
18-500 Final Project Report - PARROT, 12/17/2022 Page 1 of 19

P.A.R.R.O.T: Parallel Asynchronous
Robots, Robustly Organizing Trucks

Authors: Prithu Pareek, Omkar Savkur, Saral Tayal
Affiliation: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—This project aimed to design and build
a multi-agent robotic system capable of transporting
pallets from a warehouse floor onto delivery trucks in
an efficient manner. Due to the limitations of time and
resources of this course, we built a scaled-down version
of this system on a 1- x 2-meter field with 10 x 12 cm
robots. While the physical size is not representative
of real-world systems, we hoped to design algorithms
for computer vision, planning, and communication that
result in increased task-completion efficiency in a multi-
robot system that can be directly used in real-world
systems. We tested our system on these metrics and
found in 3x speedup in task-completion time with 3
robots when compared to 1 robot for the same task.

Index Terms—Computer Vision, Controls, Design,
Efficiency, Multi-Agent, Planning, Robot, Warehouse

1 INTRODUCTION

Warehouse productivity is inversely proportional to how
long it takes to load/unload a truck. As demands on
warehouses grow, the first step to increasing warehouse
productivity is often automating warehouses with robots.
However, while humans might be able to move around
each other fairly intuitively, having multiple robots run-
ning around a warehouse in an efficient and collision-free
manner is quite difficult [4]. Companies such as Tesla Fac-
tory robots [15], Amazon Robotics [1], Geek+ [11], and
Caja Robotics [12] are just a few of the companies deploy-
ing swarm robots to factories and warehouses. This cap-
stone project explored some of those challenges from both
a technical and systems perspective.

2 USE-CASE REQUIREMENTS

The use-case requirements for our “sandbox” version
of the multi-robot warehouse organizing system can be di-
vided into three overarching sections: pallet pick-up/drop-
off, run-time and latency requirements, and multi-robot
scaling efficiency.

2.1 Pallet Pick-Up / Drop-Off

In order to complete their core task of warehouse orga-
nization and truck-loading, our robots must be able to pick
up, drop off, and transport pallets around the warehouse
floor. In order to do this, there are a few things that are

necessary. It is extremely important that our robot be able
to reliably (<1% failure rate) latch onto and let go of the
pallets when the robot is at the pallet position. Our sys-
tem must also be able to drop off the pallets in the correct
locations with an accuracy of 5mm. Finally, we want the
robots to be able to load the trucks in a specific order op-
timal for the trucks to unload as they make multiple stops
on their route.

2.2 Run-time and Latency

Our robots must have a battery life of 4 hours. This
was calculated based on the average length of a workday be-
ing 8 hours with a break for lunch in between. We don’t ex-
pect warehouses to operate completely without people, and
thus want the robots to be able to last for half a shift/charge
during the lunch break. We would also like a latency of
under 5 seconds between the initial start command being
sent to the robots and the first movement.

2.3 Multi-Robot Scaling Efficiency

The primary selling point of our system is the efficiency
provided when using a multi-robot system rather than a
single robot. The following sub-requirements address this
efficiency requirement. Arguably the most important is
that our robots must not collide with each other, or any
other obstacles in the environment. This is for safety rea-
sons. Finally, we require a speedup of 2x when using 3
robots when compared to 1. This number was estimated
using Amdahl’s law, presented in (1), which is an equa-
tion used to determine the maximum speedup possible in
parallel computation applications.

speedup(f, n) =
1

(1− f) + f
n

(1)

In this case, f is the fraction of the work that can be par-
allelized and n is the number of robots. We assume that
25% of the work is inherently sequential due to contention
between the robot’s paths.

18-500 Final Project Report - PARROT, 12/17/2022 Page 2 of 19

Figure 1: This is the top view of the field. The pallets are
depicted in brown, and the robots are depicted in green.

Figure 2: Robot block diagram.

3 ARCHITECTURE AND/OR
PRINCIPLE OF OPERATION

Our system includes a field that the robots and pallets
are moving around on, an overhead camera viewing the en-
tire field, and a main centralized computer that is doing
the localization, path planning, and controlling for each of
the robots. Fig. 1 depicts a cartoon version of what the
camera will see.

Each robot is constructed out of a PCB. Each one has
an ESP8266, which waits for commands via HTTP POST
from the main computer and interfaces with the periph-
erals appropriately. Fig. 10 depicts how the robot should

behave at a block diagram level. The robots are meant to
be as simple as possible, with all of the computation being
done by the main computer. The robots have an Aruco
fiducial marker for localization, an electromagnet for pick-
ing up the pallets, batteries for power, and two continu-
ous rotation servos for movement. The robots initially had
Neopixels for localization and a screen for debugging, but
we swapped them to fiducials for higher accuracy and reli-
ability, as further described in Section 6.2.3.

The main computer, whose subsystems are shown in
Fig. 3, takes the camera feed in, uses OpenCV to local-
ize the robots and the pallets, and has a task planner to
allocate tasks to robots. From there, each robot has its
own planner that plans a path that does not collide with
any obstacles or robots (moving or stationary) in the field.
Each robot also has its own controller that keeps the robot
along its specified path. There is also an emergency stop
if the user wants to stop the robots. Originally, the com-
puter vision subsystem would trigger the emergency stop
if it determines if there will be a collision, but we did not
have enough time to implement that feature and opted for
a manual emergency stop.

Warehouse managers will interact with this system
through the main computer side which will allow them to
run the system, which will take into account an arbitrary
number of pallets and robots. From there, the main com-
puter will determine how many robots are present on the
field, where the robots and pallets are, assign each robot
to move a specific pallet, plan paths for all the robots, and
then send servo and electromagnet commands to the robots
to get them to follow their paths. The main computer also
has a visualizer that shows the paths of the robots and the
expected positions.

