18-500 Design Project Report: BO Seamless Autonotator - 14 October 2022

Page 1 of 10

Seamless Autonotator

Authors: Ryan Guan, Patrick Joyce, Vikram Marmer
Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A system capable of automatically log-
ging notation during a game of chess. This is an im-
provement on the state of the art since notation is still
largely done by hand or not done at all by more casual
players as well as tournament level players. The seam-
less notation will be done faster than human reaction
speed, so much faster than a human could perform
notation manually. It will also be 100% accurate, so
it will be slightly more accurate than human notation
which may have some errors.

Indexr Terms—Chess, Hall Effect, Sensor, Move
Generation, Multiplexing

1 INTRODUCTION

Our use case is to serve as an all-in-one chess set (board
and pieces) that automatically notates moves, which can be
used by casual and professional chess players alike. It will
also record the moves played in a database and send moves
to a website where the games can be viewed.

For professional chess players, the system will be able to
be used in a tournament setting. It has a 10 hour battery
life, long enough for a day of tournament use. The board
does not require externals such as a camera, so it can be
easily transported and set up for play. It will remove the
need for professional chess players to notate their games,
freeing up some time during the game and removing the
possibility of any notation errors due to poor handwriting
or simple mistakes.

For casual players, the main benefit is providing the no-
tation itself. Many casual players do not bother to notate
their games, as it is an extra layer of work that is not enjoy-
able in and of itself. It also requires knowledge of algebraic
notation, the standard method of recording chess moves,
which beginners may have difficulty understanding. Auto-
matically notating games and storing them in a database
will provide casual players the opportunity to review games
that they otherwise would have forgotten. If at the end of
the game they think, "I wonder if I made the right move
with my knight on turn 10,” they can find the game in our
database and export it to a chess engine or website, such as
Chess.com, to analyze it. In this way, casual players using
our system will be able to learn more and improve their
understanding of chess.

A competing technology is the new product ChessUp.
It is also a chess board that can detect moves on it, record
games and store them in a database, and find legal moves
for the current board state. It also has additional features,
such as an automatic chess clock that switches when the

board detects a piece has moved, and the ability to play on-
line or against an AI by highlighting the opponent’s moves
on the board. The main advantage of our system over Ches-
sUp is cost - ChessUp is $400, while our prototype alone
will likely cost under $500. At scale, our system would
be significantly less expensive. Another advantage of our
system is that it aims to be usable for professional play in
tournaments. The ChessUp board features lights under the
squares and built-in Al assistance, which means it will not
be approved for tournament use.

2 USE-CASE REQUIREMENTS

Our requirements are centered around the user experi-
ence while using the system:

e The system will record notation with 100% accuracy.
If the system does not perfectly record notation, it
will not be viewed as an improvement to the cur-
rent standard of human notation in professional play.
To accomplish this, the system will check the legal-
ity of each move to ensure that illegal moves are not
recorded.

e The system will take 300ms or less from the time a
move is made (signaled by a button pressed on the
board) to the system’s response of the move’s legal-
ity (with red or green LEDs on the board). This is
around human reaction time, so the system will not
be so slow that it will noticeably impede the pace of
the user’s game.

e The system will provide 10 hours of battery life on a
single charge. This is long enough for a full day of
tournament use between charges.

e The system will store the most recent 10 games for
each user. Users will be able to access these games
with an account on the system’s website.

e The system will translate completed games into ex-
portable PGNs, which can be downloaded or copied
from the website and imported into chess engines or
websites such as Chess.com for analysis.

3 ARCHITECTURE AND PRIN-
CIPLE OF OPERATION

Chess Board

We will have chess board style top layer for our design
made from acrylic. This will have a chess board pattern

3.1

18-500 Design Project Report: BO Seamless Autonotator - 14 October 2022

Page 2 of 10

engraved on it so the user can play a regular chess game on
it. Underneath the top layer, we will have a printed circuit
board that contains all of our in-board electronics. Fig. 1
demonstrates the layer stackup of our design.

Sensor _Magnet
1 in Piece

Chess Board

Printed Circuit Board

Figure 1: A cross section of the chess board, showing the
PCB and sensor beneath the physical board.

3.2 Sensing

In order for our autonotation system to function, our
chess board system will need to sense the color and loca-
tion of every piece on the board. To accomplish this, all
of our chess pieces will have magnets in the base. White
pieces will have the magnet oriented in one direction while
the black pieces will have the magnet flipped to create the
opposite polarity of magnetic field. The difference in mag-
netic field will be sensed by hall effect sensors within the
chess board.

