
1
18-500 Design Project Report: Team A4 RecycleBot 10/14/22

RecycleBot
Meghana Keeta Author, Serena Ying Author, and Mae

Zhang Author

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract— Plastic waste has been a major focus of
environmental awareness in recent years. In order to combat
this issue, we have designed a RecycleBot to autonomously
detect and collect plastic bottles into its storage for later
recycling. RecycleBot uses computer vision and machine
learning to efficiently detect, navigate to, and collect plastic
bottles into its storage for later recycling. It should be able to
collect plastic bottles of various shapes, orientations, and sizes
and also avoid obstacles in its path. RecycleBot not only
removes the need for people to manually pick up littered
bottles, but also improves the rate of recycling such items,
contributing to the effort to preserve our planet.

Index Terms—computer vision image processing, iRobot
Create 2, LiDAR depth sensing, machine learning object
detection

I. INTRODUCTION

22 billion plastic water bottles get thrown away rather than
recycled every year in the US [1]. Furthermore, more than 60
million plastic water bottles are thrown away each day, many
of which end up as litter in streets, parks, and waterways [2]. It
is evident that plastic bottles are a critical source of litter in the
US, which means that the endeavor to reduce the litter in
public areas is high effort in terms of resources and manpower.

RecycleBot can autonomously travel within an area to
systematically scan for and detect plastic water bottles in an
environment with litter, then travel to the location of the
detected bottle and collect it into its own storage for later
recycling. Users of RecycleBot will benefit twofold from its
autonomous bottle collection functionality— on one hand,
removing the need for human labor to reduce the amount of
plastic litter, and on the other, automating the process of
sorting between recyclable plastic water bottles and other
types of non water bottle or non-recyclable waste. Hence, this
solution will not only reduce the amount of resources
dedicated towards managing plastic bottle litter, but also
improve the rate of recycling such items, for both economic
and environmental gain.

Research into competing and adjacent technologies reveals
that automated recycling systems are available, however,
many aim to automate the sorting process between recycling
and trash [3], which still requires humans to deposit their trash
into designated areas. Other mobile cleaning robot solutions
include those meant to collect litter in local waterways [4] or
litter on beaches [5]. Beyond the location difference between
such robots and RecycleBot which is meant to operate on

hard, concrete surfaces, these robots are more focused on
collecting trash rather than collecting only recyclable items
which can all go into recycling without additional sorting.

II. USE-CASE REQUIREMENTS

To ensure RecycleBot meets its intended goal to efficiently
detect and collect plastic bottles for recycling, we have the
following use case requirements.

RecycleBot must be fully autonomous and operate on
smooth, hard terrain. The RecycleBot being fully
autonomous is crucial to its success, as we are aiming to
reduce the manpower required to clean up public spaces. Our
design will be meant for cleaning public places with hard
terrain because it is the most feasible and useful area of
operation.

In order to collect bottles successfully, they will first need to
be identified in the environment. RecycleBot’s bottle detection
model needs to correctly identify the following items with less
than a 10% false positive rate:

1) Fixed-type water bottles with 90% success
2) Varied-type water bottles with 80% success
3) Obstacles with 80% success
In this paper, fixed-type water bottles refer to bottles that

are knocked over, standard size, and not crushed. Varied-type
water bottles refer to bottles of different sizes, shapes, colors,
and orientations. Obstacles are anything in the environment
that is not a bottle. These can be other commonly littered
items such as aluminum cans and paper. These classification
accuracies will be tested in the real world environment where
there will be items scattered around the RecycleBot within a 1
meter radius. We chose 90% accuracy for fixed-type bottle
detection because the detection model may misclassify on
instances where the bottle is too far away or obscured by
another item. We chose 80% accuracy for varied-type
bottles and obstacles, which is a drop in accuracy compared
to the 90% expectation for fixed-type bottles, because of the
wide range of variation within these two categories, which
will be more difficult for our model to classify.

Next, we require RecycleBot to avoid obstacles with a
80% success rate. In the real world, we expect items that are
not bottles in the environment, so RecycleBot needs to be able
to successfully avoid bumping into or picking up obstacles
that are in its path. We have allowed for a margin of error due
to the fact that the robot may have complications picking up
accurate distance readings and stopping in time while
operating at an efficient speed.

To confirm successful navigation and hardware mechanics
of the system, we require RecycleBot to pick up and store
detected plastic water bottles with a 70% success rate. This
tests the RecycleBot’s ability to successfully navigate to a
detected bottle and activate its intake to collect the object into
its internal storage area. We have allowed for a margin of
error due to the various sizes, shapes, and orientations of
bottles the intake is expected to pick up.

