
1
18-500 Final Project Report: Team A4 RecycleBot 12/17/2022

RecycleBot

Meghana Keeta, Serena Ying, Mae Zhang
Department of Electrical and Computer Engineering, Carnegie Mellon University

{mkeeta, sjying, maez}@andrew.cmu.edu

Abstract

Plastic waste has been a major focus of environmental
awareness in recent years. In order to combat this issue, we
have designed a RecycleBot to autonomously detect and
collect plastic bottles into its storage for later recycling.
RecycleBot uses computer vision and machine learning to
efficiently detect, navigate to, and collect plastic bottles into
its storage for later recycling. It should be able to collect
plastic bottles of various shapes, orientations, and sizes and
also avoid obstacles in its path. RecycleBot not only removes
the need for people to manually pick up littered bottles, but
also improves the rate of recycling such items, contributing to
the effort to preserve our planet.

Index Terms

Index Terms— OpenCV, Computer Vision Object
Tracking, Image Processing, iRobot Create 2, LiDAR
Depth Sensing, Machine Learning for Object Detection,
Transfer Learning, Jetson Xavier NX, Recycling

I. INTRODUCTION

22 billion plastic water bottles get thrown away rather than
recycled every year in the US [1]. Furthermore, more than 60
million plastic water bottles are thrown away each day, many
of which end up as litter in streets, parks, and waterways [2]. It
is evident that plastic bottles are a critical source of litter in the
US, which means that the endeavor to reduce the litter in
public areas is high effort in terms of resources and manpower.

That’s where RecycleBot comes in— using a trained
machine learning model combined with computer vision to
detect plastic water bottles, it is an iRobot-based system that
provides a solution to plastic waste in our environment.
RecycleBot autonomously travels within an area to
systematically scan for and detect plastic water bottles in an
environment with litter, collecting the bottles in its internal
storage. Users of RecycleBot will benefit twofold from its
autonomous bottle collection functionality. On one hand, it
removes the need for human labor to reduce the amount of
plastic litter, and on the other, automates the process of sorting
between recyclable plastic water bottles and other types of
non-water bottle and non-recyclable waste. Hence, this

solution will not only reduce the amount of resources
dedicated towards managing plastic bottle litter, but also
improve the rate of recycling such items, for both economic
and environmental gain.

Research into competing and adjacent technologies reveals
that automated recycling systems are available, however,
many aim to automate the sorting process between recycling
and trash [3], which still requires humans to deposit their trash
into designated areas. Other mobile cleaning robot solutions
include those meant to collect litter in local waterways [4] or
litter on beaches [5]. Beyond the location difference between
such robots and RecycleBot, which is built to operate indoors
or on outdoor hard, concrete surfaces, these robots are more
focused on collecting trash rather than collecting only
recyclable items which can all go into recycling without
additional sorting.

II. USE-CASE REQUIREMENTS

To ensure RecycleBot meets its intended goal to efficiently
detect and collect plastic bottles for recycling, as well as to
reflect the updates we have made throughout the duration of
this project, we have the following final use case
requirements.

RecycleBot must be fully autonomous and operate indoors
on smooth, hard terrain. The RecycleBot being fully
autonomous is crucial to its success, as we are providing a
solution to reduce the manpower required to clean up public
spaces, many of which are concrete or paved. Our design is
meant for cleaning public places with hard terrain because it is
the most feasible and useful area of operation.

In order to collect bottles successfully, they will first need to
be identified in the environment. RecycleBot’s bottle detection
model must correctly detect the following items at the listed
accuracies, with less than a 10% false positive rate for each:

1) Standard size empty plastic water bottles at different
orientations and crush levels with 90% success rate.

2) Obstacles with 80% success rate.
Differing from our design report, we have redefined our use

case requirements to focus on all empty plastic bottles, as we
found that our bottle detection algorithm had more than
sufficient tolerance for different plastic bottle orientations and
states that it was most reasonable to consider all such bottles
as a single category. Obstacles are defined as anything in the

2
18-500 Final Project Report: Team A4 RecycleBot 12/17/2022

environment within a 1 meter radius of RecycleBot that is not
a bottle, specifically other commonly littered items such as
aluminum cans and plastic drink quarts, as well as glass
bottles, the three other items in our training dataset. These
classification accuracies will be tested in the real world
environment where there will be items scattered around the
RecycleBot within a 1 meter radius. We chose 90% accuracy
for our bottle detection because the detection model may
misclassify on instances where the bottle is too far away or
obscured by another item. We chose 80% accuracy for our
obstacle detection as the detection model may have difficulty
distinguishing between items which are a part of our trained
dataset and items which are just in RecycleBot’s surroundings
in our testing location in TechSpark.

Next, we require RecycleBot to avoid obstacles with a 80%
success rate. In the real world, we expect items that are not
bottles in the environment, so RecycleBot needs to be able to
successfully avoid bumping into or picking up obstacles that
are in its path. We have allowed for a margin of error due to
the fact that the robot may have complications picking up
accurate distance readings while operating at an efficient
speed. To account for the 20% of unavoided obstacles,
RecycleBot’s construction allows it to avoid accidentally
intaking items which do not match the approximate height of
our plastic water bottles, making our obstacle avoidance
success rate viable.

To confirm successful navigation and hardware mechanics
of the system, we require RecycleBot to pick up and store
detected plastic water bottles with a 70% success rate. This
tests the RecycleBot’s ability to successfully navigate to a
detected bottle and activate its intake to collect the object into
its internal storage area. We have allowed for a margin of
error due to the various sizes, shapes, and orientations of
bottles the intake is expected to pick up.