4 DESIGN REQUIREMENTS

The Design Requirements for our “sandbox” version of
the multi-robot warehouse organizing system are built off
of our Use-Case requirements and can be divided into the
same three overarching sections: pallet pick-up/drop-off,
run-time and latency requirements, and multi-robot scal-
ing efficiency.

4.1 Pallet Pick-Up / Drop-Off

Since the user needs the system to accurately drop off
pallets in the correct location with 5mm precision, our sys-
tem needs to be able to detect all the robots and pallets on
the field with 100% accuracy and be able to differentiate
between them. The system also needs to be able to localize
the robots to within 5mm so that we can guarantee the
pallets carried by the robots will be delivered within 5mm
of the desired location. A standard HD USB webcam with
a resolution of 1080 by 1920 must have a maximum er-
ror of 5 pixels difference between where the localization
system thinks the robots and pallets are compared to their

18-500 Final Project Report - PARROT, 12/17/2022 Page 3 of 19

Figure 3: Main computer’s software stack block diagram.

actual positions in order to achieve a 5mm localization ac-
curacy for a 1m by 2m “sandbox”.

The electromagnet must have enough holding force to
pick up the pallets. A 3cm by 3cm pallet made out of 3D
printed material with a steel top will have a mass of 29.49g
as shown in (2). Therefore, the electromagnet must have a
holding capability of 0.290N.

m = V ρ = (3cm · 3cm · 2cm)1.25g/cm3+

(3cm · 3cm · 2cm)7.7g/cm3 = 29.49g
(2)

The robot servos must also be sized such that they have
enough torque to propel the robot and the pallet forward.
We estimate that the robot will have a mass of 172.72g (48g
for 18650 30Q cells, 1.72g for the MCU, 11g for servos and
wheels, 26g for the electromagnet, 36g for the PCB, and
50g maximum for any miscellaneous components). There-
fore, the servos must propel a minimum mass of 172.72g
and a maximum mass of 202.21g.

In order to load pallets onto the truck in the correct or-
der, the task planner must assign robots to pallets in such
a manner that the pallets must arrive at their desired po-
sition at the correct time. The path planner must adhere
to the task planner’s ordering requirements.

4.2 Run-Time and Latency

In order to achieve 4 hours of battery life on the robots,
the battery capacity must supply 4 hours’ worth of power
drawn by the electromagnet and the servos, which are the
two components that draw the most current. Equation (3)
describes how the battery life t, total current draw A, and

battery capacity C are related, where N is the number of
components drawing current and Ai is the current draw of
component i.

t =
C

A
=

C∑N
i=1 Ai

(3)

In order for the user to perceive the robots as having
a smooth motion, the communication latency between the
computer and the robots must be under 100 ms, as this is
on the order of magnitude for WiFi communications. Fur-
thermore, we require a maximum of 200 ms time for the
sense-plan-act loop. This is so that once the robots are
moving, they can do so at a fast speed, without compro-
mising correctness. The human reaction time is just under
300 ms, so the sense-plan-act loop and communication la-
tency should take under 300 ms so that the robots seem to
move smoothly on their path.

4.3 Multi-Robot Scaling Efficiency

One of our paramount requirements is that the robots
have 0 collisions with robots and other obstacles in their en-
vironment. We require a motion planner planning in space
and time that generates paths such that robot paths do
not intersect at the same time. To aid with this 0 collision
metric, each robot should also be within 5mm at all times
from its expected point in its trajectory. We will also need
an emergency-stop fail-safe to prevent any imminent and
potentially unavoidable collisions.

18-500 Final Project Report - PARROT, 12/17/2022 Page 4 of 19

5 DESIGN TRADE STUDIES

5.1 Robot design - PCB

Swarm robots like ours (Tesla factory robots, Amazon
Robots, Crazyflie drones, etc) are designed to be as sim-
plistic and processing-light. This is to achieve scaleable
production where it is imperative to bring the cost of each
robot down [5]. Similarly, we too approached building our
robots as simply as possible. Our robot’s frame is our PCB
and as such it doubles as an electrical interconnect between
our electronics and as a structural member. This greatly
simplifies our design when compared to a more mechanical
robot with real cables/wires running between components.
This PCB approach also makes our robots consistently sim-
ilar which is especially important for localization (discussed
later in the paper)

The PCB is also designed to have minimal active elec-
trical components on it and rather focuses on acting as an
electrical bridge between off-the-shelf modules that attach
to the PCB. Such modules include our MCU, our screen,
servos, batteries, power regulator, etc. This makes the as-
sembly of the robot significantly easier while also making
our robot easy to manufacture (less reflow work), and also
reduces the scope of the electrical design of the robot –
which is not the focus of this project.

5.2 Robot design - why Computer Vision?

Localization on robots is typically done via a combina-
tion of different sensor systems and fusing them in a tech-
nique called “sensor-fusion”.

Since the goal of our project is centered around the
scaleability of multi-agent robotic systems and we have
budget/time restrictions, we decided to use just one sensor
system – computer vision – for our localization as opposed
to a wheel encoder system.

This brings a few advantages to integration. Firstly,
computer vision enables us to not only localize our robots,
but also localize our pallets via simple QR-fiducials, greatly
simplifying pallet detection. Secondly, it reduces the BOM
cost of each robot since we don’t need to include an extra
encoder. Thirdly, it reduces timing issues and network la-
tency delays from an extra loop of getting feedback from
the robot and accounting for the time-delay staleness of the
encoder data in the control loop.

However, computer vision does come with pitfalls, espe-
cially around making sure that the environment is appro-
priately lit and making sure no obstructions interfere with
the camera’s vision of the robot.

While encoders, especially when fused with computer
vision, could make localization more precise and help us
meet our use-case requirement, our preliminary testing
shows that vision-only localization is still providing us with
more than enough accuracy at around 2-3mm.