Finally, we require RecycleBot to be timely and efficient.
RecycleBot is required to take on average less than 40

2
18-500 Design Project Report: Team A4 RecycleBot 10/14/22

seconds to identify an attempt to pick up 3 items
distributed within a 1 meter radius with no obstacles
present. To elaborate on the quantitative details of this task,
we referenced a real world use case of RecycleBot to
determine both the timing and the search area. As RecycleBot
is expected to be used on smooth concrete, we chose a
basketball court to be our test field, given their relative
ubiquity in public parks and likelihood to be littered with
plastic water bottles and other types of waste. For our search
area, since we want RecycleBot to search in circular areas
each run, eventually covering the entirety of the basketball
court, we had to consider the way that RecycleBot would be
able to navigate to a new point to center its search area in
between runs. The most logical way would be to utilize GPS
to pinpoint RecycleBot’s location and to calculate the location
for the new center point. Through research into GPS accuracy
limitations, we found that in practice, the best case horizontal
error of GPS assisted by the Wide Area Augmentation System
(WAAS) is 1 meter [6]. However, to account for outdoor
conditions where there is less visible sky and thus a reduced
accuracy of received location data from the WAAS system of
satellites, we assume a worst case horizontal error of 2 meters.
Thus, we want our robot to see a maximum of 2 meters in any
direction, which is why we chose a search radius for this test
of 1 meter. For our timing requirement, we want RecycleBot
to be able to clear an entire basketball court in an hour in order
to avoid extreme light conditions changes such as the sun
setting affecting the visibility of the robot, since many public
parks in the US close near sunset and would likely run
RecycleBot near closing time. With a search radius of 1 meter,
RecycleBot would need to complete around 100 iterations to
cover a basketball court. To complete its searches in an hour, it
would need to finish each run in 36 seconds on average. We
have rounded this value up to 40 seconds since we don’t
expect to see such a high density of water bottles on the court
(3 bottles in 1 m radius).

Figure 1: System diagram

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our system relies on computer vision and liDAR to detect
and locate plastic bottles and obstacles, then sending
navigation commands to the iRobot and intake mechanism.
These system components are outlined in Figure 1.

From the environment, the RealSense sends real time image
color streams and image depth streams to the Jetson Xavier to
do all the software processing. Software processing includes
inference with a trained neural network, target selection,
object tracking, and navigation calculations. Navigation
calculations include the angle to turn to center the target to the
robot and distance between the robot and target. These
navigation commands are sent to the iRobot over UART and
the Arduino Uno which controls the motor driver for the
intake mechanism.

A. Robot structure
The hardware and robot components are shown in the CAD

model in Figure 2 and Figure 3. The chassis of our robot that
allows the robot to move is an iRobot. We will be using a
UART cable to connect the iRobot to the Jetson. Then we are
building all the other components on top of and around the
iRobot. To mount the other components to the iRobot we will
be using Wafer screws that are screwed from the bottom of the
iRobot nameplate to the wood on top. The iRobot only has top
mounting through the nameplate, so the rest of the structure
will need to be supported by the wood beam in the center. We
believe the wood will be sturdy enough for this to be possible
along with the rest of the system. The center wood beam will
be connected to 2 side wood beams. These wood beams will
be leaning against the sides of the iRobot and the ground.
Connected to the center wood beam
and the side wood beams will be a lexan sheet that goes on top
of the iRobot. This will be the bottom of the water bottle
storage area.

3
18-500 Design Project Report: Team A4 RecycleBot 10/14/22

Figure 2: Robot CAD Isometric View

Figure 3: Robot CAD/Labeled Robot Parts Top View

B. Intake
In the front of the robot, the intake will be mounted. There

will be intake mounting plates that are screwed into the side
wood pieces on both sides (these are abstracted away in the
CAD model). The intake mount plate will hold our intake.
There will be a ½ inch hex shaft that will hold the wheels for
the intake. The wheels are green compliant wheels with a 35A
durometer. We will use spacers between the wheels so they are
held in place. Then at the ends of the wheels we will use ½
inch shaft collars to cheap the wheels and spacers from
moving. The entire shaft will be connected to the motor plates
using more shaft collars and bearings to allow the shaft to
rotate. The shaft will be directly connected to the motor, which
will be mounted on the side (abstracted away in the CAD
drawing). A labeled photo of the intake is shown in Figure 4
below.