Finally, we require RecycleBot to be timely and efficient.
RecycleBot is required to take on average less than 1 minute
and 15 seconds to identify all 3 bottles distributed within a
1 meter radius and attempt to pick up as many as 3 of
those bottles with no obstacles present. To elaborate on the
quantitative details of this task, we referenced a real world use
case of RecycleBot to determine both the timing and the
search area. As RecycleBot is expected to be used on smooth
concrete, we chose a basketball court to be our test field, given
their relative ubiquity in public parks and likelihood to be
littered with plastic water bottles and other types of waste. For
our search area, since we want RecycleBot to search in
circular areas each run, eventually covering the entirety of the
basketball court, we had to consider the way that RecycleBot
would be able to navigate to a new point to center its search
area in between runs. The most logical way would be to utilize
GPS to pinpoint RecycleBot’s location and to calculate the
location for the new center point. Through research into GPS
accuracy limitations, we found that in practice, the best case
horizontal error of GPS assisted by the Wide Area
Augmentation System (WAAS) is 1 meter [6]. However, to
account for outdoor conditions where there is less visible sky

and thus a reduced accuracy of received location data from the
WAAS system of satellites, we assume a worst case horizontal
error of 2 meters. Thus, we want our robot to see a maximum
of 2 meters in any direction, which is why we chose a search
radius for this test of 1 meter. For our timing requirement, we
want RecycleBot to be able to clear an entire basketball court
in under two hours in order to avoid extreme light conditions
changes such as the sun setting affecting the visibility of the
robot, since many public parks in the US close near sunset and
would likely run RecycleBot near closing time. With a search
radius of 1 meter, RecycleBot would need to complete around
100 iterations to cover a basketball court. To complete its
searches in under two hours, it would need to finish each run
in 72 seconds on average. We have rounded this value up to 75
seconds, or 1 minute and 15 seconds, since we don’t expect to
see such a high density of water bottles on the court (3 bottles
in 1 m radius).

III. ARCHITECTURE AND/OR PRINCIPLE OF
OPERATION

Our system relies on computer vision and our tailored
machine learning model to detect and locate plastic bottles and
obstacles, then utilizes the LiDAR camera’s depth information
to send navigation commands to the iRobot and intake
mechanism. These system components, divided into our
software system and our hardware system, are outlined in
Figure 1.

A. Software System: Our software pipeline, found in
Figure 2, defines RecycleBot’s functionality. From the
environment, the RealSense LiDAR Camera sends a
color stream and a depth stream to the Jetson Xavier
NX, powered by a 12V Battery situated at the back of
the structure behind the iRobot, over USB to facilitate
the software pipeline, the heart of RecycleBot. The
software pipeline involves first performing inference
with our trained YOLOv5 machine learning model,
which generates a set of bounding boxes of bottles and
obstacles that are used in target selection. Once a
target has been selected based on the depth stream as
well as relative positioning, OpenCV object tracking is
used to begin and support our navigation calculations.
The navigation calculations include calculating the
duration and direction for the iRobot to turn to center
the target to the robot, and tracking the distance
between the robot and the target as well as the distance
between the robot and any close obstacles that need to
be avoided. These navigation commands are sent to
the iRobot over UART through a Python wrapper
library [18] and the Arduino Uno through USB which
controls the Cytron MD30C motor driver for the
intake mechanism once RecycleBot moves close
enough to the target to pick it up.

3
18-500 Final Project Report: Team A4 RecycleBot 12/17/2022

Fig. 1. System Block Diagram.

Fig. 2. Software Pipeline.

4
18-500 Final Project Report: Team A4 RecycleBot 12/17/2022

B. Hardware System: The hardware and robot
components are shown in Figure 3. On top of the
second lexan sheet which sits across the arms of the
structure, above the intake shaft sit all our control
elements— the Jetson Xavier NX, Arduino Uno,
Cytron MD30C, the Intel RealSense LiDAR Camera,
which sits at an angle on a custom 3D printed round
mount, and all the associated wiring. The chassis of
our robot that allows the robot to move is an iRobot,
commanded by the Nvidia Jetson NX over UART. The
iRobot only has top mounting through the nameplate,
so the rest of the structure is supported by the wood
beam in the center. The center wood beam is
connected to 2 side wood beams which lean against
the sides of the iRobot and are supported by caster
wheels mounted to the bottoms of the beams on the
intake side. Connected to the center wood beam and

the side wood beams is a lexan sheet that lays flush to
the top of the iRobot which behaves as the bottom of
the water bottle storage area. In the front of the robot,
the intake is mounted, driven by a 12V DC Brushed
Motor that is attached to the right side of the iRobot
and powered by a Milwaukee 18V Power Drill Battery
situated at the back of the structure behind the iRobot,
stepped down using an 18V to 12V converter. Once
the software system generates the navigation
calculations to center the iRobot at the target, it passes
the rotation duration to the iRobot over UART and
utilizes the distance readings from the Intel RealSense
LiDAR camera to determine the movement velocity to
the iRobot. Those distance readings are also used to
signal the Arduino Uno to command the Cytron
MD30C motor driver to start and spin the intake motor
to pick up the target bottle.

Fig. 3. System Block Diagram.

IV. DESIGN REQUIREMENTS

Our design requirements define the expected technical
behaviors of our system and relate to our use case
requirements. In testing our product, we have scoped our
project to the two aforementioned cases of 3 plastic bottles

within a 1 meter radius of the robot, focusing on the case
without obstacles.

For our software system, we impose a requirement for the
FPS process rate of the image stream from the LiDAR camera.
Through testing, we know that the bottleneck in the software
system is running inference on the sampled image stream, so

5
18-500 Final Project Report: Team A4 RecycleBot 12/17/2022

we require our system’s inference to take approximately 1
second per run in order to minimize delays in RecycleBot’s
movement. This means our trained ML model takes on
average 1 second to output bounding boxes around detected
objects every time inference is run. Since this rate limits the
amount of information the robot has about its environment if
solely reading from inference, we use an OpenCV object
tracking algorithm on the 60 FPS color stream from the
LiDAR camera in order to bridge the frame gaps in between
each frame we sample for our trained ML model. As the
OpenCV tracking algorithm we are using works well in real
time, we plan to utilize the tradeoff between processing rate
and number of tracked objects in order to track all the detected
objects in the robot’s field of view, allowing us to not only
maintain accuracy when traveling towards a bottle but also to
detect and avoid obstacles. Including the supplemental use of
a tracking algorithm to follow the labeled bounding boxes
given by our model in between allows RecycleBot to still
collect sufficient data to detect bottles and obstacles in its field
of view without being bottlenecked by how fast inference
takes.

Another requirement for our software system involves the
range at which we want our robot to be able to classify items
accurately. Since our use case requirements define the robot’s
task of intaking up to 3 bottles within a 1 meter radius, we
want our robot’s bottle detection algorithm to be able to
accurately identify and label objects from a maximum distance
of 2 meters away.