5.3 Robot design - electromagnet vs me-
chanical pickup

Most robots that operate in warehouses use a mechan-
ical forklift-style system to physically pick up pallets to
move [9]. Given our scaled-down robot sandbox, goals for
better understanding multi-agent algorithms, and time/-
cost limitations, we decided to simplify picking up a pallet
to simply using an electromagnet. While this simplifies the
real-world application of the robot, it still accurately al-
lows us to develop our algorithms and appropriately work
on that without distracting us away from designing a me-
chanical system, tuning it for reliable pickups, and working
out any integration issues with it.

5.4 Robot Planner

When it came to the robot planner, there were sev-
eral approaches that were possible to achieve multi-agent
coordination. Ultimately, it was a factor of implementa-
tion complexity that was the driving factor behind settling
on our final strategy. One potential algorithm would have
been to use “Dynamic Planning” [6] in which each robot
acts as an independent unit and “re-plans” its path around
the other robots if it detects a future collision. While this
has the benefit of being robust and “real-time”, we found
it difficult to determine how to decide which robots get
priority and remove the possibility of the robots running
endlessly in circles because of contention.

The other approach - which we ended up selecting - is
to assign robots priorities and then precompute all of their
paths: planning in space and time [14]. In this way, we
can ensure that none of the robot paths intersect with each
other in space-time configuration space. If a robot has com-
pleted its task early, it can drop to the lowest priority and
plan around the motion of all the other robots. The only
negative to this approach is that the robots must stick to
their assigned path. Otherwise, the system is at risk of a
collision. We have mitigated this risk by designing a robust
controller and including an emergency stop in the form of
the user killing the program as a safety measure against
collisions.

5.5 Controller

Path following for a mobile robot is typically done with
either a Pure Pursuit controller or a PID controller [2]. A
Pure Pursuit controller has a lookahead distance, and the
robot’s target position, or lookahead point, is the point
on the path that is the lookahead distance away from the
robot. Then, the robot drives in an arc to meet that looka-
head point. In a PID controller, the error is defined as the
difference between where the robot should be and where
the robot currently is. Then, the controller is tuned with
gains for the error, the integral of the error, and the deriva-
tive of the error and applies a control action according to
the sum of these three terms.

18-500 Final Project Report - PARROT, 12/17/2022 Page 5 of 19

The advantage of a Pure Pursuit is that it is fairly sim-
ple to implement, and the only tuneable gain is the looka-
head distance. However, the issue with a Pure Pursuit con-
troller is that it does not guarantee the orientation of the
robot should be aligned with the path that the robot should
follow [7]. It only controls the position of the robot over
time. This is an issue for our application because we want
the robots to be able to pick up and drop off the pallets with
a failure rate of under 1%. For the most optimal electro-
magnet and pallet interface, we want the electromagnet to
be directly aligned with the pallet. We also want the pallet
to be aligned with the desired drop-off zone. Both of these
factors mean that a Pure Pursuit controller is unsuitable
for our application.

A PID controller is one of the most ubiquitous types of
controllers. It does not need to know the dynamics of the
system that it is controlling, and is simple to implement,
but takes some time to tune. The disadvantage of this sys-
tem is that the robot is always trying to catch up to where
it should be at the current time [10]. In our application,
we are aiming for 0 collisions, which means that the robots
need to be following the path to within 5mm at each point
in time. This means that the controller also needs to be
aware of where the robot should be in the future to know
how to control the robot at the current time, which makes
a basic PID controller unusable for our application.

We adopted a mix of these two approaches, where we
factor in both how the robot should move at the current
timestep to reach its target position and orientation at the
next timestep as well as how the robot should correct for
any differences between its current and expected position
and orientation. This approach, with a feedforward con-
troller for how to reach the next waypoint and a feedback
controller for reaching the current waypoint, is how mo-
bile robot courses at CMU are taught [10], and we have
experience creating and tuning these types of controllers.

6 SYSTEM IMPLEMENTATION

Our main subsystems are the Robots, the Computer Vi-
sion section, the Robot Planner, and the Controller. The
robots include hardware as well as firmware design, while
the rest of the components are all software running on the
main computer.

The hardware design for the robots can be found at
https://github.com/PARROT-Capstone/Robot-Design.

The firmware for the robots can be found
at https://github.com/PARROT-Capstone/Robot-
Firmware.

The main computer software can be found
at https://github.com/PARROT-Capstone/Robot-
Controller.

6.1 Robots

Our robots are constructed out of a custom printed cir-
cuit board (PCB) that interfaces between the different sub-

systems. The schematic for the PCB can be seen in Fig. 15.
Fig. 4 contains the labeled CAD for a robot, and Fig. 5
shows a completed robot with the major components la-
beled.

We chose ESP8266s as our microcontroller (MCU) be-
cause they are WiFi compatible and have an antenna built
in for communication with the main computer. They use
Arduino-style programming, have a USB programmer, and
have built-in 3.3V power regulation. All of the I/O con-
nections on the PCB run to the MCU. The MCU runs a
pseudo-RTOS (real-time operating system) built on top of
the standard Arduino programming paradigm. We have a
task for periodically outputting to the screen, a task for
listening for commands from the main computer, a task
for periodically blinking a heartbeat LED, a task for mea-
suring the voltage of the batteries, a task for updating the
Neopixel LED colors, and a task for commanding the drive-
train servos. The screen was used for debugging during ini-
tial firmware bring-up, but was taken off once we switched
to using fiducial markers instead of Neopixels, as the screen
extended too high off the PCB into the fiducial.

Each task has a initialize within the setup() method.
Within the loop() method, each task is called and decides
if it needs to do any computation, based either on data
updating or the task period expiring.

