PARROT Parallel Asynchronous Robots, Robustly Organizing Trucks

Final Presentation

Omkar Savkur · Prithu Pareek · Saral Tayal

Pick-Up and Drop-Off Pallets

#1

Efficiently Scale to Multiple Robots

Long Runtime and Low Latency

Requirements

Real-World Warehouse Robotics

Our Sandbox

Solution Approach

Our System

Motion & Task Planning

Our Sandbox

- State Space \rightarrow {x, y, theta, velocity, **time**}
- Set of motion primitives/lattice graph representation
- Robots assigned priority based on task and plan around others

Demo Video!

1 Robot

2 Robots

3 Robots

Time: 9 mins

Time: 5 mins 20 secs

Time: 3 mins

Testing & Verification

Metrics	Tests	Results
Localization accuracy of 1mm	Test Localization accuracy of robot, pallet, and goals on 10 grid spots	Pass! Accuracy = 0.8mm
Planner / Controller accuracy of 5mm	Test Motion accuracy against 10 start-goal pairs	Pass! Path Following accuracy- 2.3mm
Sense-Plan-Act loop time under 300ms	Run system and measure frame rate for at least 10 minutes	Pass! We achieved a loop time of 30ms
Pallet Pick-Up/Drop-Off Reliability (100%)	Run system 50 times against a robot-pallet-goal tuple and measure pickup reliability	Fail! We achieved a 90% pick-up rate and 84% drop-off rate
Scalability Testing; 2x faster at 3 robots	Test task speedup against multiple robots on 3 layouts	Pass! Our system gave us a speedup at 3 robots
Battery runtime > 6 hours	Keep an internal track of robot runtime in EEPROM and pull data when the robot dies.	Fail! Our robots only lasted ~1.5 hours

Parallelization

Overall Time Speedup

Trade-offs

- Neopixels vs. Fiducials for accuracy
- PID vs. Pure Pursuit Controller
- Mechanized pallet pickup vs electromagnets
- Single vs. multiple cameras
- Single sensor vs. Sensor fusion
 - Single vs. multiple cameras
 - Encoders + IMU + CV localization
- Robot weight balance vs robot size
- Planner optimality vs. usability
 - Pre vs dynamic planning

System performance metrics

Robot speed	2 cm/s, 0.38 knots, mach 5.8 (e-5)
Sense-plan Act loop	~65 ms (15fps)
Controller Interpolator	Cubic hermite spline interpolation
Path Planner time	<10 seconds
Robot Mass	456 grams 0.07 stones
Camera system	Webcam/Iphone overhead angle <30 degrees off-axis
Field Size	2x3 meters

Gantt Chart

Conclusions

• Robots are hard

- Really hard
 - Really really hard
- Warehouse packing problems are NP-Hard, impossible to do perfectly
- Hardware integration is **tricky**. Always over-allocate time
- We are **proud of our progress** over the last 13 weeks