As per our use case requirement of picking up 3 bottles
within 1 meter, we assert a hardware requirement that
RecycleBot should hold 3 bottles in its on-unit storage. Since
empty plastic water bottles weigh around 20 grams each, the
additional weight when carrying 3 bottles in its storage is
largely negligible. The main factor limiting the amount of
bottles RecycleBot can collect is its storage capacity, an area
around 25 square centimeters. This holds approximately 3
bottes when accounting for differing shapes and crush levels.

We additionally have a hardware requirement of the robot
being able to complete 10 runs of the 1 meter test
consecutively. As a part of our testing structure, we derived
averages of each task over 10 runs, and thus required our robot
to be able to run the task 10 times in a row without any
components losing power.

V. DESIGN TRADE STUDIES

A. Software
a. YOLOv5: YOLOv5 is a popular model

architecture and algorithm for object detection [7].
We chose to fine tune a YOLOv5 model because

it maintains accuracy and is computationally fast
compared to other models.

b. Drinking waste dataset: To train our model for
object detection, we researched many open source
datasets and found the most suitable one [8]. This
dataset contains various images of plastic bottles,
aluminum cans, glass bottles, and milk bottles.
Since it has images of plastic bottles of different
shapes, sizes, and orientations and other drinking
waste to be classified into as obstacles, we
conclude that this data is suitable for our use case.
It has annotations indicating the bounding box
around each object and its label, which is
compatible with YOLOv5. This saves us the work
of making our own dataset from scratch.

c. KCF object tracking algorithm: We chose to
include an object tracking algorithm in our
software pipeline in order to increase the number
of FPS processed for the robot to properly move
toward the target and avoid obstacles. Rather than
spending valuable seconds performing inference
on every frame while the robot is moving towards
the target, the object tracking would be able to
trace the positions of the objects found during
inference. We chose this particular tracking
algorithm out of the 8 total tracking algorithms
housed in the OpenCV library due tradeoffs
between speed and accuracy [9]. In our original
implementation, we used CSRT. The CSRT
Tracker, which is a Discriminative Correlation
Filter (with Channel and Spatial Reliability) based
object tracker, is aided by spatial reliability maps
that manipulate and select the filter with the
highest quality for application to the tracked
object’s region, which increases the search area
and includes robustness to track non-rectangular
objects, however at the expense of a slower
throughput [10]. However, we found that when
using CSRT in our pipeline, we were not getting
good distance readings from the LiDAR. Since
the CSRT algorithm would take so long to return a
reading on any frame, it slowed down the entire
processing speed and caused us to sample frames
very infrequently such that our distance readings
were far too sparse and inconsistent. This made us
decide to transition to a quicker tracking
algorithm at the cost of accuracy. We chose the
still quite accurate KCF (Kernelized Corelation
Filters) Tracker, which utilizes overlap between a
set of images from a bag to track and predict the
movement of an object, and displays high speed

6
18-500 Final Project Report: Team A4 RecycleBot 12/17/2022

and accuracy but an inability to continue tracking
after the loss of the object [10]. Even though KCF
performs poorly when attempting to track the
target even when other objects overlap, and one of
our original concerns was creating a system that
would not lose track of the target plastic bottle as
it moved towards it, we found that there were few
enough instances of an object getting in the way
of the plastic bottle target while the bot was
moving that using KCF was the most beneficial
on the overall speed and accuracy of the pipeline.

d. Rotation: We decided to have RecycleBot rotate
about 36 degrees clockwise at the end of its
detection cycle, when it fails to identify a plastic
bottle within its field of vision or detects an
obstacle. The motivation behind this decision
comes from the range of vision of the RealSense
L515, which has a depth field of view of 70
degrees horizontal by 55 degrees vertical (+/- 3
degrees). Rotating 36 degrees 10 times in order to
search in a new field of vision not only allows for
a discrete number of turns to cover the full 360
degrees around the robot, but also introduces
redundancy at the peripherals of the L515
camera’s field of vision in case the bottle
detection algorithm fails to identify a bottle at the
edge of vision.

B. Hardware
a. LiDAR camera L515: We chose to use a LiDAR

camera to augment our object detection algorithm,
in order to implement a more effective navigation
system. Without the depth points generated by the
LiDAR camera, we would have to manually
calculate the distance that RecycleBot would need
to travel based purely on the robot speed and the
relative change in size of the detected object,
which would introduce margins of error due to
noise and tracking loss. Since the only RealSense
camera available from ECE lending was the L515,
and purchasing a D400 series RealSense at $200+
price points was out of our budget given the sum
of the materials that would needed to construct the
intake and support on the iRobot, we decided to
go with the L515 as our vision system. Since we
test indoors for practicality, we concluded that the
L515 would be sufficient. The L515 provides a
horizontal depth field of vision of 70 degrees,
which is large enough to perceive a significant
area within the 1 meter radius, as well as a depth
frame rate of 30 FPS, which is more than enough
for our software pipeline, as inference on a single
frame takes around 1 second. The minimum

distance to receive depth readings is around 25
cm, and with the projected distance between the
camera mount and the intake mechanism being
greater than that distance, the camera will be able
to provide depth readings for the bottles even as
they are swept up into the storage area. It also
records at 2 MP, which provides sufficient color
resolution to utilize an OpenCV tracking
algorithm effectively. While a LiDAR camera is
more suited for an indoor environment due to its
laser scanning technology, we’ve designed our
software using the Realsense SDK, which is
compatible with all camera series in the
RealSense line, including other cameras that
showcase better performance in outdoor
environments [11]. Therefore, the project can be
modified when scaled to use a more appropriate
camera. Despite the performance metrics listed
above, during our testing we found the camera to
be quite finicky and often highly inaccurate with
our pipeline. For example, many of the depth
readings would just always be 0.0 meters, or when
we sampled the same object’s movement while
tracking a bottle, the distance readings would just
drop off to 0.0 meters, with the last reading being
at an average of 0.5 meters away from the bottle,
which is both an accuracy and sampling speed
issue. Both of these causes produced inaccurate
results and often messed up our pipeline since we
base the decision of the closest bottle as well as
the timing of turning the intake on and moving
towards the bottle all on the distance readings. In
order to design around this roadblock, we shifted
last minute from using absolute distances to using
relative distances to determine which bottle was
closer (bounding boxes higher in y axis of the
field of vision would be perceived as further
away) and banking on when the tracking
algorithm lost track of a bounding box to time
turning on the intake.