Figure 4: Robot Intake

C. Electrical components
Since the driving for the robot is controlled by the

iRobot, the only electrical components for the robot we
needed to figure out is for the intake. The intake will have one
motor that powers it from one side. The motor will be
connected to a motor driver, which will be connected to an
Arduino. The Arduino will be connected to the Jetson Xavier
to be integrated with the Intel Realsense and the object
detection algorithm.

D. Camera and component mounting
All the electrical components and wiring will be done on top

of a lexan plate. The lexan plate will sit on top of the side
wood beams. The camera will be mounted in the middle of
this lexan plate. The other components mounted there include
the Nvidia Jetson Xavier, Arduino Uno, and motor driver. The
wiring between all these components will also be housed
there.

IV. DESIGN REQUIREMENTS

Our design requirements define the expected technical
behaviors of our system and relate to our use case
requirements.

For our software system, we impose a requirement for the
FPS process rate of the image stream from the LiDAR camera.
Through testing, we know that the bottleneck in the software
system is running inference on the sampled image stream, so
we hope to run inference at 1 frame per second in order to
minimize lag. This means our trained ML model will only
output bounding boxes around detected objects every second.
Since this rate limits the amount of information the robot has
about its environment if solely reading from inference, we use
an openCV tracking algorithm on 10 frames per second in
order to bridge the frame gaps in between each frame we
sample for our trained ML model. Since the openCV tracking
algorithm works well in real time, we plan to utilize the
tradeoff between processing rate and number of tracked

4
18-500 Design Project Report: Team A4 RecycleBot 10/14/22

objects in order to track all the detected objects in the robot’s
field of view, allowing us to not only maintain accuracy when
traveling towards a bottle but also to detect and avoid
obstacles. Including the supplemental use of a tracking
algorithm to follow the labeled bounding boxes given by our
model in between allows RecycleBot to still collect sufficient
data to detect bottles and obstacles in its field of view without
being bottlenecked by how fast inference takes.

Another requirement for our software system involves the
range at which we want our robot to be able to classify items
accurately. Since our use case requirements define the robot’s
task of picking up 3 bottles within a 1 meter radius, we want
our robot’s bottle detection algorithm to be able to accurately
identify and label objects from a maximum distance of 2
meters away. In testing, we have discovered that our current
implementation may need enhancing to reach this vision
benchmark, so we plan to append to our training dataset so
that inference works better on objects further away or doing
preprocessing on the raw images such as sectioning the raw
image into multiple zoomed in partitions to be passed through
the trained model instead.

As per our use case requirement of picking up 3 bottles
within 1 meter, we assert a hardware requirement that
RecycleBot should hold 3 bottles in its on-unit storage. Since
empty plastic water bottles weigh around 20 grams each, the
additional weight when carrying 3 bottles in its storage is
largely negligible. The main factor limiting the amount of
bottles RecycleBot can collect is its storage capacity, an area
around 25 square centimeters. This should hold approximately
3 bottes when accounting for differing shapes and crush levels.

We additionally have a hardware requirement of the robot
being able to complete 10 runs of the 1 meter test
consecutively. As a part of our testing structure, we will be
deriving averages of each task over 10 runs, and thus should
run the robot through each task 10 times in a row without any
components losing power.

V. DESIGN TRADE STUDIES

A. Software
- Yolov5: Yolov5 [7] is a popular model architecture and

algorithm for object detection. We chose to fine tune a
Yolov5 model because it maintains accuracy and is
computationally fast compared to other models.

- Drinking waste dataset: To train our model for object
detection, we researched many open source datasets and
found the most suitable one [8]. This dataset contains
various images of plastic bottles, aluminum cans, glass
bottles, and milk bottles. Since it has images of plastic
bottles of different shapes, sizes, and orientations and
other drinking waste to be classified into as obstacles, we
conclude that this data is suitable for our use case. It has

annotations indicating the bounding box around each
object and its label, which is compatible with Yolo. This
saves us the work of making our own dataset from
scratch.

- CSRT tracking algorithm: We chose to include a
tracking algorithm in our software pipeline in order to
increase the number of FPS processed for the robot to
properly move toward the target and avoid obstacles.
Rather than performing inference on every sampled frame
while the robot is moving towards the target, the object
tracking would be able to trace the positions of the objects
found during inference. We chose this particular tracking
algorithm out of the 8 total tracking algorithms housed in
the openCV library due to its tendency to display a high
tracking accuracy [9]. The CSRT Tracker, which is a
Discriminative Correlation Filter (with Channel and
Spatial Reliability) based object tracker, is aided by
spatial reliability maps that manipulate and select the
filter with the highest quality for application to the
tracked object’s region, which increases the search area
and includes robustness to track non-rectangular objects,
however at the expense of a slower throughput [10].
Selecting a more accurate tracking algorithm that was also
able to track the target even when other objects overlap
was critical to the use case of RecycleBot, as we wanted
to ensure that our system would not lose track of the
target plastic bottle as it moved towards it. Since we
would already be sampling the camera stream rather than
processing it at 30FPS, which is the depth frame rate of
the L515, we decided CSRT’s slower FPS throughput
would be a nonissue.