3.3 Hardware

Fig. 2 demonstrates our hardware structure. Since the
chess board must sense magnetic fields, there will be a
printed circuit board underneath the top layer that houses
hall effect sensors that can sense magnetic fields. This PCB
will have one sensor per square, yielding 64 total sensors for
the chess board. These sensors will be grouped in 8 sets of
8 to allow for convenient 8:1 multiplexing for each column
of the board into an ADC. This ADC will communicate
with an RPi so the RPi can gather the board state. In
addition to the sensing, this PCB will also contain holders
for batteries, power regulation, and the user interface. The
power regulation and batteries will allow the board to not
be tethered to an outlet as well as last a full day of tour-
nament play per our requirements. The final aspect of the
hardware is the user interface. This consists of a button
and two LEDs for each player. These buttons and LEDs
are connected to the RPi to allow the user to interact with
the system.

Hardware
SPI GPIO
Raspberry Pi
8-Channel ADC 3 Wires: Mux
ADC088S052CIMT Select Lines
User Interface
2 Buttons and 4 LEDs
Analog Signal ey
8:1 Multiplexer
TMUX1208PWR
s D)
3.3V Regulation
I bl Sl LLPZS%SRIMS-SB
J
Hall Effect KI\
Sensor x8 5V Regulation

LM2576S-5.0
E 8
- Sensors 5A

Hall Effect
Sensor

Fuse

2s4p

Samsung 30Q
18650 Cells

Chess Board

Figure 2: This same figure is placed spanning both columns
(actually spanning 0.75 of the two columns).

3.4 Legality Check

A legality check program will run on the RP. The pro-
gram will keep track of the current board state, and when
a player makes a move, it will check if the move is legal
for the current board state. If the move is legal, a green
LED will light up on the board to tell the players that the
move is legal and it is the next player’s turn. If the move
is illegal, a red LED will light up to tell the players that
the move is illegal so the same player must make a different
move. Legal moves will be forwarded to the website and
database backend program to record the game.

3.5 Server, Website, and Database

The website will have features such as individual user
login (and registration), the ability to view current games,
and the ability to view past games. Furthermore, users
should be able to upload their past games to websites such
as chess.com for further analysis. The website will store
all data inside of the database, which will hold the user
login data for each user and the notation of their previous
games. Altogether, the website should consistently refresh
to show the user notation updates that are occurring in
their current chess game (which should send data to the
website).

18-500 Design Project Report: BO Seamless Autonotator - 14 October 2022

Page 3 of 10

4 DESIGN REQUIREMENTS

The following design requirements are related to the
use-case requirements that are outlined in Section 2. The
system should record notation with 100% accuracy, so the
sensors must be able to differentiate between the presence
of a white piece, black piece, or no piece on each square
with 100% accuracy. The software must be able to deter-
mine which piece was moved with 100% accuracy based on
the sensor output. The software must also be able to deter-
mine the legality of the move played with 100% accuracy
to ensure that illegal moves are not recorded.

The system must take 300ms or less from the time a
move is made to the system’s response of the move’s legal-
ity. This process involves multiple subsystems and there-
fore the 300ms requirement is a limit on the sum of the
latency of several steps in the process. To ensure that the
entire process takes 300ms or less, we created latency re-
quirements for each step. These steps and requirements are:
receiving the user button press input in firmware (20ms),
collecting the sensor data (30ms), translating the sensor
data into a move in software (40ms), checking the legality
of that move in software (30ms), and returning the result
of that legality check by illuminating a green LED or a red
LED (20ms). The latency requirements for each step are
slightly pessimistic, and even then they only sum to 140ms
in total. If the requirement for any individual step can-
not be met due to some unforeseen factor that we failed
to consider when creating these requirements, the process
would still likely take under 300ms because there is 160ms
of slack.

The system should have enough battery power to func-
tion for 10 hours on a single charge. We would like our
system to be useful in a tournament setting in addition to
a casual setting. A day of tournament play could consist of
up to 10 hours of playing time, so our board would need to
last at least this full 10 hours to be useful for a tournament.

Lastly, we want the system to provide opportunities
for the user to replay past games in the future and will
therefore need a database that allows each user to store
and access at least 10 games worth of notation. Finally,
since much of this tool should be used for analysis, the
user should be able to export the games in a custom PGN
format (the input format accepted by Chess.com) such that
they can use the extensive analysis resources on Chess.com
for analysis.

5 DESIGN TRADE STUDIES

5.1 Sensor Choice

We narrowed down our sensor choice to two sensors from
Texas Instruments using the selection filters on Digikey.
The main remaining design choice was to decide between
a unipolar and a bipolar sensor. We decided on a bipolar
sensor since it is a more robust sensing architecture. It is
more robust because we can simply differentiate between

piece color by flipping magnets rather than having to dif-
ferentiate between two different magnet strengths. This
robustness is crucial due to our 100 percent accuracy re-
quirement.