b. Jetson Xavier NX: In our conversations deciding
what we wanted as the brains of the system, we
considered the Nvidia Jetson family and
RaspberryPi’s. However, we quickly discovered
that for running multiple specialized tasks such as
our computer vision and machine learning
requirements, the unit most capable of, suited to,
and documented for the computing demands we
needed was a Jetson. With the knowledge that
NVIDIA Jetsons are used for computer vision and
neural network applications including image

7
18-500 Final Project Report: Team A4 RecycleBot 12/17/2022

classification and object detection, we initially
planned on utilizing the Jetson Nano, which has a
4-core CPU and 128-core Maxwell GPU with
4GB of memory, and runs on 5 Watts [12]. Its
small size and low power consumption were two
of our initial motivations for choosing it as our
computing element. However, after considering
other options in the Jetson line, combined with the
discovery of the availability of a Jetson Xavier
NX from ECE lending, we switched to using a
Jetson Xavier NX. With a 6-core CPU and
384-core NVIDIA GPU with 8GB of memory,
running on 10W, the Jetson Xavier NX holds far
more processing power but is still housed on a
unit the same size as the Nano [13]. Given its
computing power advantage over the Nano, we
concluded that the Xavier NX would be the best
choice for our computer, given its size, low power
consumption, and more extensive CPU and GPU.
These features, combined with its pre-installed
OpenCV, made it the most logical choice for our
use case.

c. iRobot: We pivoted from planning to build the
entire robot from a Rev Robotics kit to working
with an iRobot Create 2 instead to cut down on
the amount of time spent on building robot chassis
that would take away from our time allocation for
developing the intake mechanism. This tradeoff
not only reduced build time but also effort
required to implement a motor control
system—iRobot has a very well documented
Open Interface for control through UART [14],
and an easier to work with Python wrapper library
[18]. One issue we ran into was the minimum
rotation degree of the iRobot. We initially
experimented with sending rotation commands to
the iRobot at lower and lower motor speeds where
the left and right motors would be negatives of
each other but found that after decreasing below
around 15, the iRobot would not start movement
at all, but any higher than 15 the iRobot would
make a large sweeping rotation that would cause
severe overcorrection issues when trying to center
the bot in front of the bottle. We found that adding
a slight bit of forward movement by offsetting one
motor’s speed by increments of 1 or 2 to the other
was enough to provide the iRobot enough
momentum to complete the minimal rotation. This
discovery was a large breakthrough towards the
end of our development process as it solved an

issue we had been struggling with for quite a long
time.

d. Rotating intake: We spent several weeks working
through the design of the rotating intake, iterating
through several implementations before settling
on a shaft with rotating rubber wheels. One
suggested method was a gate collection method,
where a rising and falling gate would close to
capture bottles that roll into the ground level
intake opening. However, since this
implementation would cause issues with the
bottles potentially falling out of the storage, we
went back to a previous idea with a rotating intake
because it requires less additional structure and
the intake itself blocks the collected bottles from
rolling out. Through testing we have determined
that the rotating intake requires sufficient speed to
spin the bottles in the correct direction, rather than
bumping it away from the intake. The actual
material used to build the intake was decided
based on what was readily available on popular
robotics parts websites (AndyMark, Rev
Robotics) and if the part sizes worked together
well with the rest of the system. Many complaint
wheels with different durometers were available,
but we chose the ones that are the most
rubber-like and squishy. These qualities are better
for an intake because the wheels will be able to
conform around whatever is being intaked when
the motor is spinning fast. There are also many
shafts and wheel holes available and we chose a ½
inch hex because many of the other components
were compatible with ½ inch hex such as the shaft
connector to connect the motor and shaft.

e. Robot Construction Materials: The center and
side beams could have been built from wood or a
metal such as aluminum. Although aluminum is
slightly lighter and usually comes with more
premade mounting holes, we decided to go with
wood. This is because wood provides more
flexibility with design because it is easier to work
with. Furthermore to cut aluminum we would
need something like a CNC machine, which
requires more training and overhead to use.
Before physically prototyping and building the
RecycleBot we didn’t know exactly how long the
side beams should be because we didn’t know the
correct angle of the ramp that would allow the
water bottle to easily go up it. After building the
intake and running it we were able to gauge the
angle of the ramp in order to easily allow water

8
18-500 Final Project Report: Team A4 RecycleBot 12/17/2022

bottles to go up it. Once the angle was figured out
and the ramp was attached to the side beams we
needed to trim them so that the ramp was close to
the intake. This way the water bottle would go up
the ramp as soon as it touches the intake.

f. Battery placement and center of mass: The
RecycleBot was very front heavy before the
batteries were added to the back. This is because
of the extensive weight of the intake and motor in
the front. Originally we were going to mount the
batteries next to the hardware in the front on the
top lexan plate, but realized this would skew the
center of mass even more. Thus we decided to
place the batteries on the back of the RecycleBot
and build a storage space for them using extra
wood and lexan.

VI. SYSTEM IMPLEMENTATION

A. Subsystem A: ML model
a. Training before runtime: To get data in the

format to train and validate our model, we parsed
our Drinking Waste Classification dataset [8] so
that plastic bottles are in the bottle class and all
other items are in the obstacle class. Then we split
80% of images to be in training and 20% in
validation, making sure to randomize and that
both training and validation have an equal number
of bottle and non-bottle images. We then did
transfer learning on a pre-trained YOLOv5 model,
freezing all the backbone layers. We chose to do
transfer learning because of the relatively small
size of our dataset, which is approximately 4000
images. After experimenting with different
hyperparameters, we trained for 10 epochs on the
YOLOv5s model, then did fine tuning for 10
epochs with the default hyperparameters in the
hyp.VOC.yaml file in the YOLOv5 library. When
given images from the Drinking Waste
Classification dataset, The model classifies bottles
with 99% accuracy and obstacles with 97%
accuracy.

b. Inference at runtime: At runtime, we perform
inference with tiling on sampled color frames
from the Realsense. Tiling is the process of
dividing an image into tiles and performing
inference on each individual tile before stitching
them back together for the original image. This
allows the model to better detect smaller objects
in high-resolution images. We use the SAHI:
Slicing Aided Hyper Inference library [15] to split
our original image into 9 tiles. Tiling boosts our
model to classify bottles up to 2m away from the
robot, which is our target distance. We filter out
all classifications below .35 confidence to reduce
the number of false positives.

