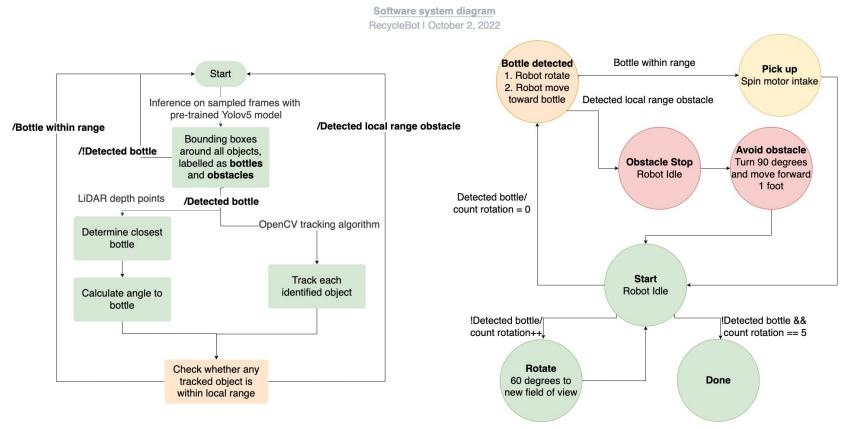
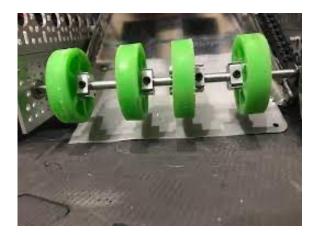

Use Case/Application

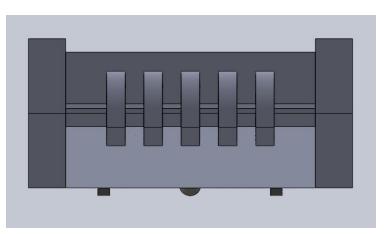
- RecycleBot will autonomously:
 - Detect, pick up and store littered bottles
 - Avoid potential non-bottle obstacles
- Key Task: locate and pick up **3 water bottles** within a 1.5 meter radius of the robot
- Changes:
 - Adding **non-bottle obstacles** for bot to avoid intaking
 - Pivot from building a full robot to mounting our intake mechanism on an **iRobot**
 - Reduced storage area— all tests now require picking up 3
 bottles

Quantitative Use-Case Requirements

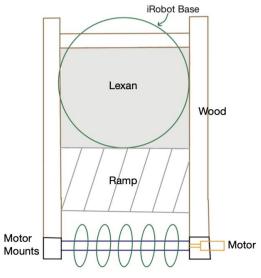

- Algorithm correctly identifies the following with less than 10% false positive rate:
 - 90% fixed-type water bottles
 - 80% varied-type water bottles
 - 80% obstacles
- Robot avoids obstacles with 80% success
- Picks up and stores detected bottles with 70% success
- Takes less than 1.25 minutes to pick up 3 items distributed within a 1.5 meter radius with no obstacles

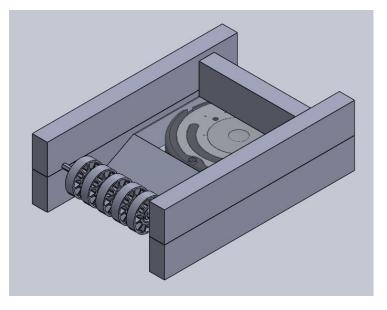
Solution Approach


- iRobot Augmentation
 - Intake mechanism
- Object Detection ML model
 - Pre-labeled bottle dataset and transfer learning to train model
 - Sets global path upon bottle detection
- Navigation LiDAR and iRobot control
 - LiDAR for measuring distance between robot and target
 - Calculate angle between bot orientation and target
 - iRobot Open Interface for actuator command
- **Obstacle Avoidance** LiDAR and object tracking
 - Continuously scan for whether tracked objects are in local range
 - Fixed local path avoidance when tracked obstacle is in local range


System Specification - Block Diagram

System Specification- Robot


- Intake mechanism:
 - 5 rotating wheels on an axle
 - Wheel catches and pushes bottles underneath wheel axle and up a ramp to top of iRobot



System Specification- Robot

- Mounting the intake:
 - Drill into iRobot faceplate
 - No side mounting on iRobot— 2x4 middle beam will be attachment point