5.2 Magnet Types

We tested several different strengths and sizes of mag-
nets using a small test circuit board with our sensors
and a 7mm spacer between the magnets and the sensors.
Our findings were that the smaller magnets, regardless of
strength, were not sensed accurately in that the sensor had
trouble differentiating between them, while the larger mag-
nets were sensed with reasonable accuracy. The larger di-
ameter magnets also would lead to less sensitivity in piece
placement on a chess board square compared to small mag-
nets. This was verified in our testing as seen in Fig. 3. The
chart lists the magnets we tested along with the error in mT
from the expected magnetic field strength at 7mm away.

Magnet Name Error (mT) Diameter (mm)
9149 -51.33316327 6.35
8019 -78.24633929 6.35
9144 -108.9707283 6.35
8004 -36.95306122 6.35
8176 -6.338968112 12.7
8005 -34 26718857 6.35

Figure 3: Data showing that larger diameter magnets have
a much smaller error in sensing.

5.3 ADC Choice

We chose our 8-bit, 8-channel ADC because we wanted
a single ADC that would efficiently sample from all 8 mul-
tiplexers. We chose an 8-bit device because we don’t need
more resolution, and changing to fewer bits does not give
us significant gains in cost.

5.4 PCB Sizing

We decided to fabricate the board in sections of two
columns instead of one single circuit board due to cost. A
full chess board for our specification is 18 in. in width and
height, this made fabrication costs prohibitively high for
our budget given the cost of our Bill of Materials. We also
wanted to have some money left over to buy extra parts if
needed towards the end. We also experimented with de-
creasing the board size, but even the minimum board size
was at the limit of what could we afford given the 600 dollar
budget.

5.5 Multiplexing Architecture

The multiplexing architecture was influenced by the
PCB sizing. Since the board is being fabricated in columns,

18-500 Design Project Report: BO Seamless Autonotator - 14 October 2022

Page 4 of 10

the board must be made of columns with a modular de-
sign such that each column can function alone as well as
together. Having 8:1 multiplexing and an 8-channel ADC
makes this easier to design from a circuits perspective. Hav-
ing an 8:1 multiplexer was also optimal in terms of balanc-
ing cost with modularity.

5.6 Batteries

We are sizing our batteries to last a full 10 hours, so we
want a compact solution that has a large capacity. Lithium-
ion cells satisfy both of these requirements better than lead-
acid, alkaline, or lithium-iron-phosphate. Using cylindrical
cells over lithium polymer cells also is easier because we
were able to find cell holders that are able to be soldered
directly to the PCB. This takes care of the mounting and
electrical connection aspects. Based on all of these factors
and our previous experience using 18650 cells, we will be
using these cells on our system.

5.7 Legality Check

The obvious way to check the legality of the most re-
cently played move is to identify what piece was moved,
check that the piece was moved to a position that its move-
ment ability allows it to move to (Rooks only move in
straight lines, King can only move one square, etc.), then
check the positions of other pieces on the board to deter-
mine that the move doesn’t break any other special rules.
Another method is to generate all possible legal moves from
the previous position, store them in a list, then check if
the most recently played move is in that list. The sec-
ond method clearly requires much more computation, as
the program will have to determine the legality of many
moves (typically 40-60 moves in complex positions) instead
of just the most recent move. However, a key advantage
of the second method is that the computation can begin
before the move is played, as it only needs the previous
position to start generating legal moves. After the move is
played, the first method will need to compute its legality,
while the second method only has to check it against a list.
With our design requirement of 30ms to check the legality
of the move in mind, we care much more about the latency
of legality checking after the move is played than how much
computation is done before, so we chose to implement in
the second method.

5.8 Legal Move Generation

Many programs exist to generate a list of legal moves
for a given chess position. One solution that was consid-
ered is Gigantua, the world’s fastest legal move generator.
Gigantua can generate over 500 thousand legal moves per
second, meaning the 40-60 moves we would need to gener-
ate for a single position would take around 0.1ms [1]. As
noted in the previous section, there is not a strict require-
ment on the latency for generating a list of legal moves,
because it occurs before the user has made their move. The

legal move list needs to be generated in the time between
each player making their moves, which we can reasonably
assume to be at least a second. In most games, players
will take several seconds, if not minutes to decide on their
next move, but it is possible to play very fast chess and we
want our system to support those types of games. Even
in very fast play, it should take at least a second for a
player to physically move a piece and press their button
to complete their move. Therefore, we do not need to se-
lect the fastest legal move generator, and can also consider
other factors: memory usage and ease of implementation.
Gigantua uses around 10MB of memory, as it achieves its
impressive speed through the use of large look-up tables.
We decided to use the legal move generation from Stock-
fish, a free and powerful chess engine. Stockfish generates
legal moves using structures called bitboards, which use 1
bit for each of the 64 squares on a chessboard to represent
piece positions, available moves, attacked squares and more
[2]. It performs operations on bitboards to generate legal
moves, which is slower than Gigantua, but still fast enough
for our purposes with much less memory usage. Stockfish
takes about 2ms to generate all the legal moves for a single
position. Stockfish is also easy to implement, as it is well-
documented and includes structs for positions and moves
that are useful in the rest of the legality check program.