B. Subsystem B: CV and LiDAR at runtime
a. Depth Sensing with Intel RealSense LiDAR

Depth Camera L515: There are several uses for
the LiDAR camera in our project. We use the
color frames for inference and the depth readings
to measure the distance between the robot and
objects detected from inference. We anticipate
taking an initial depth reading from RecycleBot’s
initial position to any bottles to locate the closest
one, then continue to take readings as the bot
moves towards the target in order to maintain an
appropriate speed, and to turn on the intake a
feasible distance away from the bottle in order to
pick it up. The LiDAR camera also gives distance
readings to avoid obstacles. We chose to use
pyrealsense2, the Python wrapper library for the
RealSense SDK [16], to interface with the LiDAR
Camera due to our familiarity with Python based
machine learning and computer vision
applications. While pyrealsense2 was available to

9
18-500 Final Project Report: Team A4 RecycleBot 12/17/2022

install through pip on JetPack 4.x when we hadn’t
flashed the Xavier NX with JetPack 5.0.2 yet, it
had to be built from source on the JetPack 5.0.2
updated disk image.

b. OpenCV Object Tracking: The main purpose of
using an OpenCV tracking algorithm (we chose
KCF) is to track bottles and obstacles when the
robot moves towards a target, as well as to assist
with rotation when RecycleBot needs to turn to
face a target water bottle. As a part of our
navigation algorithm, once RecycleBot has
selected a target water bottle to attempt to pick up,
it will first rotate to face the target head on. This
entails first having to determine which side the
bottle is located in relative to the vertical center
line within the bot’s field of vision. Once the side
is determined, commands are sent to the iRobot to
begin to incrementally turn in that direction.
OpenCV object tracking allows the robot to
continue following the selected object as its
bounding box changes within the robot’s field of
vision. Once the robot is aligned with the target,
we command it to stop and perform the second
inference. We use the bounding boxes from the
second inference for OpenCV multi object
tracking on all objects (target bottle and obstacle).
This tracking combined with the liDAR allows the
robot to see if there are any obstacles in the way
or if the target bottle is within pickup distance as
the robot moves forward.

C. Subsystem C: Hardware and Robotics at runtime
a. Construction of Robot: The iRobot is the base of

the robot and then the rest is mounted on top or
around it. To mount the other components to the
iRobot we are using Wafer screws that are
screwed from the bottom of the iRobot nameplate
to the wood on top. The iRobot only has top
mounting through the nameplate, so the rest of the
structure will need to be supported by the wood
beam in the center. The center wood beam is then
connected to 2 side wood beams. These wood
beams are leaning against the sides of the iRobot
and the ground. Connected to the center wood
beam and the side wood beams is a lexan sheet
that goes on top of the iRobot. This will be the
bottom of the water bottle storage area.

b. Power: The components of our system which
require power are the Jetson Xavier NX, the
intake mechanism DC gearmotor, the Arduino
Uno, and the iRobot. Since the iRobot has a
charging dock as well as an on-unit battery lasting
2 hours per charge, we did not need to provide
extra power for it. Hence, we ordered a 11.1V
6000mAh power supply for the Jetson, which
requires 12V and draws up to 15W of power, so
on a single charge the power supply will sustain
the Jetson for around 4 hours, which will be more
than enough for our use cases. With the Jetson
powered and the Arduino Uno connected to it

through USB, we were able to avoid a separate
power supply for the Arduino, as the Jetson
powers it. The motor is controlled by the Arduino
Uno through the Cytron MD30C motor driver,
powered by a 18V Milwaukee Drill Battery that
was stepped down to 12V using a step down
converter.

c. Intake Mechanism: The intake mechanism is
mounted in the front of the robot. The intake is
connected to both wood beams using intake motor
mounts. The intake mount plate holds our intake.
There is a ½ inch hex shaft that holds the wheels
for the intake. The wheels are green compliant
wheels with a 35A durometer. Then spacers are
used between the wheels so they are held in place.
Then at the ends of the wheels there are ½ inch
shaft collars to keep the wheels and spacers from
moving. The entire shaft is connected to the motor
plates using more shaft collars and bearings to
allow the shaft to rotate. The shaft is directly
connected to the motor, which is mounted on the
left side of the robot. The motor is screwed into a
motor mounting plate that is also screwed into the
left side beam. A more detailed picture of the
intake is seen below in Figure 4. During runtime
of the robot, the Arduino Uno controlling the
motor driver for the intake will only allow the
intake to spin when RecycleBot is within a certain
distance from the target bottle.

Fig. 4. Intake components

d. Camera and Hardware Component Mounting:
All the electrical components and wiring are on
top of a lexan plate that sits on top of the side
wood beams. The camera is mounted in the
middle of this lexan plate on our custom 3D
printed stand. The other components mounted
include the Nvidia Jetson Xavier NX, Arduino
Uno, and motor driver. The wiring between all
these components is also housed there.

e. Water Bottle Storage Area: In order to store
more water bottles and prevent the water bottles

10
18-500 Final Project Report: Team A4 RecycleBot 12/17/2022

from bouncing out of the robot we added 3 lexan
plates on top of the iRobot. They are screwed into
the side and middle wood beams. We then hot
glued the 2 edges where the 3 lexan plates meet.

f. Batteries and Step Down Converter: There is a
battery storage area on the back of the robot. This
is made by extending the side beams a little using
additional wood and a lexan backing screwed into
the wood. This storage area is made so that the
batteries are secured within the robot when it's
moving and also easily removable to charge. The
battery powering the Nvidia Jetson NX is
velcroed to the back of the center wood beam and
the drill battery powering the motor can be easily
attached to the 18V to 12V step down converter.
The main portion of the step down converter is
screwed to the left side beam.

g. iRobot Control: As the iRobot moves near a
bottle and it becomes within pickup range, it will
activate the intake and then move forward towards
the direction of the bottle to collect and push it up
the ramp into the storage. If it is nearing an
obstacle or if an obstacle is detected closer to the
bot than a bottle is, RecycleBot will stop, turn 36
degrees clockwise, move forward .3m, turn 36
degrees counterclockwise, move forward again by
.3m, and then restart the searching algorithm.

