Team BO: Seamless Autonotator

Ryan Guan, Patrick Joyce, Vikram Marmer

Problem Statement/Use Case

- Notation is the way chess moves are recorded (Nc3, Bxf6)
- Notation is useful
 - Legality check in the case of a dispute
 - Reviewing previous chess games for improvement
- But, fraught with errors and time-consuming
 - Handwriting
 - Forgetting to notate
- Solution: Create a system that makes it easier for chess players to notate
 - Applicable to both professional and casual players
 - Would allow casual players to improve more

Requirements-Accuracy and Latency

- Accurately record notation
 - Aiming for **100%** accuracy
 - If inaccurate, the whole system fails
 - Inaccurate notation could result in a false positive for an inaccurate board state
- Latency from move input to legality LED response
 - **300ms** or less (rough human reaction time)
 - Important that lag is not detected through user testing

Requirements-Piece Detection

• Distinguish between white piece, black piece or no piece on a square.

- We know the starting position.
- We only need to distinguish between empty squares, white pieces, and black pieces.
- Then we can identify any move of one piece at a time.

Requirements-User Experience

- The board should be standalone and not need a camera or wall outlet
 - Camera/Wall outlet = more setup hassle and logistical issues
 - 10 hours of play time = \sim 1 day of high level tournament play
- Display information to the website with less than (2 seconds) of delay
- Access the previous 10 games (stored in the database) through the website
- Exportable to Chess.com

Technical Challenges

- Distinguishing between a white piece and a black piece
- Latency in differentiating pieces and legality checking should be lower than detectable human reaction time
 - \circ \quad Data collection from sensors, legality check, state logic
- Keep track of a correct board state
- Allow the board to be conveniently powered in a casual or competition setting

Solution Approach

- Use ratiometric Hall-effect sensors for piece detection
 - Strength of output varies with strength of magnetic field.
 - Moderate strength magnets in white pieces, high strength magnets in black.
- Use arduino to convert analog sensor output to digital.
 - \circ ~ Will use the internal ADC or I^2C or SPI to communicate with sensors
 - Arduino will take under 15 ms to acquire and send all data
 - 2x safety factor
 - Data will be at RPi in under 30 ms
 - 90% of 300ms goal time still left for software

Solution Approach

- C++ Legality check program stores current board state in matrix.
 - Generates list of all legal moves and stores them in notation array
 - Translate new board state to move notation and check against legal moves.
 - Return result to user via green/red LED on board.
- State machine latency
 - Legal moves are pre-generated, reducing latency from user's perspective.
 - Receiving, translating, and checking a move should take less than 0.1 second with RPi 4's 1.5GHz clock.
- Use Python to write/read from databases and Web Application Backend

Testing, Verification, Metrics

- Two types of user-testing
 - Initial/Informal User Testing
 - Used for testing quantitative metrics such as legality checking latency and human reaction time
 - Formal User Testing
 - Evaluate success in reducing latency
 - "Do you feel any lag between playing your move and noticing the legality checker?
 - "On a scale of 1-5 does the experience feel cohesive and streamlined"
 - Test various speeds of gameplay for accuracy
- Quantitative Tests
 - Accuracy of Board State & Piece Detection
 - Latency Tests
 - Data collection, user input to visual output and website update
 - Power Use
 - At idle and at peak computation

Schedule

Task	Start of Week	8/29/2022	9/5/2022 9/12/	2022 9/19/2023	2 9/26/2022	10/3/2022	10/10/2022	10/17/2022	10/24/2022	10/31/2022	11/7/2022	11/14/2022 11	/21/2022	11/28/2022	12/5/202
Chess Board (Circuits and Hardware)															
Sensor Research and Validation															
PCB Schematic															
PCB Layout and Ordering															
PCB Assembly															
PCB Hardware Tests and Validation															
Making/Modifying Physical Board															
Firmware and State Logic															
Legal Move Generation															
Legality Check															
Notation Legality Check															
Interface with Hardware															
Interface with Software															
Output State Logic															
Software and Web															
Creating Chess Class and Object Oriented Structure															
Test Python vs C++ Latency Requirements															
Create Website															
Create Autonotater and interface Autonotater with Websit	e														
Allow Website to Read and Write from Database															
Allow Website to export notation to chess.com															
Create basic analysis tools within website (past games)															
Integration															
Test Data Collection with PCB															
Testing Interface with RPi															
Testing Web Interface															
Validating Final Product															
Hardware Testing-Power, Accuracy, Latency															
User Testing															
Slack															

Division of Tasks

Vikram

• Sensor choice, Circuit & PCB design, assembly, debugging, validation

Patrick

• Magnet Research, Firmware, interface Arduino with RPi, legality check, control/state transition logic and outputs

Ryan

• Web Application (HTML & CSS, JS, Server), database, auto-notation

All Group Members

• Chess board mechanical, Integration Work

Conclusion

- Autonotator (MVP)
 - Detect and record all previously played moves
 - Avoid notating illegal moves
 - Display legality through red and green LED
 - Basic website that displays notation of current game
- ECE Areas: Software and Circuits