5.9 Server Backend

We chose to use Django to build the server back-end for
the web application because it’s built in the REST frame-
work and because of its community support. REST frame-
work support is important because a portion of our project,
having data sent to a remote server, is done through a
REST framework. While there are many solutions to send-
ing notation from the chess board to the web server, since
our goal is to send small packets of data at discrete times,
a REST API was the least effort and most reliable to set

up.

Other Python backend frameworks such as Flask fell
short of the advantages that Django was able provide. In
Flask, it is much harder to set up a basic data storage sys-
tem to store moves. Furthermore, the documentation for
Flask falls short in comparison to the Django documenta-
tion in both depth and access. Django also allows for an
easily accessible upgrade from our initial SQLite database
(our designated database in our MVP) to a larger, more
flexible PostgreSQL database that is more suitable for pro-
duction. Lastly, the Django framework is preferred due to
the teams extensive background with the technology. Us-
ing a framework in which the team is already familiar is
preferable as that allows us to build a cohesive website in
a faster and more efficient manner (compared to learning a
new framework that does not offer our use case any bene-
fits).

18-500 Design Project Report: BO Seamless Autonotator - 14 October 2022

Page 5 of 10

6 SYSTEM IMPLEMENTATION

6.1 Mechanical Board

The chess board will be built from 2 layers as demon-
strated in Fig. 1. The bottom layer is the printed circuit
board that contains all of the sensing, power, and interface
with the RPi. Sensors will be spaced every 2 inches as seen
in Fig. 4 in order to create a normally-sized chess board.
Above this will be an acrylic piece that is engraved with a
chess board pattern. Below each engraved square will be
a hall effect sensor to sense the pieces. The circuit board
will have 3-D printed mounts to support itself and keep all
of the individual column boards together.

Figure 4: 2 Inch Spacing Between Sensors

6.2 Sensing Pathway

For our hall effect sensors, we will be using the DRV5055
from TI. The schematic for these sensors is seen in Fig. 5.
These sensors are bipolar and have a sensitivity of 12.5
mV/mT, with an output voltage of 2.5V when no mag-
netic field is applied. Each column of 8 sensors has a
dedicated 8:1 multiplexer. We chose the TMUX1208PWR.
Since there are 8 columns in the chess board, there are 8
multiplexers.

GND

doo e
] CLIOBIOSKASNNNC
s | w3
oc K]
; . VDD
— i MUX2 MUX2 [1.8] DD
MUX2 1 4| ¢ 8 ouT2 o
Moz 5 3L D | out2 Main[2B]
MUX23 6. 2 1 SELO
Mux2 47| 5 A s SELI
MUX2 5121 o ;\ 1 SEL
MUX2 6 11| 5
MUX2 710, | o7
MUX28 9| o Seleets can be 3V3 even though VDD is SV
5 of 8
i I I
24 EN
=1 N GND i

TMUX1208PWR =
GND

Figure 5: Multiplexer Schematic

These 8 multiplexers feed into an 8 channel ADC, the
ADCO088S052CIMT from TI. The schematic of all connec-
tions to the ADC are shown in Fig. 6. This ADC com-
municates to the Raspberry PI or SPI. The RPi then can
process this sensor data to compute legality and respond
to the user.

Repeat(Channel Select, 1,2)
ADC CH Select SchDoe

c3 —
L=
LT sak 7 SCLK.
ourt | op-9ull B2 v pour (£ { DOUT
OUT2 |5y o 4| AGND DIN) 7 DIN
NI OUT3 [ty = o5 N VD |3
n OUT4 [= =
o N Repeat(IN) outs [-2 e e i
= ouTe [0 —— =
oty = (G GND

ADCO8S052CIMI NOP]

Qg

Repeat(Tilter, 1, §)
Filter.SchDoc

 Repeal(PRE_FILTER) Repeat(FILTERED) [-

Figure 6: ADC Schematic

6.3 Power

Our battery will be a 2-series lithium ion battery. Our
expected maximum power use is about 8.2W, of which the
Raspberry Pi will use 5W. For 10 hours of play time, we
will therefore need 82 Watt-hours of power. Given that the
nominal voltage of our battery cells is 3.7V, we will need a
maximum of 11.1 Amp-hours of capacity. The capacity of
the Samsung 30Q is 3 A-h, so we will use 4 in parallel for a
capacity of 12 Amp-hours. Therefore, our battery will be
a 2-series, 4-parallel configuration.