VII. TEST, VERIFICATION AND VALIDATION

For testing, we have fixed some conditions in the
environment:

1. Objects are randomly placed within a 1 meter
radius. We expect our computer vision to detect
items up to 2 meters away and a lack of GPS in our
system constrains RecycleBot to only cover this
amount of area. With a GPS, we can compose any
grid of points 2 meters away from each other. For
each point, we can use the same software to detect
bottles and therefore, RecycleBot can be scalable
with GPS.

2. Objects are at least .45 meters apart from each
other. This condition allows the robot to have a

chance to successfully avoid obstacles. If an obstacle
and bottle are placed too close to each other, our
robot intake will not be able to pick up a bottle while
avoiding the obstacle. We also do not expect bottles
and obstacles to be so closely clustered in the real
world.

3. RecycleBot will operate on a concrete background.
We want to minimize our scope to only concrete
background in accordance with our use case
requirements.

4. RecycleBot will operate under fixed lighting
conditions. Our detection model training dataset was
under fixed lighting conditions, so the performance
with darker lighting is unknown.

Our test site was an empty area in Tech Spark, CMU’s
makerspace, which fit conditions 3 and 4 listed above. To
evaluate our design, we have constructed two test cases, which
only differ in the items placed within the 1 meter radius:

1. 3 bottles
2. 3 bottles and 3 obstacles

Figure 5 visualizes our two test cases.

Fig. 5. Test environments 1 and 2

We define one run to be the completion of one 1 meter
radius. For each run, we allow the robot to keep running until
it reaches its stop state. Since we have a small sample size of 3
bottles per run, we will compare the average of 10 runs with

Table 1. Robot testing performance

11
18-500 Final Project Report: Team A4 RecycleBot 12/17/2022

our metrics. The metrics and final performance of the robot
are indicated in Table 1.

A. xBottle detection accuracy (1 & 2)
A bottle is considered detected if it is classified as a bottle at
any time during inference. We achieved good bottle detection
accuracy on both tests, 100% and 91.67% respectively. The
bottle detection accuracy for Test 2 was lower than that of Test
1 because sometimes the obstacles blocked the robot’s view of
a bottle.

B. Pickup success (1 & 2)
An item is considered to be picked up if the intake turns on as
the robot approaches the target and the target is swept
underneath the intake. We only consider items that passed
bottle detection in our pickup accuracies. Sometimes, the
target would not make it all the way up the ramp or would fall
out from the storage back down the ramp; however, we built
the intake so that it blocks items from rolling out of the robot
after they are inside, so these items would still be considered
as a successful pickup. The intake’s pickup success on the
tests were 93.33% and 100% respectively.

C. False positive rate (1)
There were no false positives for bottles in Test 1. This is
likely due to our test environment with a solid concrete
background and fixed lighting so that there is a clear contrast
between the bottle and the ground. We did notice 2 total
obstacle false positives in Test 1, where a crack or dirty spots
on the ground would be classified as an obstacle. This added
to the speed of the system because the robot would move to
avoid it but did not affect any other metrics.

D. Speed (1)
Speed was only evaluated in Test 1, as obstacles would
introduce too much variance to the speed. The speed measured
does not include setup time, such as initializing the object
detection inference model, iRobot UART, and video stream
from the Realsense. We achieved an average speed 14.41
seconds higher than our target speed metric due to additional
pipeline logic that improved accuracy at the cost of speed.
Originally, we did not anticipate needing a 2nd inference to
detect potential obstacles that would be in view after angle
calculation and we also planned to rotate only 6 times without
seeing a bottle for the robot to enter its stopping condition.
However, we realized during testing that rotating 6 times
wasn’t enough for the robot to see the entire area and opted to
rotate 10 times in smaller increments.

E. Obstacle detection accuracy (2)
Our 3 obstacles consisted of a half gallon milk bottle, an
orange juice bottle, and a Starbucks cup. We chose these
obstacles because they are similar to those in the training
dataset of our object detection model. An obstacle is

considered detected if it is classified as an obstacle at any time
during inference. We achieved 100% obstacle detection
accuracy, likely due to our obstacle choices being consistent
with the training dataset.

F. Obstacle avoidance success (2)
For obstacle avoidance, we only considered the cases where
the obstacle was blocking the path of the robot. If the robot
stops and redirects its path so that the obstacle is out of the
way, it is a success. We did not pass this metric and only
achieved a 50% obstacle avoidance success due to the
inaccurate depth readings from the Realsense. If an obstacle
was initially over 1 meter away from the robot, the depth
readings would give 0 meter readings even when the robot
approached closer to the obstacle. This was a major problem
for obstacle avoidance because the robot would never be able
to gauge the distance between itself and an obstacle that was
more than 1 meter away from it.

VIII. PROJECT MANAGEMENT

A. Schedule
See the Appendix on page 16 for a full Gantt chart.

B. Team Member Responsibilities
Table 2 shows the specific responsibilities of members of the

team. Serena and Mae were responsible for integrating the
software pipeline and everyone was responsible for testing.

Team
Member

Responsibilities

Meghana ● Design and construct a structure on
top of the iRobot

● Design and construct an intake
● Arduino to motor controls for the

intake

Serena ● Jetson Xavier NX and RealSense
setup and maintenance

● Depth perception development
● openCV object tracking and

navigation development

Mae ● Find dataset for ML model
● Perform transfer learning to train a

custom YOLOv5 model to detect
bottles and obstacles

● Write logic for entire software system

Table 2. Team member responsibilities

12
18-500 Final Project Report: Team A4 RecycleBot 12/17/2022

C. Bill of Materials and Budget
See the Appendix on page 15 for the detailed bill of

materials and budget. On a high level we built on top of
iRobot Create 2. We used wood to build the structure around
the iRobot and connect the iRobot to our intake. We are also
using aluminum and lexan for the ramp and bottom of the
storage area. On the hardware side, we are using an NVIDIA
Jetson Xavier NX, Arduino Uno, a motor driver, and Intel
Realsense. The other intake and construction materials have
been purchased from Andy Mark, Amazon, Home Depot and
GoBuilda.