6.1.1 Batteries and Power Regulation

We are using 2x Samsung 30Q 18650 batteries in series
for their high energy density, low DCIR, high discharge cur-
rent, and easy availability through Carnegie Mellon Racing.
These cells will provide an output voltage between 6.0V
and 8.4V, depending on their SOC. To regulate this volt-
age down to a consistent 5V for the rest of the robot, we
use a switching converter on the output of the batteries.
We needed to add extra capacitance to our 5V rail to pre-
vent our electromagnet from drawing power away from our
MCU when it was turned on. We have a voltage divider
with two resistors (560 kΩ and 300 kΩ) that converts the
possible 8.4V battery voltage to under 3.3V for the MCU to
use its internal analog-to-digital converter (ADC) to sense
the voltage. In the voltage sense task, the MCU samples
the ADC value every second and uses the known resistor
values to convert the ADC value back to the voltage that
the MCU thinks the batteries are at. The voltage sense
task then calls screenDisplayData() to alert the screen
task that there is new data for the battery voltage to dis-
play.

6.1.2 Web Server

The web server uses the ESP8266WebServer Arduino
Library to listen for POST requests with instructions from
the main computer. During the init for the web server task,
the task connects to the CMU-DEVICE WiFi network (the
MAC addresses for the ESP8266s are given while flashing
the MCUs using the Arduino IDE, and they are whitelisted
on the CMU WiFi device registration page). The init also

https://github.com/PARROT-Capstone/Robot-Design
https://github.com/PARROT-Capstone/Robot-Firmware
https://github.com/PARROT-Capstone/Robot-Firmware
https://github.com/PARROT-Capstone/Robot-Controller
https://github.com/PARROT-Capstone/Robot-Controller

18-500 Final Project Report - PARROT, 12/17/2022 Page 6 of 19

Figure 4: This is the labeled Crayon-CAD for a robot. The top view is on the left, and the side view is on the right.

Figure 5: This is the labeled picture of a completed robot. The top view is on the left, and the bottom view is on the
right.

18-500 Final Project Report - PARROT, 12/17/2022 Page 7 of 19

starts the server and calls screenDisplayData() to alert
the screen task that the MCU was able to connect to the
WiFi network so that the IP address can be displayed on
the screen. When the web server gets a POST request
from the main computer, an interrupt is generated and the
custom callback handler parses the JSON packet in the
POST request. In the handler, if the “dtype”, or data
type of the packet, indicates that the packet contains servo
commands, the handler calls the drivetrainSetSpeed()

function to set the servo speeds. If the “dtype”, in-
dicates that the packet contains an electromagnet com-
mand, the handler writes a logic high or low to the elec-
tromagnet pin, depending on if the electromagnet should
turn on or off. If the “dtype” indicates that the packet
should change the Neopixel color, the handler calls the
neopixelSetRobotNumber() function to change the robot
number. The robot number is correlated to the Neopixel
LED color within the Neopixel task.

6.1.3 Servos

We are using 9g continuous rotation servos as our drive-
train. Using a continuous rotation servo poses many advan-
tages such as offloading the torque control loop to maintain
a velocity target to the servo’s internal controller. The con-
tinuous rotation servos are also much lighter than standard
motors and do not require additional circuitry to drive.
These servos have a stall torque of 1.3 kg·cm, and with 3cm
radius wheels, each wheel can move 0.433 kg, so the maxi-
mum mass our robots can move (including the robots them-
selves) is 0.867 kg, which is 1.91 lbs. The drivetrain task’s
initialization uses the Arduino Servo Library to configure
the MCU pins that the servos are attached to as software
PWM outputs. The servos are updated asynchronously by
the web server task. The drivetrain task checks that the
web server has sent a command recently and will stop the
servos if it has been more than 1 second since the MCU
has received a servo command from the web server. This
is so that if something goes wrong in the main computer
and cannot command servos, the robots will stop in place
and avoid collisions. In this case, the software stack on the
main computer can be restarted if necessary.

6.1.4 Electromagnet

We are using an electromagnet to be able to pick up
the pallets. The pallets are made of metal, and a robot
will drive over a pallet, actuate the electromagnet to pick
up the pallet, drive to the goal position while holding the
pallet, and then deactivate the electromagnet to drop the
pallet before driving off to its next goal. The electromagnet
is activated and deactivated asynchronously from the main
pseudo-RTOS tasks in the handler for the web server.

When we tested the pallet pickup with a fully integrated
robot, we discovered that the pallets were too heavy for the
robot and created enough torque to tip the robot forward
and raise at least one wheel off the ground. To combat this
issue, we water-jetted steel plates and attached them to

the back underside of the robots to act as counterweights
against the pallets.

6.1.5 Neopixels

Although we did not use Neopixels for localization, we
chose them for our RGB LEDs since each LED has an in-
ternal IC. As such, one doesn’t need to worry about current
control for brightness control, and instead, we just use an
SPI-like communication protocol to address these LEDs to
the desired color value. There are also Arduino drivers for
commanding Neopixels that we utilize to simplify commu-
nication with the LEDs. The Neopixel task is still present
in the robots as a backup incase the fiducials fail. The task
could be modified to show additional debug messages as
different LED colors if needed. The task checks if the but-
ton on the MCU was pressed and moves to the next robot
number in the sequence. Each robot number corresponds
to a unique color for the Neopixels to display. The robot
number can also change asynchronously via the web server
handler. When the robot number is changed, the Neopix-
els are updated and screenDisplayData() is called so that
the robot number is displayed on the screen.

6.1.6 Screen

We are using a 128x32 OLED display for initial firmware
debugging. The display allows us to show the robot’s
SOC, the robot’s WiFi connectivity status, and the robot’s
unique ID. The display runs over I2C, and we utilized
the Arduino Adafruit SSD1306 library to offload graph-
ics processing. The screen displays 4 lines of text, each
of which is 8 pixels in height. The screen task initializes
the screen and periodically checks if any of the other tasks
have screenDisplayData(). If the data that the screen
needs to display has changed, the screen uses the library
functions to issue I2C transactions to clear the screen and
write the new data to the screen.