- Rotation: We decided to have RecycleBot rotate 60
degrees clockwise at the end of its detection cycle, when
it fails to identify a plastic bottle within its field of vision.
The motivation behind this decision comes from the range
of vision of the RealSense L515, which has a depth field
of view of 70 degree by 55 degree (+/- 3 degrees).
Rotating 60 degrees in order to search in a new field of
vision not only allows for a discrete number of turns to
cover the full 360 degrees around the robot, but also
introduces some redundancy at peripherals of L515 field
of vision in case the bottle detection algorithm fails to
identify a bottle at the edge of vision.

B. Hardware/Robotics
- LiDAR camera L515: We chose to use a LiDAR camera

to augment our object detection algorithm, in order to
implement a more effective navigation system. Without
the depth points generated by the LiDAR camera, we
would have to manually calculate the distance that
RecycleBot would need to travel based purely on the
robot speed and the relative change in size of the detected

5
18-500 Design Project Report: Team A4 RecycleBot 10/14/22

object, which would introduce margins of error due to
noise and tracking loss. Since the only RealSense camera
available from ECE lending was the L515, and
purchasing a D400 series RealSense at $200+ price points
was out of our budget given the sum of the materials that
would needed to construct the intake and support on the
iRobot, we decided to go with the L515 as our vision
system. Since we will test indoors for practicality, we
concluded that the L515 would be sufficient. The L515
provides a horizontal depth field of vision of 70 degrees,
which is large enough to perceive a significant area within
the 1 meter radius, as well as a depth frame rate of 30
FPS, which is more than enough for our software
pipeline, as we will be sampling images at a minimum
rate of 10 FPS. The minimum distance to receive depth
readings is around 25 cm, and with the projected distance
between the camera mount and the intake mechanism
being greater than that distance, the camera will be able to
provide depth readings for the bottles even as they are
swept up into the storage area. It also records at 2 MP,
which provides sufficient color resolution to utilize an
openCV tracking algorithm effectively. While a LiDAR
camera is more suited for an indoor environment due to
its laser scanning technology, we’ve designed our
software using the Realsense SDK, which is compatible
with all camera series in the RealSense line, including
other cameras that showcase better performance in
outdoor environments [11]. Therefore, the project can be
modified when scaled to use a more appropriate camera.

- Jetson Xavier: In our conversations deciding what we
wanted as the brains of the system, we considered Jetsons
and RaspberryPis. However, we quickly discovered that
for running multiple specialized tasks such as our
computer vision and machine learning requirements, the
unit most capable of, suited to, and documented for the
computing demands we needed was a Jetson. With the
knowledge that NVIDIA Jetsons are used for computer
vision and neural network applications including image
classification and object detection, we initially planned on
utilizing the Jetson Nano, which has a 4-core CPU and
128-core Maxwell GPU with 4GB of memory, and runs
on 5 Watts [12]. Its small size and low power
consumption were two of our initial motivations for
choosing it as our computing element. However, after
considering other options in the Jetson line, combined
with the discovery of the availability of a Jetson Xavier
from ECE lending, we switched to using a Jetson Xavier
NX. With a 6-core CPU and 384-core NVIDIA GPU with
8GB of memory, running on 10W, the Jetson Xavier NX
holds far more processing power but is still housed on a
unit the same size as the Nano [13]. Given its computing

power advantage over the Nano, we concluded that the
Xavier would be the best choice for our computer, given
its size, low power consumption, and more extensive CPU
and GPU. These features, combined with its pre-installed
openCV, made it the most logical choice for our use case.

- iRobot: We pivoted from planning to build the entire
robot from a Rev Robotics kit to working with an iRobot
Create 2 instead to cut down on the amount of time spent
on building robot chassis that would take away from our
time allocation for developing the intake mechanism. This
tradeoff not only reduced build time but also effort
required to implement a motor control system—iRobot
has a very well documented Open Interface for control
through UART.