D. Risk Management
One major risk was the physical construction of the structure

around the iRobot. We needed to balance weight and stability,
as the maximum weight the iRobot can hold is 15-20 lbs [17].
To mitigate the risk, we bought 2 different types of wood, a
heavier and lighter wood so we could test whether the lighter
wood was stable enough while having backup if it did not
work. We picked out other building materials carefully to try
to minimize weight and designed to balance weight
throughout the robot. Since we were drilling or using velcro to
attach components together, we could easily take them apart
and rebuild parts of the robot if something wasn’t working.

For the software, we had a couple major concerns. The
object detection algorithm was not guaranteed to work on
bottles at a far distance. We had several ideas to implement to
get the robot to detect objects at least 2 meters away:
generating more training data using images captured by the
Realsense, increasing color image resolution, and slicing the
image to perform inference on smaller sections of the original
image. Since we found a library that does slicing and is
compatible with YOLO, we tried that method first and it was a
success. Another issue was the accuracy of the Realsense’s
liDAR depth frames. If the depth readings were not accurate,
we would resort to the relative positioning of objects in the
color frame to get relative distance between the robot and
objects. We did have to do this in some parts of the pipeline.

An unforeseen problem we had was the setup of everything
we needed in the Xavier NX. Halfway through the semester,
after we finished our first iteration of the pipeline, we
discovered that inference was taking around 20 seconds each
frame, which was highly undesirable. We found that the
reason why the Xavier NX was not performing as expected
was that it was not actually utilizing GPU. This turned out to
be an issue with not having CUDA availability due to the
JetPack version on the Xavier NX not being updated to
JetPack 5.0. While attempting to figure out the root cause of
the Xavier NX’s slow speed, we went through much trial and
error, including: going back to the Jetson Nano, which after
flashing with the JetPack 5.0 disk image, had too small of an
SD card size to support any reasonable functionality from our

pipeline; flashing the JetPack 5.0 disk image to the Xavier NX
but running into Python3 issues while finding that the
pyrealsense2 wrapper library for the RealSense L515 had to be
built from source and could not be installed using pip3; trying
to roll back to JetPack 4.x on the but discovering that in the
process of updating to JetPack 5.0 we had overwritten
on-board memory separate from the SD card and could not
reflash the board unless we had access to the Jetson SDK
manager which was not compatible with JetPack 4.x versions;
and finally reflashing a fresh JetPack 5.0.2 disk image onto the
Xavier NX and building the pyrealsense2 library from source,
which additionally required extra research into installing
dependencies such as CMake. Overall, this process of
accessing CUDA on the Xavier NX was frustrating and time
consuming for over two weeks but once correctly configured,
cut down our inference time from around 20 seconds to
around 1 second, a 40x speedup.

To ensure the on-time completion of our project, we split our
test cases so we could easily rescope and not do obstacle
avoidance, making the software pipeline much easier. We built
in ample slack time to resolve problems that might come up or
pivot to another implementation.

IX. ETHICAL ISSUES

Since the RecycleBot is meant to be used in public spaces
commonly littered with plastic bottles, the main concern is
that the spinning intake could be dangerous for people,
especially children. Thus, to prevent harm the robot should be
used when an area is closed and sectioned off to the public.
This solution also prevents people from maliciously putting
dangerous objects near the intake as it is spinning.
Furthermore, the intake could also harm the robot if it attempts
to pick up a sharp object, such as a broken glass bottle. More
testing should be done to ensure that the object detection
algorithm performs well. Since it may be impossible to have a
perfect classification rate, monthly maintenance and
inspection should occur to see whether parts are damaged and
need to be replaced.

Another ethical concern is if someone were to hack into the
system and steal video footage or control the robot for their
own malicious purposes. Stealing data could violate the
privacy of people caught on camera and taking control of the
robot could have dangerous consequences. The robot’s
network should be secure and safe from third parties breaking
in.

X. RELATED WORK

A variety of trash and recycle sorting robots exist, one of
which is TrashBot [3]. TrashBot is a trash bin that is able to
distinguish between trash and recyclable items. After throwing
an item into TrashBot, it uses metal and computer vision to

13
18-500 Final Project Report: Team A4 RecycleBot 12/17/2022

determine whether or not an item is recyclable. Upon
classification, it uses a system of trap doors to discard the item
into the correct bin. Such mechanisms help in the autonomous
classification of trash, but still require people to properly
dispose of their waste and therefore, they do not solve the
problem of reducing existing litter in public places.

Many autonomous cleaning robot solutions with computer
vision exist in today’s industry. ClearBot, a robot that detects
and collects litter in local waterways, has an autonomous
setting where it uses computer vision to locate and collect
floating pieces of litter [4]. Another such autonomous cleaning
robot is BeachBot, a land operated robot designed to pick up
cigarette butts on beaches [5]. The bot uses artificial
intelligence to distinguish cigarette butts in the sand, then
picks them up with grippers, and into an internal storage. It is
also designed to avoid obstacles. Such robots are very similar
to RecycleBot but have two main differences. First, the
locations of operation differ since RecycleBot is meant to
operate on hard, concrete surfaces. Second, these robots
collect trash whereas RecycleBot collects only recyclable
items, reducing the need to sort items into trash and recycling
after collection.

XI. SUMMARY

We created an efficient robot that will autonomously detect
and collect standard size plastic bottles from the ground. Users
can simply leave the robot where they want and the robot will
clean, reducing manpower in picking up litter. We have met all
of our system requirements excluding speed and obstacle
avoidance. To improve speed and maintain similar accuracy
levels, some options are upgrading to a Jetson with higher
compute power such as the Jetson Xavier AGX or reducing
the time of the second inference in the software pipeline by
using a smaller, faster model since the second inference is only
used to catch any obstacles in view after angle calculation and
does not need to be fine tuned to classify bottles. For obstacle
avoidance, our main issue was the limitation of the Intel
Realsense L515, as it was not able to capture accurate and
reliable distances, especially when an object was off-center or
more than 1 meter away. Obstacle avoidance could be
improved with better depth readings and a path recalculation
algorithm that would adjust for how large the obstacle is.