6.4 Hardware User Interface

Our hardware user interface consists of one button
and two LEDs per user. The buttons in Fig. 7 are
tactile switches (TS15-1212-70-BK-160-SCR-D), and the
LEDs in Fig. 8 are green (LTL2T3TGK6) and red
(LTL2V3EV3JSR) to indicate legal and illegal moves. The
sensors, multiplexer, and ADC all run at 5V. The RP1i takes
in 5V, but uses a 3.3V logic level. This means that all GPIO
inputs and outputs to the RPi must not go above 3.3V.
Therefore, the 3.3V regulator on the chess board PCB is
used with the buttons to create a 0V or 3.3V input signal.

18-500 Design Project Report: BO Seamless Autonotator - 14 October 2022

Page 6 of 10

Player Buttons

Main[2A], Connectors[2B]<{_B1 [COM 1 NO._1

COM2 NO_2

21

Main[2B], Connectors[2B] {_B2 [

COM_1
COM_2 NO

o

2 ||t

Figure 7: Tactile Switch Interface Schematic

Legality Indicators
+5 +5
o))
R9
CR0603-TW-301ELF CR0603-JW-301ELF
300R 300R.
LED3
LTL2V3EV3ISR LTL2V3EV3JISR
A 2\
RED RED
¥ #-

-
_|';}Q1 PR 1 :}Qz
1 FonzoorTic 1 FonroooLTic
o

i | 5 L 15
N - GND o
RS RT
RMCF0603FT100R. RMCFO0603FT100R.
100R 100R
LED4 LED2
/ LTL2T3TGK6 D/ LTL2T3TGK6
‘/ GREEN / ‘GREEN

2
2

PIG 1 Q4
2NT7002LT1G

o
P26 1 B 1Q3
— $2N7002LT1G
o

|2 T3#T s

@
g
g
g

Figure 8: LED Control Schematic

For controlling illumination of the LEDs in Fig. 8, we
also had to work with a logic level change from the 3.3V of
the RPi to the 5V system on the board. This level change
was necessary because the forward voltage of one of the
LEDs is greater than 3.3V and the current limit of a RPi
GPIO port is 16 mA. We may not need to deliver more
current through an LED than 16 mA, but we did not want
needlessly to restrict ourselves. To solve these issues, the
outputs from the RPi control transistors (2N7002LT1G)

that connect the LEDs from 5V to ground. There are cur-
rent limiting resistors in series with the LEDs that can be
changed if we desire increased or decreased brightness while
testing the board.

6.5 PCB Interconnects

Since our circuit board is made from several identical
PCBs, they all need to be connected in order to share com-
mon signals. At the edges of each board, there are large
pads placed for all major power and signal nets. A subset
of these nets are shown in Fig 9. Jumpers (0 Ohm Resis-
tors) can be placed between all of these pads and the pads
on the neighboring boards to connect them all. Having all
of these boards connected means that power regulation and
communication with the RPi only need to happen on one
of the boards.

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

ONAOC D WON =
WONAC H» WWN =

Figure 9: Inter-PCB Jumper Pad Locations

6.6 Firmware

The firmware is the interface between the sensors on
the chess board and the software. The firmware will in-
terface with the ADC on the PCB over SPI. Data will be
received by the Raspberry Pi in a format designated by the
ADC. The data will then be processed into a format that
is convenient to use for the legality check.

6.7 Legality Check

The legality check program will be written in C++, as
it is one of the fastest and most efficient programming lan-
guages. It will implement the legal move generation from
the Stockfish chess engine. At the beginning of the game,
and after each legal move is played, the program generates
a list of every next legal move from the current position.
Once a move is played and sensor data for the move is
received, the program compares the new board state from
the sensors with the previous board state to determine what
piece was moved (source square and destination square). It
also checks that only one piece was moved, and the correct
color of piece was moved. Then, this new move is checked
against the already-generated list of legal moves for the
position. If the move is legal, the program will update the
state of the board, light up a green LED on the board and
begin generating the legal move list for the newly-updated
position. If the move is illegal, the program will throw out
the move, preserve the previous board state and already-
generated legal move list, and light up a red LED on the
board.

18-500 Design Project Report: BO Seamless Autonotator - 14 October 2022

Page 7 of 10

6.8 Server and Website

Our software infrastructure diagram is shown in Fig.
10. The website front end will use HTML and CSS to dis-
play the proper information, and use AJAX (asynchronous
javascript) to handle the consistent update logic. We chose
to use HTML and CSS for the front end visuals of the
website because not only are they industry standard, but
they also have a large existing infrastructure. Tools such
as Bootstrap allow us to build a better, visually appealing,
themed website without too much additional integration
work.