- Rotating intake: We spent several weeks working
through the design of the rotating intake, iterating through
several implementations before settling on an axle with
rotating rubber wheels. One suggested method was a gate
collection method, where a rising and falling gate would
close to capture bottles that roll into the ground level
intake opening. However, since this implementation
would cause issues with the bottles potentially falling out
of the storage, we went back to a previous idea with a
rotating intake because it requires less additional structure
and the intake itself blocks the collected bottles from
rolling out. Through testing we have determined that the
rotating intake will require sufficient speed to spin the
bottles in the correct direction, rather than bumping it
away from the intake. We will be testing the optimal
speed and distance from the ground in the coming weeks.
The actual material used to build the intake was decided
based on what was readily available on popular robotics
parts websites (AndyMark, Rev Robotics) and if the part
sizes worked together well with the rest of the system.
There are many complaint wheels with different
durometers, but we chose the ones that are the most
rubber-like and squishy. These qualities are better for an
intake because the wheels will be able to conform around
whatever is being intaked when the motor is spinning fast.
There are also many shafts and wheel holes available and
we chose a ½ inch hex because many of the other
components were compatible with ½ inch hex such as the
motor.

- Robot construction materials: The center and side
beams could have been built from wood or a metal such
as aluminum. Although aluminum is slightly lighter and
usually comes with more premade mounting holes, we
decided to go with wood. This is because wood provides
more flexibility with design because it is easier to work
with. We don’t know exactly how long the side beams
should be because we don’t know the correct angle of the

6
18-500 Design Project Report: Team A4 RecycleBot 10/14/22

ramp that will allow the water bottle to easily go up it.
Because this unknown will only be resolved from
prototyping, the side beam length is a little variable.
Furthermore to cut aluminum we would need something
like a CNC machine, versus a simple bandsaw for wood.

VI. SYSTEM IMPLEMENTATION

A full software system diagram can be found at the end of
the document in Figure 6 of the Appendix. We will go into the
details of this implementation in this section.

A. ML model and training before runtime
To get data in the format to train and validate our model, we
parsed our Drinking Waste Classification dataset [8] so that
plastic bottles are in the bottle class and all other items are in
the obstacle class. Then we split 80% of images to be in
training and 20% in validation, making sure to randomize and
that both training and validation have equal number of bottle
and non-bottle images. We then did transfer learning on a
pre-trained Yolov5 model, freezing all the backbone layers.
We chose to do transfer learning because of the relatively
small size of our dataset, which is approximately 4000 images.
After experimenting with different hyperparameters, we ended
up training for 10 epochs on the Yolov5s model, then fine
tuning for 10 epochs with the default hyperparameters in the
hyp.VOC.yaml in the Yolov5 library. When given images
from the Drinking Waste Classification dataset, The model
classifies bottles with 99% accuracy and obstacles with 97%
accuracy. If real-time inference does not perform well, we may
need to append a wider variety of images to the training
dataset or adjust model hyperparameters.

B. CV & LIDAR at runtime
- Depth Sensing with Intel RealSense LiDAR Depth

Camera L515: There are several uses for the LiDAR
camera in our project. The main goals for the LiDAR
camera are to collect depth readings for the detected
bottles in order to determine which bottle is closest to the
robot, as the RecycleBot will navigate to the closest bottle
within its field of view. We anticipate taking an initial
depth reading from RecycleBot’s initial position, then
continue to take readings as the bot moves towards the
bottle in order to maintain an appropriate speed, and to
stop a feasible distance away from the bottle in order to
pick it up. The LiDAR camera also gives distance
readings to avoid obstacles. We chose to use the Python
wrapper library for the RealSense SDK to interface with
the LiDAR Camera due to our familiarity with openCV
and Python based machine learning and computer vision
applications.

- OpenCV Object Tracking: The main purpose of using
an openCV tracking algorithm (we chose CSRT) is to
track bottles and obstacles when the robot moves towards

a target, as well as to assist with rotation when
RecycleBot needs to turn to face a target water bottle. As
a part of our navigation algorithm, once RecycleBot has
selected a target water bottle to attempt to pick up, it will
first rotate to face the target head on. This entails first
having to determine which side the bottle is located in,
relative to the vertical center line within the bot’s field of
vision. Once the side is determined, we plan to send
commands to the iRobot to begin to incrementally turn in
that direction, and use openCV object tracking to continue
following the selected object as its position changes
within the robot’s field of vision, and then to send the
command to the iRobot to cease its turning when the
center point of the identified bounding box around the
target object is aligned with the vertical center line within
the bottle’s field of vision. Once the robot is aligned with
the target, we will send commands to the iRobot to move
it forward and continue to use object tracking and liDAR
to see if there are any obstacles in the way.