6.2 Computer Vision

The high-level goal for the computer vision algorithm is
to determine where the field is and then determine where
the robot is within that field.

Originally our Computer-Vision stack worked by using
the principles of feature matching and homography. How-
ever, after struggles with getting image masking to work re-
liably, we decided to switch back to a simpler Arcuo-marker
(QR-style) localization system. All of the Arcuo marker lo-
calization logic is implemented via OpenCV’s helper func-
tions.

As one can see in Fig. 7a, the robot’s have a 4x4 style
Aruco marker attached on top of them. Similarly the goal
and pallets also have similar, yet unique Aruco markers
attached as seen in Fig. 8a

18-500 Final Project Report - PARROT, 12/17/2022 Page 8 of 19

(a) Exaggerated tripod image of sandbox (b) Scaled homography of field

Figure 6: Sandbox detection and calibration

(a)

Figure 7: Robot Top Fiducial

18-500 Final Project Report - PARROT, 12/17/2022 Page 9 of 19

(a)

Figure 8: Pallets and their goal dropoff points

(a)

Figure 9: Sample output from the robot visualizer

18-500 Final Project Report - PARROT, 12/17/2022 Page 10 of 19

6.2.1 Camera Stack

Our Camera hardware was originally an off-the-shelf
Logitech C920 Webcam. However, midway through the
project, we switched to an IPhone. We did this for 2 rea-
sons. The IPhone camera has a higher dynamic range than
the webcam, allowing us to get higher quality video out of
the camera. Secondly, the IPhone camera is wireless, al-
lowing us to freely move our main computer anywhere as
needed.

The 1080p video is important for us to be able to hit our
target localization accuracy. A 1920x1080p image across a
4m x 2m field means each pixel represents 2mm in the real
world. Using a lower-resolution video feed would give the
algorithm less tolerance for us to hit our 5mm of localiza-
tion accuracy.

6.2.2 Sandbox Detection

The field detection is done with the use of a fiducial.
Fiducials are like QR code tags that are supported by the
OpenCV library for easy detection and localization. In par-
ticular, the cv2.aruco library was used [13].

The computer vision stack is provided with a set of 4
fiducials that will mark the edges of the field as shown in
Fig. 6a. When the camera turns on, the system will look for
these 4 fiducials and use the pixel positions to find which
fiducial is the bottom left, top right, etc.

Once we have the fiducial positions, we
can simply use an inverse affine transform
(cv.estimateAffinePartial2D()) to isolate our sandbox
as shown in Fig. 6b!

Lastly, before this sandbox image is returned to the rest
of the compute stack, we look at the width of each fiducial
detected, and use a hard-coded known real-world width of
the fiducial to calibrate our image such that each pixel is
one mm in the real world.

6.2.3 Robot Localization and visualizer

The robot localization works on this transformed and
flattened sandbox image. Using the flattened image, we
can use OpenCv’s Aruco localization functions to find the
x,y,theta positions of each of the pallets, goals, and robots.
All this information is overlayed on a custom visualizer that
draws the robot, pallet, and goal poses on the video stream
with additional information like the robot paths and feed-
back + feedforward vectors. One can see this in Fig. 9acos θc(t) − sin θc(t) x

sin θc(t) cos θc(t) y
0 0 1

 (4)

From this transformation matrix, the 3rd column repre-
sents the robot’s x and y position, and its angle is calculated
with (5).

θ = atan2 (sin θc(t), cos θc(t)) (5)

A visual example of localization can be found in Fig. ??.

6.3 Robot Planner

The robot planner is divided into two main parts: the
task planner and the path planner. The task planner
is responsible for assigning the robots to specific pallet-
transportation jobs, while the path planner generates the
exact motions for the robot to follow to accomplish its spe-
cific task. We precompute the tasks and motions for all of
the robots and then allow the controller to execute them.

6.3.1 Task Planner

The task planner takes as input a list of pallet+goal
pairs plus the positions of all the robots and assigns each
robot a pallet and goal task. It prioritizes robots by mini-
mizing the overall distance of the trajectory (i.e. robot to
pallet and pallet to goal). The distance used is the straight-
line distance between the two sets of points. Overall, the
set of assigned tasks should be such that the straight-line
distance collectively traveled by all of the robots is mini-
mized.

Figure 10: This shows how we are planning in space-time
state space. Notice how the paths may overlap in the x,y
dimensions but they do not overlap in time. No two robots
will be at the same place at the same time.

6.3.2 Path Planner

The path planner is the part of the system that co-
ordinates the motion of all of the robots such that they
can collaboratively work without colliding. Each robot has
a sub-planner that is responsible for planning its motion
given the paths of all other higher-priority robots (as de-
cided by the task planner). The main planner loops over
all of the robots in order of priority, planning the path of
each of them around static obstacles (i.e. pallets) and the
paths of higher-priority robots.

18-500 Final Project Report - PARROT, 12/17/2022 Page 11 of 19

Discretized State Space The state space for our plan-
ner is (x, y, θ, t), where t is time. Including time in the state
space is important because it allows us to overlapping paths
between the multiple robots that do not overlap in time.
We have discretized the map into a 2d grid with squares of
10mm each, with 8 different possible angles for the robot at
each square. We have generated a set of motion primitives
for the robot which respect its non-holonomic turn radius
constraints. What this means is that given an (x, y, θ) we
define a set of possible next states the robot can be in given
a set of small-predefined motions we know the robot is able
to make.

Graph Search Each sub-planner plans a path in two seg-
ments: from robot to pallet and from pallet to goal. Two
different A* graph searches are run: one for each segment.
We have modified this algorithm to allow for the time vari-
able to come into play. When a state (x, y, θ) is explored
by the algorithm, it is assigned a time that the robot is
expected to be at that state based on the previous state’s
time, the distance between the states, and the robot’s ve-
locity. This state is then checked for collisions against all
static obstacles as well as the dynamic positions of other
robots at the state’s assigned time. If it is in static or dy-
namic collision, it is ignored. Note that it is possible for the
(x, y, θ) to be explored by A* several instances with multi-
ple assigned times. This allows the robot paths to intersect
in physical space while not colliding since their physical
path intersection happens at different points in time.

