC - Model, View, and Controller

References

[1] ChessUp. url: https : / / playchessup . com/. (ac-
cessed: 12.16.2022).

[2] Daniel Inführ. Gigantua. url: https://github.com/
Gigantua/Gigantua. (accessed: 12.16.2022).

[3] J. Kiiski T. Romstad M. Costalba and the Stockfish
community (https://github.com/official stockfish/-
Stockfish/blob/master/AUTHORS). Stockfish. url:
https : / / github . com / official - stockfish /

Stockfish/. (accessed: 12.16.2022).