Software
Visual Display /
Website
Raspberry Pi Server/Backend
Legality . '
Checker Visual Display / USER
T g Website | | INTERFACE

RESTAPI ———> Server 4|

Figure 10: Software Design Flow

The backend of the server is written using the Django
framework and will be modeled using the MVC design (the
model, view, and controller) design. This separates the
code that loads the HTML, the code that deals with the
database, and the code that handles the back end of the
server.

It should be noted that the Django framework is written
in the Python language, which, due to being an interpreted
language, is not the most latency conscious. However, the
main goals in mind when building the website are to prior-
itize being robust and usable.

We can clearly see the MVC in play above as the server
backend controls the Visual Display that the user is able to
interact with. Furthermore, the database holds the chess
notation information that allows for the user to upload
their previous games to an external analysis source (Ex.
Chess.com). Finally, the user can view the current game
being played on the web application, which receives that
information through the RPi (located on the chess board
itself) which communicates to the backend of the server
through the REST API.

6.9 Database

For the MVP, we will choose to use a local SQLlite
database. While this initial database doesn’t have great
scalability, it works great for a few users and under <10000
total games stored. This is due to the built in nature of the
SQLIlite database into the Django framework: it takes lit-
tle time to set up, and works well for a smaller production

environment. Using a database with a SQL protocol allows
for easy query access, which is a primary usage of our web
application (say that a user wanted to query the database
for all games which they played at the black position before
2022).

7 TEST & VALIDATION

7.1 Accuracy Tests

To test accuracy, we will first make sure that chess
pieces that are placed off center (up to 37.5% or 3/8” off
center) are still detectable with perfect accuracy. Next,
we will play through a game of chess at varying speeds to
make sure that the accuracy still holds when a faster game
is played. If these tests fail, we will look at using larger or
stronger magnets to make the sensing even more robust.

7.2 Latency Tests

To test the latency of the legality check, we will run
the board through 3 games and use high frame rate video
to time the latency from each move being made (user
pushes button) to the legality output (LED on board lights
up). Each game will be around 40 moves for both black
and white, and the moves will be selected to create high-
complexity positions, where the legality check will be slower
due to a higher number of legal moves.

7.3 Power Tests

To test power usage, we will first measure power used
at idle and and peak computation of the Raspberry Pi and
sensors using a power supply in place of our batteries. We
will then play a game of chess for at least 15 minutes and
will compare the state of charge of the batteries before and
after to see how much of the battery capacity had been
used. This usage will be extrapolated to 10 hours. If more
battery capacity is required, we have space on the bottom
of the board to add it.

7.4 User Input Tests

To test the overall usability of the system, we will have
a suite of user tests. Users will be asked to play a set of 3
games:

e One Blitz Game (with a time control between 3-5
minutes)

e One Rapid Game (with a time control between 10-15
minutes)

e One longer-paced game (with a time control between
30-60 minutes)

Between the second and third games, we will ask the users
to attempt to register and login to the web application.
They will then attempt to view their past games, and pull

18-500 Design Project Report: BO Seamless Autonotator - 14 October 2022

Page 8 of 10

up a continuously updating view for their current game. Fi-
nally, after they finish playing the third (and longest game),
we will ask a series of questions that measure various com-
ponents of usability.

e Latency

— ”Did you feel any noticeable lag between press-
ing the clock and the legality checker?”

e Intuitiveness

— ”Did you find the website to be confusing or un-
intuitive to use?”

e Normality

— ”Did the experience feel irregular, or differ from
a normal over-the-board chess game?”

The goal of the above set of questions is to measure
whether the technology that we built into the chess board
fundamentally changed the usability and playing experi-
ence that a normal player might have. We want to in-
centivize players to use our chess board because it reflects
normal usability, but also has many of the initial features
that we attempted to implement (automatic notation, chess
database). Users will be periodically tested during the im-
plementation phase of the project. Finally, a measure of
success (after testing 6 different users) will be to receive
less than 2 "No” responses on the total of 18 total ques-
tions asked (16/18).

8 PROJECT MANAGEMENT
8.1 Schedule

The schedule in Fig 11 is organized to accommodate
the individual contributions of each teammate. Each team-
mate’s role in the project is, for the most part, individual.
The firmware, hardware, and software of the final chess
board can be built in parallel, and there are multiple weeks
allotted at the end of the schedule for integration among
the three parts. Furthermore, there is a break week allotted
for fall break to allow for flexibility: if team members feel
that they are ahead of schedule, they can take the break
accordingly, and if team members feel that they are behind
schedule, they can use the week to catch up on remaining
work. Lastly, proper time is allotted for tests and valida-
tion (most crucial for hardware), shipping, and the physical
construction of the board.