Collision Checking For static collision checking (i.e.
against non-moving objects) we simply check for an inter-
section between the robot’s footprint and any obstacles.
For dynamic collisions, we loop through all the paths of
higher-priority robots and check for overlapping footprints
of robots at the same timestep with a buffer of 5 seconds.
This buffer prevents minor errors in the control system from
resulting in a collision by keeping robots far enough apart
from each other.

6.4 Control System

The control system takes the paths generated by the
motion planner and the current positions for each robot
given by the computer vision section and generates HTTP
POST requests to command the robots’ servos and electro-
magnets such that the robots follow the path as accurately
as possible. To do this, each robot has its own individual
controller that interpolates between the waypoints in the
path, generates the feed-forward and feedback terms in the
robot’s forward linear velocity and angular velocity, and
commands the servo speeds.

6.4.1 Waypoint Interpolation

The path that the robot should follow includes the
robot’s position, orientation, and time, the controller needs
to interpolate between the adjacent waypoints to determine

where the robot should be at each point in time between
these waypoint times. If the adjacent waypoints have the
same robot orientation, (6) describes how the linear inter-
polation is calculated

x∗(t) = x2−x1

t2−t1
(t− t1) + x1

y∗(t) = y2−y1

t2−t1
(t− t1) + y1

θ∗(t) = θ1 = θ2

(6)

where (x1, y1, θ1, t1) and (x2, y2, θ2, t2) are the two adjacent
waypoints with t2 > t1 and (x∗(t), y∗(t), θ∗(t)) is the de-
sired target robot position and orientation for time t with
t1 ≤ t ≤ t2.

If the adjacent waypoints do not have the same robot
orientation, two cubic hermite splines are calculated, using
the same notation as above, for both x∗ and y∗ as functions
of t in the domain t1 ≤ t ≤ t2. Equation (7) describes the
relationship between θ and robot’s velocity vector. This
invariant must be met at each of the waypoints. The
scipy.interpolate.BPoly.from derivatives Python
function is used to calculate the cubic hermite splines
subjected to the constraints in (8) for a given curviness
factor, k.

tan θ =
dy/dt
dx/dt

(7)

x∗(t1) = x1

dx∗

dt

∣∣∣
t

= k ∗ cos θ1
x∗(t2) = x2

dx∗

dt

∣∣∣
t

= k ∗ cos θ2
y∗(t1) = y1
dy∗

dt

∣∣∣
t

= k ∗ sin θ1
y∗(t2) = y2
dy∗

dt

∣∣∣
t

= k ∗ sin θ2

(8)

The desired orientation of the robot along this cubic
interpolation is given by (9).

θ∗(t) = atan2

(
dy∗

dt

∣∣∣∣
t

,
dx∗

dt

∣∣∣∣
t

)
(9)

6.4.2 Feed Forward Control

The feedforward control is the component of the control
action that assumes the robot is always on track with the
target pose specified by the interpolation. It is trying to
move the robot to the next timestep on the interpolation
[3]. Equation (10) shows how to calculate the feedforward
terms for linear velocity and angular velocity. The linear
velocity feedforward term is the magnitude of the velocity
vector for the interpolated path in the x and y directions.
The angular velocity feedforward term is computed as the
product of the linear velocity feedforward term and the cur-

18-500 Final Project Report - PARROT, 12/17/2022 Page 12 of 19

vature of the interpolated path in the x and y directions.
vff (t) =

√(
dy∗

dt

∣∣∣
t

)2

+
(
dx∗

dt

∣∣
t

)2
ωff (t) =

dx∗
dt |t·

d2y∗

dt2

∣∣∣
t
− dy∗

dt

∣∣∣
t
· d2x∗

dt2

∣∣∣
t

(vff (t))
2

(10)

The Python function scipy.misc.derivative is used to
calculate the first and second derivatives of the interpolated
path between waypoints.

6.4.3 Feedback Control

The feedback control is the component of the control ac-
tion that is trying to correct for errors between where the
robot currently is and where it should be. For current pose
(xc(t), yc(t), θc(t)) and desired pose (x∗(t), y∗(t), θ∗(t)),
(11) describes the error (xe(t), ye(t), θe(t)) with reference
to the robot’s coordinates.xe(t)

ye(t)
θe(t)

 =

 cos θc(t) sin θc(t) 0
− sin θc(t) cos θc(t) 0

0 0 1

x∗(t)− xc(t)
y∗(t)− yc(t)
θ∗(t)− θc(t)

(11)

Then, the linear velocity and angular velocity feedback
terms are given by (12) where the KP , KI , and KD gains
are tune-able using standard PID tuning methods [10].
vfbk(t) = KPx · xe(t) +KIx ·

∫
xe(t)dt+KDx · dxe(t)

dt

ωfbk(t) = KPy · ye(t) +KIy ·
∫
ye(t)dt+KDy · dye(t)

dt

+KPθ · θe(t) +KIθ ·
∫
θe(t)dt+KDθ · dθe(t)

dt

(12)

6.4.4 Robot Commands

Once the feedforward and feedback terms are calcu-
lated, (13) describes how to compute the control action,
where v(t) represents the linear velocity to command to
the robot and ω(t) represents the angular velocity to com-
mand to the robot.{

v(t) = vff (t) + vfbk(t)

ω(t) = ωff (t) + ωfbk(t)
(13)

