Use Case/Application

- RecycleBot will autonomously:
 - Detect, pick up and store littered bottles
 - Avoid potential non-bottle obstacles
- Key Task: locate and pick up **3 water bottles** within a 1.5 meter radius of the robot
- Changes:
 - Decided to pivot to standard size empty bottles at different orientations and crush levels

Quantitative Use-Case Requirements

- Algorithm correctly identifies the following with less than 10% false positive rate:
 - 90% water bottles
 - 80% obstacles
- Robot avoids obstacles with 80% success
- Picks up and stores detected bottles with 70% success
- Takes less than 1.25 minutes to pick up 3 items distributed

within a 1.5 meter radius with no obstacles

Solution Approach

- iRobot Augmentation
 - Intake mechanism + storage structure
- Object Detection ML model
 - Pre-labeled bottle dataset to train model; identifies bottle in field of vision
- Navigation LiDAR and iRobot control
 - LiDAR measures distance between robot and detected bottle
 - Object tracking determines when object is centered
 - iRobot Open Interface for actuator command
- Obstacle Avoidance LiDAR and multi-object tracking
 - Track all objects when moving forward
 - Turn to avoid when tracked obstacle is closer than target

Complete Solution

System Specification - Block Diagram

Test, Verification and Validation

- Environment- Techspark
 - Objects randomly placed within a 1.5m radius
 - Objects at least .45m apart from each other
 - Concrete background
 - Fixed lighting
- Test cases
 - 3 bottles
 - 3 bottles + 3 obstacles
- For each test case, we will compare the average of 10 runs (1 run = completion of one 1.5m radius) with our metrics

Testing Specifications and Performance

Testing	Metric Goals	Current Robot Performance (out of 10 trials)
3 bottles	 90% detection accuracy 70% pickup success < 1.25 min (when 100% detection) < 10% false positive rate 	 83% detection accuracy 66% pickup success 1.95 min average (when 100% detection) 0% false positives
3 bottles + 3 obstacles	 90% bottle detection accuracy 80% obstacle detection accuracy 80% obstacle avoidance success 70% pickup success 	- To be tested

Robot/Hardware Design Trade-offs

Requirement	Our Solution
Motor to power intake: Needed to have enough RPM to go up ramp into storage	CIM Motor: 12V DC Motor with Free Speed of 5310 RPM and 2.7 AMPs
Battery to power motor: Needed to be 12V and provide enough current for the motor to draw	18V Milwaukee Drill Battery 3 AMPs with 18V to 12V Step Down Converter
Motor driver: Needed to be able to handle large amounts of current	Cytron Motor Driver: 30 Amps 5V-30V DC Motor Driver, PWM and DIR pins
Microcontroller to control motor driver: Needed to be compatible with motor driver	Arduino Uno: Compatible with Cytron motor driver and Cytron motor driver Arduino library
Robot Movement and Weight Control: Needed to be able to move smoothly with iRobot Controls	Caster Wheels, Placement of Components: Added Batteries to back of robot

Software Design Trade-offs

Requirement	Our Solution
Obstacle avoidance: Needed to avoid picking up non-bottle objects	Second inference stage to see if obstacles appear after rotation Trade-off between time and accuracy
Thorough target search: Rotating 6 times wasn't thorough enough to search the 1.5 meter radius	More comprehensive search rotation and quantity to turn 8 times and rotate 45 degrees each Trade-off between time and accuracy

Project Management

			Wik 7									Wk 9					Wk 10			Wk 11			Wk 12						1	Wk 13	
TASKS TASK OWNER	10/24	10/25	10/26	10/27	10/28	10/31	11/1	11/2	11/3	11/4	11/7	11/8	11/9	11/10	11/11	11/14	11/15 1	1/16 11/17	11/18	11/21	11/22	11/23	11/24	11/25	11/28	11/29	11/30	12/1 1	2/2	12/5	
Deadlines																															
Project proposal presentation	Serena																														
Design presentation	Mae																														
Final presentation	Meghana																														
Object Detection and Identification																															
Dataset generation	Mae																														
Get model running with initial dataset	Mae																														
Train model to 90% test accuracy	Mae																														
Integrate ML model into Jetson/detection process	Mae/Serena																														
Slack time	All																														
Robot Construction and Software														1																	
Research design implementations for using iRobot	Meghana																														
Research and design intake and storage	Meghana																														
Order Necessary Parts Materials	All																														
Robot intake CAD and construction	Meghana																														
Setting up Jetson to iRobot communication	Meghana																														
Controls to allow robot to intake items	Meghana																														
Robot driving and intake testing	All																														
Slack time	All																														
Navigation and Integration																															
Set up Jetson and Intel Realsense	Serena																														
Distance perception with LiDAR	Serena																														
Object tracking algorithm	Serena																														
Path and angle calculation to motor movement	Serena																														
Write logic for entire software system	Mae																														
Put entire software system together	Mae/Serena																														
Completely merge software and hardware systems	All																														
Slack time	All																														
Final testing																															
Whole system to detect and pick up 1 water bottle	All																														
Test system logic for picking up multiple bottles	All																														
Test fixed bottle environment	All																														
Test varied bottle environment	All																														
Slack time	All																														

TODO: • Mae

- Implement ideas to make pipeline faster
- Meghana
 - Testing
- Serena
 - Write interrupt logic
 - Small changes to improve accuracy

Conclusion

- Key challenges
 - Testing Metrics
 - Speed and Accuracy
 - Weight and Movement of Robot
 - Added caster wheels
 - Placement of components
 - Drift right due to heavy motor
- Lesson learned
 - Design and Integration of components
 - Don't underestimate setup time