8.2 Team Member Responsibilities

Vikram is responsible for the hardware portion of the
project. This includes the mechanical chess board design
and the circuits and PCB design. Patrick is responsible
for the firmware interface with the hardware as well as the
legality check and state machine logic of the system. Ryan
is responsible for the software portion of the project that

includes the the server, database, and web interface as well
as the RPi’s interface with the server. As individual por-
tions of the project are completed, we begin the integration
process. Integration will include making the hardware and
RPi work together and then making the whole hardware
and firmware system work with the software. The final
step that will be done together is testing and validating
our system and making any necessary revisions to any as-
pect of the design.

We ensure that all parts are as parallelizable as possi-
ble, by building interfaces that act between each individual
part. Vikram’s work will interact with Patrick’s firmware,
and Patrick’s firmware will interact with Ryan’s software.
However, significant progress can be completed as the ma-
jority of the work can be done without extensive knowledge
of the interfaces.

8.3 Bill of Materials and Budget

Our bill of materials in Fig. 12 consists of all of the PCB
components, PCBs, acrylic sheets, and the chess pieces.
The total cost comes out to $301.95. We are comfortably
within the $600 budget, and we have enough money left to
buy a second revision of the PCBs or more spare compo-
nents if absolutely necessary. The breakdown of the BOM
is in Fig. 12.

8.4 Risk Mitigation Plans

The largest risk from the hardware perspective is that
the PCB does not work as expected. To mitigate some
of this risk, the board is large enough and only 2 layers.
This means manual alterations to the board are possible,
but not necessarily easy. Another solution is that we could
order a second revision of the PCB and reuse the existing
bill of materials that we already bought. A benefit of the
modular PCB design is that the cost allows for a second
revision while staying under the 600 dollar budget. Stock
is no longer a risk since we have purchased all of our PCB
components and nothing was backordered.

The largest risks from software include packet loss. It
is important to note that while the code can be tested,
and the website can be made hard to bypass, it is possible
that information from the RPi might be lost in transit or
corrupted while being transferred to the website. We can
manage this data loss by creating a checksum, or a sec-
ondary verification that the move sent did not corrupt in
transit. This checksum works by checking to see whether
the given information packet details a valid board state,
and can be derived from a hash of the board. This cre-
ates a quick and reliable method of double checking the
validity of an information packet sent from the RPi. In the
case that an information packet sent from the RPi is valid,
the website will send a confirmation to the RPi that the
proper information is received. If the confirmation is not
received within a given time period, the RPi will send the
information once more.

18-500 Design Project Report: BO Seamless Autonotator - 14 October 2022

Page 9 of 10

Task

Chess Board (Circuits and Hardware)
Sensor Research and Validation

PCB Schematic

PCB Layout and Ordering

PCB Assembly

PCB Hardware Tests and validation
Making/Modifying Physical Board

Firmware and State Logic
Legal Move Generation
Legality Check

Notation Legality Check
Interface with Hardware
Interface with Software
Output State Logic

Software and Web

Creating Chess Class and Object Oriented Structure

Test Python vs G+ Latency Requirements

Create Website

Create Autonotater and interface Autonotater with Website
Allow Website to Read and Write from Database

Allow Website to export notation to chess.com

Create basic analysis tools within website (past games)

Integration

Test Data Collection with PCB
Testing Interface with RPi
Testing Web Interface

Validating Final Product
Hardware Testing-Power, Accuracy, Latency

[

Start of Week 8/20/2021 9/5/2022 9/12/2022 9/19/2022|9/26/2022| 10/3/2022 10/10/2022 10/17/2022 10/24/2022 10/31/2022 11/7/2022 11/14/2022 11/21/2022 11/28/2022 12/5/2022