Then, one can use (14) to calculate the linear velocities of
each of the wheels, where vl(t) represents the linear velocity
of the left wheel, vr(t) represents the linear velocity of the
right wheel, and b is the wheelbase (the distance between
the points of contact between the wheels and the ground).{

vl(t) = v(t)− ω(t) ∗ b
2

vr(t) = v(t) + ω(t) ∗ b
2

(14)

Finally, the servo PWM duty cycles must be calculated.
Equation (15) shows how to convert the linear velocity of
the wheels to servo duty cycles. The servo duty cycle ranges
from 0 to 180. 0 represents the wheel rotating counter-
clockwise, and 180 represents the wheel rotating clockwise.
Since the right servo is mounted backward on the robot and

a duty cycle of 90 corresponds to the wheel being at rest,
the right servo duty cycle is inverted, and both duty cycles
are offset by 90. r represents the radius of the wheel, and
Kω represents the slope of the relationship between desired
wheel angular velocity and duty cycle.{

Sl(t) = 90 + vl(t)
r ·Kω

Sr(t) = 90− vr(t)
r ·Kω

(15)

Once the servo PWM duty cycles are computed, the con-
troller can send an HTTP POST request with the packet
data type indicating that the packet contains servo com-
mands and the rest of the packet containing the left and
right servo duty cycles.

Each waypoint also has a tag associated with the posi-
tion, orientation, and time. This tag indicates whether the
robot should be driving, picking up the pallet, or dropping
off the pallet. If the tag associated with the current way-
point indicates that the robot should pick up the pallet,
the controller sends an HTTP POST request to the robot
with the instructions in the packet for actuating the elec-
tromagnet. If the tag associated with the current waypoint
indicates that the robot should drop off the pallet, the con-
troller sends an HTTP POST request to the robot with
the instructions in the packet for de-actuating the elec-
tromagnet. Otherwise, the controller does not send any
instructions regarding the electromagnet to the robot.

6.4.5 Emergency Stop

In the case when we may need to stop all robots from the
User Interface, either clicking the emergency stop button
or hitting Ctrl-C in the terminal running the main com-
puter program will cause all controllers to send an HTTP
POST request to their respective robots with both wheel
velocities equal to 0, which corresponds to a duty cycle of
90. This will cause all robots to stop moving.

7 TEST, VERIFICATION, &
VALIDATION

Outlined below are the various tests we ran to validate
our design goals. We have also compiled a table mapping
metric to test and results for easy reference in Table 1.

7.1 Tests for power consumption and bat-
tery life

We ran a repeated loop of robot pickup → move →
robot dropoff → move → pause. This was a fairly accurate
representation of our robot’s average action while letting
us run a continuous loop. We timed the robots from a
full charge of 4.2V per cell and measured the cells after 3
hours. The average battery cell across the 3 robots had a
voltage measurement of 3.57V per cell, which corresponds
to about 50% SOC of a 18650 Samsung 30Q cell. Extrap-
olating this to see how long the robots would have lasted

18-500 Final Project Report - PARROT, 12/17/2022 Page 13 of 19

on a full charge results in a battery life of 6 hours. We
previously had issues with the electromagnet discharging
the 5V power rail when it was turned on, causing the en-
tire robot to reset momentarily. However, adding a large
capacitor between the 5V power rail and the ground aided
in preventing our robots from resetting and extended our
battery life beyond our desired 4 hours of runtime.

7.2 Computer Vision Resolution Tests

We placed the robots and pallets in 10 arbitrary but
fixed positions for 5 repetitions. We measured the accu-
racy of the localization against ground truth measurements.
We aimed for localization accuracy of less than 5mm and
achieved this metric with an average accuracy of 0.8mm.

7.3 Latency Tests

We gave the robots 20 start-goal pairs and timed the
elapsed time from each iteration sense-plan-act software
loop. We averaged the elapsed loop time to get an un-
derstanding of latency across 10 minutes of operation of 3
robots. Initially, as seen in Fig. 11, we had a latency of
115ms with one robot, as we performed our entire sense-
plan-act loop sequentially. We were aiming for a latency
of 200ms, and this would have met this metric, but we
had to run our robots at a speed of around 1.1 cm/s to
ensure that the robots could stay on their path with this
latency. This was much slower than we would have liked, as
the robots inched across the field along their paths. This
sequential software did not scale well to multiple robots,
especially since most of the bottleneck was transmitting
the commands to the robots over WiFi POST requests. To
reduce the loop latency, we created a separate thread for
each robot just to send the command to the robot. The
main thread would capture an image and run the local-
ization and controllers, while the communication threads
would take the last output from the controllers and send
the left and right wheel speeds to the robots. From there,
we noticed that we could parallelize this further by splitting
capturing an image into a separate thread that sends data
to the main thread for localization. This brought our loop
latency down to 35ms, and that latency barely increases as
we add more robots, as shown in Fig. 11.

Figure 11: Graph of sense-plan-act loop for increasing num-
ber of robots

7.4 Controller & Actuator Tests

We gave the robots 5 different curvature start-goal pairs
and measured the accuracy and precision of the robots’ ex-
ecution of the paths across 5 runs. We were aiming for a
controller accuracy of under 5mm, and our maximum av-
erage controller error across the 25 runs was 2.3mm. See
Fig. 12. It took many iterations of tuning our control al-
gorithm and 3 sets of PID values to achieve this. Our
controller and localization system was robust enough to re-
join its desired path even when there was adversarial noise
injected into the system by moving the robot off of its path
or holding the robot back.