C. Hardware and robotics at runtime
- Power: The components of our system which require

power are the Jetson Xavier, the intake mechanism DC
gearmotor, and the iRobot. Since the iRobot has a
charging dock as well as an on-unit battery lasting 2 hours
per charge, we did not need to provide extra power for it.
Hence, we ordered a 11.1V 6000mAh power supply for
the Jetson, which requires 12V and draws up to 15W of
power, so on a single charge the power supply will sustain
the Jetson for around 4 hours, which will be more than
enough for our use cases. We also purchased 12V 23A
batteries for powering the motor driver for the intake
mechanism DC gearmotor, to be swapped out as needed.

- Intake Mechanism: The Arduino Uno controlling the
motor driver for the intake will only allow the intake to
spin when RecycleBot is within a certain distance from
the target bottle.

- iRobot Control: The software processing will be done
continuously with a rate of at least 10 frames per second
so that the course and speed of the iRobot can be
appropriately adjusted as it nears a bottle or reaches an
obstacle. If it is nearing a bottle, it will slow down to
allow the intake to collect the bottle and push it up a ramp
into the storage. If it is nearing an obstacle, it should stop,
turn 60 degrees clockwise, move forward .3m, and then
restart the searching algorithm.

VII. TEST, VERIFICATION AND VALIDATION

For testing, we have fixed some conditions in the
environment:

1. Objects will be randomly placed within a 1.5
meter radius. We expect our computer vision to

7
18-500 Design Project Report: Team A4 RecycleBot 10/14/22

detect items up to 3 meters away and a lack of GPS in
our system constraints RecycleBot to only cover this
amount of area. With a GPS, we can compose any
grid of points 3 meters away from each other. For
each point, we can use the same software to detect
bottles and therefore, RecycleBot can be scalable
with GPS.

2. Objects will be at least .45 meters apart from each
other. This condition allows the robot to have a
chance to successfully avoid obstacles. If an obstacle
and bottle are placed too close to each other, our
robot intake will not be able to pick up a bottle while
avoiding the obstacle. We also do not expect bottles
and obstacles to be so closely clustered in the real
world.

3. RecycleBot will operate on a concrete background.
We want to minimize our scope to only concrete
background in accordance with our use case
requirements.

4. RecycleBot will operate under fixed lighting
conditions. Our detection model training dataset was
under fixed lighting conditions, so the performance
with darker lighting is unknown.
To evaluate our design, we have constructed 3 test

cases, with all test cases operating under the fixed conditions
listed above. These test cases only differ in the items placed
within the 1.5 meter radius:

1. 3 fixed-type bottles
2. 3 variable-type bottles
3. 3 fixed-type bottles and 3 obstacles

We define one run to be the completion of one 1.5 meter
radius. Since we have a small sample size of 3 bottles per run,
we will compare the average of 10 runs with our metrics. For
each test case, we are evaluating multiple metrics indicated in
Table 1).

Testing Metrics- all percentages are
an average of 10 runs

1. 3 fixed-type bottles 90% bottle detection
accuracy
70% pickup success
80% completion in less than
75 seconds

2. 3 variable-type
bottles

80% bottle detection
accuracy
70% pickup success
80% completion in less than
75 seconds

3. 3 fixed-type bottles
and 3 obstacles

90% bottle detection
accuracy

80% obstacle detection
accuracy
80% obstacle avoidance
success
70% pickup success

Table 1: Tests with corresponding metrics

Figure 5: Visualization of test environment, specifically test 3

We wish to evaluate bottle detection accuracy in all three
cases, as it is the crucial initial part of the pipeline. We will
identify a bottle as detected if inference produces a bounding
box around the bottle at any point during the test. The third
test case specifically tests for obstacles by including them in
the environment. We will identify an obstacle as detected in
the same way as we do for bottles. For obstacle avoidance, we
will consider only cases where the obstacle is blocking the
path of the robot. Out of those cases, the success condition is
if the robot stops and rotates before hitting the obstacle. We
evaluate pickup success in all three tests, where a success
consists of the intake pushing the item into the robot’s storage.
Speed is only evaluated in the first two test cases, as obstacles
would likely introduce too much variance in our test data.

Each metric will be evaluated independently and we will
allow the robot to keep running until it reaches its stop state.
For instance, if we are calculating results of test 1 (3
fixed-type bottles) and the model only detected 20/30 (66%)
of the bottles, we have failed the 90% bottle detection
accuracy requirement. But if the robot has reached its stop
state in less than 75 seconds in 8/10 runs, we have satisfied the
speed requirement.