User Testing
Slack
Figure 11: Gantt Chart

Description Vendor Part Number Manufacturer Quantity Unit Price Item Total
MAGNET 0.5"DIA X 0.25"H CYL 469-1050-ND Radial Magnets, Inc. 16 S 1.58 § 25.22
510 Resistor 0603 118-CROG03-FX-51R0OELFCT-ND Bourns Inc. 1 S 0.10 S 0.10
Ratiometric Hall Effect Sesnsor 296-DRV5055Z4QDBZRCT-ND Texas Instruments 67 5 1.08 5§ 72.31
10kQ Resistor 0603 CRTO603-BY-1002ELFCT-ND Bourns Inc. 2 s 038 s 0.76
0603 Jumper RMCFO603ZTORDOCT-ND Stackpole Electronics 11 S 001 § 0.14
Schottky Diode 20V 3A B320A-FDICT-ND Diodes Incorporated 2 S 042 § 0.84
750 Resistor 0603 RNCPOG03FTD75ROCT-ND Stackpole Electronics 2 S 010 S 0.20
3000 Resistor 0603 CROB03-1W-301ELFCT-ND Bourns Inc. 3 s 0.10 S 0.30
1300 Resistor 0603 CROB03-FX-1300ELFCT-ND Bourns Inc. 2 S 010 S 0.20
1k0) Resistor 0603 CRO603-JW-102ELFCT-ND Bourns Inc. 8 5 010 S 0.80
1000 Resistor 0603 RMCFO603FT100RCT-ND Stackpole Electronics 3 s 0.10 S 0.30
1206 Jumper 2019-RK73Z2BTTDCT-ND KOA Speer 68 S 0.05 § 3.20
Tactile Switch 179-TS151212701605CR CUI Devices 2 s 069 S 1.38
Slide Switch 118-5M515102AMBQES Dailywell 1 S 317 § 3.17
N-Channel MOSFET 863-2N7002LT1G onsemi 6 s 027 S 1.62
10 nF Ceramic Capacitor 0603 810-C1608X7RZA103M TDK 2 S 010 5 0.20
100 nF Ceramic Capacitor 0603 187-CL10B104KBSNNNC Samsung Electro-Mechanics 14 S 0.02 § 0.21
Red Led Through-Hole 859-LTL2V3EV3ISR Lite-On 2 S 047 5 0.94
Green Led Through-Hole 859-LTL2T3TGKG Lite-On 2 S 1.29 S 258
3.3V 150 mA Linear Regulator 926-2985AIM53.3/NOPB Texas Instruments 2 S 1.14 S 2.28
5V 3A Switching Regulator 926-LM25765-50 Texas Instruments 1 S 6.27 S 6.27
8 Channel ADC 926-AD088S052CIMTNPB Texas Instruments 2 S 445 S 8.90
8:1 Analog Multiplexer 595-TMUX1208PWR Texas Instruments 10 S 087 § 8.68
Green SMD LED Indicator 859-LTST-C190GKT Lite-On 1 s 024 S 0.24
2.2 uF Ceramic Capacitor 0603 187-CL10AZ225K08NNNC Samsung Electro-Mechanics 4 S 010 5 0.40
1 uF Ceramic Capacitor 0603 187-CL10B10SKASNNNC Samsung Electro-Mechanics 12 S 0.02 § 0.28
68 uH Power Indudctor 810-CLF12577NIT680MD TDK 1 3 200 S 2.00
Dual 18650 Battery Holder 534-1049 Keystone Electronics 2 s 6.37 S 12.74
Blue SMD LED Indicator 859-LTSTC193TBKTSA Lite-On 1 3 030 S 0.30
6 position right-angle 100 mil header 575-8292200620 Mill-Max 3 S 692 § 20.76
32V 5A SMD Fuse 594-MFUOG03FFO5000P1 Vishay 4 3 027 S 1.08
100 uF Electrolytic Capacitor 647-UCQ1E101MCL1GS Nichicon 4 5 1.29 § 5.16
Custom PCBs N/A PCBWay 5 s 16.68 S 83.40
16" by 16" 1/4' Acrylic N/A Professional Plastics 1 S 2500 § 25.00
Chess Pieces N/A The Chess Store 1 s 10.00 S 10.00
Total S 301.95

Figure 12

: Bill of Materials

18-500 Design Project Report: BO Seamless Autonotator - 14 October 2022

Page 10 of 10

9 RELATED WORK

As mentioned in the Introduction, a similar product is
ChessUp. It is also a custom chess board that can detect
moves made on it. It includes a built-in chess engine, which
finds possible moves and can recommend the strongest ones
to the user. While it has some features that our product
does not, the cost of our board is lower. Given the allo-
cated time for this project, the scope of our design is more
reasonable.

10 SUMMARY

The Chess Autonotator system is an all-in-one product
that offers the familiar look and feel of a standard chess set
with the conveniences of automatic game notation, legality
checking, and a website to review past games and export
them for analysis. The notation and legality checking will
be too fast to even be noticeable by most players, and will
be perfectly accurate. Foreseeable challenges in the remain-
ing stages of the project are assembling and validating the
PCB, writing the firmware to control the sensors, and ma-
chining the chess board and a set of pieces with our magnets
securely held within them. We are confident that we will
overcome these challenges, and that the final system will
meet all of our use-case requirements.

Glossary of Acronyms

Include an alphabetized list of acronyms if you have lots
of these included in your document. Otherwise define the
acronyms inline.

e RPi — Raspberry Pi
e PCB - Printed Circuit Board
HE - Hall Effect

API - Application Programming Interface
e ADC - Analog to Digital Converter
e SPI - Serial Peripheral Interface

e GPIO - General Purpose Input Output

References

[1] Daniel Infithr. Gigantua. URL: https://github.com/
Gigantua/Gigantua. (accessed: 10.14.2022).

[2] J. Kiiski T. Romstad M. Costalba and the Stockfish
community (https://github.com/official stockfish/-
Stockfish /blob/master/AUTHORS). Stockfish. URL:
https : / / github . com / official - stockfish /
Stockfish/. (accessed: 10.14.2022).