Intake Wheels

Implementation Plan

	Components to be integrated	Components to be developed
Robot hardware	iRobot	Intake and storage mechanism on robot, and mounting those the iRobot faceplate
Object detection	Yolov5 model	Transfer learning on bottle and obstacle dataset
Navigation	 Intel RealSense LIDAR Camera L515 for distance readings OpenCV object tracking Jetson Xavier 	 Angle calculation to center robot to bottle Communication with iRobot via Create 2 Open Interface Software system logic

Progress

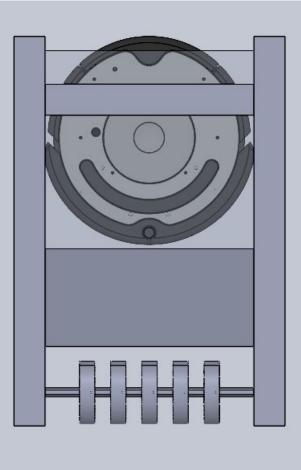
Bottle Inference on Test Images Dataset: aluminum cans, glass bottles, plastic bottles, milk bottles OpenCV Tracking Algorithm (CSRT)

https://www.kaggle.com/datasets/arkadiyhacks/drinking-waste-classification

Testing and Metrics

- Environment
 - Objects randomly placed within a 1.25m radius
 - Objects at least .45m apart from each other
 - Concrete background
 - Fixed lighting
- Test cases
 - 3 fixed-type bottles
 - 3 variable-type bottles
 - 3 fixed-type bottles + 3 obstacles
- For each test case, we will compare the average of 10 runs (1 run = completion of one 1.25m radius) with our metrics

Testing and Metrics


Testing	Metrics
3 fixed-type bottles	 90% detection accuracy 70% pickup success < 1.25 min
3 variable-type bottles	 80% detection accuracy 70% pickup success < 1.25 min
3 fixed-type bottles + 3 obstacles	 90% detection accuracy of bottles 80% detection accuracy of obstacles 80% obstacle avoidance success 70% pickup success

Project Management

		Wk 4				Wk 5			Wk 6				Wk 7				Wk 8			w	/k 9			Wk 1	0			Wk 11			v	Vk 12			Wk 13
TASKS	TASK OWNER	10/3	10/4 10/	/5 10/6	10/7	10/10 10/	11 10/12	10/13 10/14	4 10/17	10/18 1	0/19 10/	20 10/21	10/24	10/25 10	26 10/2	7 10/28	10/31 1	1/1 11/2	2 11/3	11/4 1	1/7 11,	/8 11/9	11/10 11	/11 11/14	11/15 1	1/16 11/1:	7 11/18	11/21 11/	22 11/23	11/24	11/25 1	1/28 11/29	11/30	2/1 12/	2 12/5
Deadlines																																			
Project proposal presentation	Serena																																		
Design presentation	Mae																																		
Final presentation	Meghana																																		
Object Detection and Identification																																			
Dataset generation	Mae																																		
Get model running with initial dataset	Mae																																		
Train model to 90% test accuracy	Mae																																		
Integrate ML model into Jetson/detection process	Mae/Serena																																		
Slack time	All												1																						
Robot Construction and Software																																			
Research design implementations for using iRobot	Meghana																																		
Research and design intake and storage	Meghana																																		
Order Necessary Parts Materials	All																																		
Robot intake CAD and construction	Meghana																																		
Setting up Jetson to iRobot communication	Meghana																																		
Controls to allow robot to intake items	Meghana																																		
Robot driving and intake testing	All																																		
Slack time	All																																		
Navigation and Integration																																			
Set up Jetson and Intel Realsense	Serena																																		100
Distance perception with LIDAR	Serena																																		
Object tracking algorithm	Serena																																		
Path and angle calculation to motor movement	Serena																																		
Write logic for entire software system	Mae																																		
Put entire software system together	Mae/Serena																																		
Completely merge software and hardware system	s All																																		
Slack time	All																																		
Final testing																																			
Whole system to detect and pick up 1 water bottle	All																																		
Test system logic for picking up multiple bottles	All								i i																										
Test fixed bottle environment	All																																		
Test varied bottle environment	All																																		
Slack time	All																																		

Conclusion

- Key changes
 - iRobot
 - Obstacle avoidance
- Key challenges
 - Intake design
 - Obstacle avoidance
 - Integration of entire software system