VIII. PROJECT MANAGEMENT

A. Schedule
See Figure 7 for the full schedule on page 11.

8
18-500 Design Project Report: Team A4 RecycleBot 10/14/22

B. Team Member Responsibilities

Team
Member

Responsibilities

Meghana - Designing and constructing an
intake that collects water bottles
from the ground and storing 3
bottles internally

- Figuring out iRobot controls and
motor controls for robot to move
and collect bottles

Serena - Working with the Jetson and
Intel Realsense to achieve
distance perception

- Working on path and angle
calculations for iRobot to travel

Mae - Gathering the dataset, setting up
and training a model to detect
bottles and obstacles

- Write logic for the software
system

Table 2: Team member responsibilities

C. Bill of Materials and Budget
See Figure 8 in the Appendix Section on page 12 for the
detailed bill of materials and budget. On a high level we are
building off of an iRobot Create 2. We are using wood to
connect the iRobot to our intake. We are also using aluminum
and lexan for the ramp and storage area. On the hardware side,
we are using an NVIDIA Jetson Xavier, Arduino Uno, a motor
driver, and Intel Realsense. The other intake and construction
materials have been purchased from Andy Mark, Amazon,
Home Depot and GoBuilda.

D. Risk Mitigation Plans
The main risk that we will face is constructing the physical

robot to match our use case requirements. Meghana has
experience with similar robotics from high school, but hasn’t
built off of something like an iRobot before. The main worry
with the iRobot is if it will be able to carry the wood, ramp
and intake that is built on it and still move at a reasonable
speed. Based on internet forums it seems like the maximum
weight the iRobot can hold and still function normally is
15-20lbs [14]. We have picked out our build materials
carefully to try to minimize this weight, but we won’t know
for sure how the robot will behave until you attach all the parts
to the iRobot. If the construction is too heavy for the iRobot to
function properly, we will minimize our design even further by
either changing the location of the storage area or removing
the storage area entirely.

Another similar robot related unknown is if the nameplate
on top of the iRobot Create is strong enough to hold the wood.
We researched the recommended way to mount attachments,
but we believe the amount of stuff we are attaching is still a
risk. If the nameplate mounting isn’t strong enough, we will
consider also using some sort of mounting on the sides of the
iRobot.

A software related risk is if our robot will be able to detect
water bottles at least 2 meters away. We know that the
detection works close by, but we need to test if it works further
because we need the robot to see at least this distance in order
to satisfy our use case requirements. If the robot is not able to
detect the bottle we will try appending more data to the
training data, doing preprocessing on the image in realtime
and zooming in or trying to do some sort of noise/background
cancellation.

Overall, we have built in slack time to mitigate these risks
and refocus on implementation details if we need to.

IX. RELATED WORK

A variety of trash and recycle sorting robots exist, one of
which is TrashBot [3]. TrashBot is a trash bin that is able to
distinguish between trash and recyclable items. After throwing
an item into TrashBot, it uses metal and computer vision to
determine whether or not an item is recyclable. Upon
classification, it uses a system of trap doors to discard the item
into the correct bin. Such mechanisms help in the autonomous
classification of trash, but still require people to properly
dispose of their waste and therefore, they do not solve the
problem of reducing existing litter in public places.

Many autonomous cleaning robot solutions with computer
vision exist in today’s industry. ClearBot, a robot that detects
and collects litter in local waterways, has an autonomous
setting where it uses computer vision to locate and collect
floating pieces of litter [4]. Another such autonomous cleaning
robot is BeachBot, a land operated robot designed to pick up
cigarette butts on beaches [5]. The bot uses artificial
intelligence to distinguish cigarette butts in the sand, then
picks them up with grippers, and into an internal storage. It is
also designed to avoid obstacles. Such robots are very similar
to RecycleBot but have two main differences. First, the
locations of operation differ since RecycleBot is meant to
operate on hard, concrete surfaces. Second, these robots
collect trash whereas RecycleBot collects only recyclable
items, reducing the need to sort items into trash and recycling
after collection.

X. SUMMARY

We are working to create an efficient robot that will detect
and collect water bottles from the ground. The robot will be
autonomous and collect the water bottles without assistance.

9
18-500 Design Project Report: Team A4 RecycleBot 10/14/22

Stakeholders can simply leave the robot where they want and
the robot will clean, allowing stakeholders to use their energy
on different things.

We will be using an iRobot Create 2, spinning intake and
computer vision for our implementation of this robust robot.
One upcoming challenge with this implementation is not
having full autonomy over the chassis/drivetrain of the robot
for mounting and functionality. However, we believe our
design and plans will allow us to successfully mitigate these
risks and meet our use-case and design requirements.

So far we are making great progress and anticipate finishing
all the features we want to implement. We have ordered all of
our parts necessary, started prototyping and working on the
object detection/computer vision algorithm.