Through this project we have learned how to use what we
have learned throughout our time at CMU to design and
integrate components to create a complete solution. We
learned not to underestimate software setup time, as we
struggled to flash the Jetson and make sure the JetPack and
Python versions were compatible to utilize our Jetson’s GPU
and install all the libraries we needed. Overall, this was a great
learning experience and we are proud of our work.

GLOSSARY OF ACRONYMS

- CSRT - Discriminative Correlation Filter with
Channel and Spatial Reliability

- COCO - Common Objects in Context, a publicly
available image dataset collected for the goal of
advancing image recognition

- FPS - Frames per second
- LiDAR - Light Detection and Ranging
- UART - Universal Asynchronous

Receiver-Transmitter
- WAAS - Wide Area Augmentation System
- Yolo(v5) - ‘You Only Look Once’ Version 5, a

family of object detection models trained on the
COCO dataset which we applied transfer learning
to in order to fine tune our bottle detection model

REFERENCES

[1] George, Lowell. “The Five Most Common Things Found
at River Cleanups.” American Rivers, 2 Jan. 2020,
https://www.americanrivers.org/2018/01/five-common-things-
found-river-cleanups/.
[2] Plastic water bottle pollution: Where do all the bottles end
up? (no date) Plastic Water Bottle Pollution: Where Do All
The Bottles End Up? – Healthy Human. Available at:
https://healthyhumanlife.com/blogs/news/plastic-water-bottle-
pollution-plastic-bottles-end (Accessed: December 17, 2022).
[3] Trashbot: The smart recycling bin that sorts at the point of
disposal (2022) CleanRobotics. Available at:
https://cleanrobotics.com/trashbot/ (Accessed: December 17,
2022).
[4] Andrea.d.steffen (2021) This autonomous zero-emissions
robot collects garbage from waterways, Intelligent Living.
Available at:
https://www.intelligentliving.co/autonomous-robot-collects-ga
rbage-from-waterways/ (Accessed: December 17, 2022).
[5] Meet BeachBot, a beach rover that uses AI to remove
cigarette butts from beaches (2021) Business Insider.
Available at:
https://www.businessinsider.in/tech/news/meet-beachbot-a-bea
ch-rover-that-uses-ai-to-remove-cigarette-butts-from-beaches/
articleshow/84759758.cms (Accessed: December 17, 2022).
[6] Sensor types (modalities) for robots to experience the
world | Robots For Roboticists says: et al. (2016) GPS and
global absolute positioning, Robots For Roboticists. Available
at:
https://www.robotsforroboticists.com/gps/#:~:text=Wide%20
Area%20Augmentation%20System%20(WAAS)&text=In%20
practice%20WAAS%20assisted%20GPS,the%20sky%20you
%20can%20see (Accessed: December 17, 2022).
[7] Ultralytics (no date) Ultralytics/yolov5: Yolov5 🚀 in
PyTorch > ONNX > CoreML > TFLite, GitHub. Available at:
https://github.com/ultralytics/yolov5 (Accessed: December 17,
2022).
[8] Serezhkin, A. (2020) Drinking waste classification,

14
18-500 Final Project Report: Team A4 RecycleBot 12/17/2022

Kaggle. Available at:
https://www.kaggle.com/datasets/arkadiyhacks/drinking-waste
-classification (Accessed: December 17, 2022).
[9] Rosebrock, A. (2022) OpenCV object tracking,
PyImageSearch. Available at:
https://pyimagesearch.com/2018/07/30/opencv-object-tracking
(Accessed: December 17, 2022).
[10] BroutonLab (2020) A complete review of the opencv
object tracking algorithms, BroutonLab. BroutonLab.
Available at:
https://broutonlab.com/blog/opencv-object-tracking
(Accessed: December 17, 2022).
[11] Intel® realsense™ Lidar Camera L515 (2022) Intel®
RealSense™ Depth and Tracking Cameras. Available at:
https://www.intelrealsense.com/lidar-camera-l515/ (Accessed:
December 17, 2022).
[12] Jetson Nano Developer Kit (2022) NVIDIA Developer.
Available at:
https://developer.nvidia.com/embedded/jetson-nano-developer
-kit (Accessed: December 17, 2022).
[13] The World's smallest AI supercomputer (no date)
NVIDIA. Available at:
https://www.nvidia.com/en-us/autonomous-machines/embedde
d-systems/jetson-xavier-nx/ (Accessed: December 17, 2022).
[14] IRobot Roomba 600 open interface spec - irobotweb.com
(no date). Available at:
https://www.irobotweb.com/%20~/media/MainSite/PDFs/Abo
ut/STEM/Create/iRobot_Roomba_600_Open_Interface_Spec.
pdf?%20la%20=%20es (Accessed: December 17, 2022).
[15] Obss (no date) OBSS/Sahi: Framework agnostic
sliced/tiled inference + interactive UI + error analysis plots,
GitHub. Available at: https://github.com/obss/sahi (Accessed:
December 17, 2022).
[16] Pyrealsense2 (no date) PyPI. Available at:
https://pypi.org/project/pyrealsense2/ (Accessed: December
17, 2022).
[17] How much weight can the irobot carry?, Robotics Stack
Exchange. Available at:
https://robotics.stackexchange.com/questions/10686/how-muc
h-weight-can-the-irobot-carry (Accessed: December 17,
2022).
[18] GitHub - momsfriendlyrobotcompany/pycreate2: Library
for irobot create 2 (no date). Available at:
https://github.com/MomsFriendlyRobotCompany/pycreate2
(Accessed: December 17, 2022).

15
18-500 Final Project Report: Team A4 RecycleBot 12/17/2022

APPENDIX- Bill of materials

16
18-500 Final Project Report: Team A4 RecycleBot 12/17/2022

APPENDIX-Schedule

17
18-500 Final Project Report: Team A4 RecycleBot 12/17/2022