GLOSSARY OF ACRONYMS

FPS - Frames per second
CSRT - Discriminative Correlation Filter with Channel and
Spatial Reliability
LiDAR - Light Detection and Ranging
WAAS - Wide Area Augmentation System

REFERENCES

[1]
https://www.americanrivers.org/2018/01/five-common-things-
found-river-cleanups/

[2]
https://healthyhumanlife.com/blogs/news/plastic-water-bottle-
pollution-plastic-bottles-end

[3] https://cleanrobotics.com/trashbot/

[4]
https://www.intelligentliving.co/autonomous-robot-collects-ga
rbage-from-waterways/

[5]
https://www.businessinsider.in/tech/news/meet-beachbot-a-bea
ch-rover-that-uses-ai-to-remove-cigarette-butts-from-beaches/
articleshow/84759758.cms

[6]
https://www.robotsforroboticists.com/gps/#:~:text=Wide%20
Area%20Augmentation%20System%20(WAAS)&text=In%20
practice%20WAAS%20assisted%20GPS,the%20sky%20you
%20can%20see

[7] https://github.com/ultralytics/yolov5

[8]
https://www.kaggle.com/datasets/arkadiyhacks/drinking-waste

-classification

[9]
https://pyimagesearch.com/2018/07/30/opencv-object-tracking
[10] https://broutonlab.com/blog/opencv-object-tracking

[11] https://www.intelrealsense.com/lidar-camera-l515/

[12]
https://developer.nvidia.com/embedded/jetson-nano-developer
-kit

[13]
https://www.nvidia.com/en-us/autonomous-machines/embedde
d-systems/jetson-xavier-nx/

[14]
https://robotics.stackexchange.com/questions/10686/how-muc
h-weight-can-the-irobot-carry

https://www.americanrivers.org/2018/01/five-common-things-found-river-cleanups/
https://www.americanrivers.org/2018/01/five-common-things-found-river-cleanups/
https://healthyhumanlife.com/blogs/news/plastic-water-bottle-pollution-plastic-bottles-end
https://healthyhumanlife.com/blogs/news/plastic-water-bottle-pollution-plastic-bottles-end
https://www.intelligentliving.co/autonomous-robot-collects-garbage-from-waterways/
https://www.intelligentliving.co/autonomous-robot-collects-garbage-from-waterways/
https://www.businessinsider.in/tech/news/meet-beachbot-a-beach-rover-that-uses-ai-to-remove-cigarette-butts-from-beaches/articleshow/84759758.cms
https://www.businessinsider.in/tech/news/meet-beachbot-a-beach-rover-that-uses-ai-to-remove-cigarette-butts-from-beaches/articleshow/84759758.cms
https://www.businessinsider.in/tech/news/meet-beachbot-a-beach-rover-that-uses-ai-to-remove-cigarette-butts-from-beaches/articleshow/84759758.cms
https://www.robotsforroboticists.com/gps/#:~:text=Wide%20Area%20Augmentation%20System%20(WAAS)&text=In%20practice%20WAAS%20assisted%20GPS,the%20sky%20you%20can%20see
https://www.robotsforroboticists.com/gps/#:~:text=Wide%20Area%20Augmentation%20System%20(WAAS)&text=In%20practice%20WAAS%20assisted%20GPS,the%20sky%20you%20can%20see
https://www.robotsforroboticists.com/gps/#:~:text=Wide%20Area%20Augmentation%20System%20(WAAS)&text=In%20practice%20WAAS%20assisted%20GPS,the%20sky%20you%20can%20see
https://www.robotsforroboticists.com/gps/#:~:text=Wide%20Area%20Augmentation%20System%20(WAAS)&text=In%20practice%20WAAS%20assisted%20GPS,the%20sky%20you%20can%20see
https://www.kaggle.com/datasets/arkadiyhacks/drinking-waste-classification
https://www.kaggle.com/datasets/arkadiyhacks/drinking-waste-classification
https://pyimagesearch.com/2018/07/30/opencv-object-tracking/
https://broutonlab.com/blog/opencv-object-tracking
https://www.intelrealsense.com/lidar-camera-l515/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://robotics.stackexchange.com/questions/10686/how-much-weight-can-the-irobot-carry
https://robotics.stackexchange.com/questions/10686/how-much-weight-can-the-irobot-carry

10
18-500 Design Project Report: Team A4 RecycleBot 10/14/22

APPENDIX

11
18-500 Design Project Report: Team A4 RecycleBot 10/14/22

12
18-500 Design Project Report: Team A4 RecycleBot 10/14/22