Figure 12: Bar graph of average controller error for differ-
ent configurations

7.5 Planner Tests

We planned 50 layouts with various numbers of robots,
either 1, 2, or 3, and ensured that no paths collided in
both space and time and followed the minimum clearance
distance between robots. We achieved this metric but no-
ticed that around 1 in 5 times, the planner fails to plan
paths for all robots on the field, often due to the posi-
tioning of the robots and pallets and a high likelihood of
potential robot-robot collisions. In these sub-optimal situ-
ations, the planner gives the paths for as many robots as

18-500 Final Project Report - PARROT, 12/17/2022 Page 14 of 19

it can, and those robots that don’t have a path are staying
in place until the moving robots have reached their goals.
And once the moving robots have dropped off their respec-
tive pallets, the robot planner recomputes any paths so
that the remaining pallets can be picked up. There were
no robot-robot collisions in any of these tests, but there
were collisions in 6% of these tests between a robot that
had picked up a pallet and a different pallet on the field.
This was likely due to the planner approximating the robot
as a circle with a given radius, and that radius inflated once
the robot picked up a pallet. Although this approximation
speeds up the collision-checking software, there is a poten-
tial for unintended collisions between robots and pallets,
since neither of them is a perfect circle.

7.6 Scalability Testing

We planned and executed 2 arbitrary, but fixed, map
layouts across a sweep of robot counts from 1 to 3. We
timed the execution time loading all the ’trucks’ and com-
pared the average speedup given the independent variable
of robots in the field. Fig. 13 shows the speedup graph
for one of these trials. In both trials, we noticed that we
achieved near-perfect speedup at 3 robots (3x speedup at
3 robots). This met our overall goal of 2x speedup at 3
robots. Our result was because with 1 robot, that robot
has to do extra work to move from one goal to pick up its
next pallet, resulting in a larger total traveling distance for
1 robot than 3 robots. The knee in the speedup graph at
2 robots was because with 3 pallets, the first two pallets
can be dropped off at the same time, and then one robot
is idle, as only one robot can pick up the last pallet.

Figure 13: Graph of speedup for increasing number of
robots

7.7 Pickup and Dropoff Testing

We ran our system 50 times against different robot-
pallet-goal tuples and measured pickup and dropoff relia-
bility. Our goal was a >99% pickup rate and a dropoff dis-
tance of 5mm. In our testing, we achieved a 90% pick-up
rate and 84% drop-off rate. This failure can be attributed
to the robot being slightly misaligned in orientation when

it tries to pick up the pallet. Most of the time, the sys-
tem is able to correct this, but sometimes the pallet gets
knocked sideways and lines up with the robot’s wheel rather
than the electromagnet, resulting in the robot driving over
the pallet. The proper fix for this would be to have a dy-
namic planner around the pallet to ensure that the robot
has picked up the pallet and retry pickup if the robot has
not picked it up the first time. The dropoff issue was par-
tially caused by the pallet getting magnetized by the elec-
tromagnet if the robot has held onto the pallet for a long
time. This was mitigated by adding a piece of electrical
tape on the pallet to increase the distance between the pal-
let and the electromagnet, slightly decreasing the magnetic
field. The other issue during dropoff was that the robot
was over 5mm away from the desired dropoff location. A
fix for this would be to allow the controller to have more
time to correct for errors before the path planner says to
drop off the pallet at that time step.

8 PROJECT MANAGEMENT

8.1 Schedule

Given the ambitious nature of our project which in-
volves custom hardware, complex software systems, and
sensor integration, we had to start quite early and aim
for an aggressive timeline. Our Gantt chart is viewable
in Fig. 14.

8.2 Team Member Responsibilities

Each team member’s unique responsibilities are listed
below:

• Saral was responsible for the hardware design of the
robot and the computer vision software.

• Prithu was responsible for the task planning and mo-
tion planning software.

• Omkar was responsible for the robot’s firmware and
the controller software.

Given the complex, interdisciplinary nature of the
project, we wanted to make sure that the initial design
and integration of the project were done by all members
of the team to ensure the minimization of specifications,
requirements, and system weaknesses from falling through
the cracks.

8.3 Bill of Materials and Budget

The bill of materials and budget per robot can be found
in Table 2.

The primary expense of this project is the Robot BOM.
The only additional hardware to the robot is a camera and
a personal computer. A webcam was borrowed from the
ECE 18-500 Inventory, but we preferred to use an iPhone
camera.

18-500 Final Project Report - PARROT, 12/17/2022 Page 15 of 19

Table 1: Testing Summary

Requirement Metric Test Result

Localization
Accuracy

<5mm
Place robot and pallets in 10 arbitrary, but fixed
positions for 5 cycles. Measure accuracy and
precision of localization system

0.8mm

Controller
Accuracy

<5mm
Have robot execute 20 unique start-goal waypoint
pairs 5 times. Measure position accuracy.

2.3mm

Path
Planning
Collision
avoidance

100%
Plan 50 layouts with 3 or more robots and ensure
no paths collide

0 robot-robot
collisions, but
robot-pallet
collisions occur 6%
of the time

Scalability
testing

2x across 3 robots.
Run system against 15 arbitrary, but fixed map
layouts with a varying number of robots

3x at 3 robots

Battery
Runtime

>4 hours
Run test by having robots run a loop of tasks till
the battery dies.

6 hours

Pickup and
Dropoff

>99% reliability on
both pickup and

dropoff

Run system 50 times against different robot-
pallet-goal tuples and record pickup and dropoff
success rate

90% pickup; 84%
dropoff

Figure 14: Gantt Chart

Table 2: Bill of materials per Robot

Description # Manufacturer Quantity Cost @ Total
9g Servos with wheels Geekstory 2 $6.25 $13.50
NodeMCU KeeYees 1 $4.50 $4.50
PCB PCBway 1 $6.17 $6.17
NeoPixels NA 5 $0.09 $0.45
Electrical Passives NA 1 $5 $5
OLED Screen Hosyond 1 $3 $3
18650 Cells Samsung 2 $5 $10
18650 CellHolders abcGoodefg 2 $0.9 $1.8
Electromagnet KeyStudio 1 $10 $10
Switch Cylewet 1 $0.04 $0.04
Fuse NA 1 $2 $2
Power Regulator Drok 1 $2 $2
Misc headers NA 1 $2 $2

$60.46

18-500 Final Project Report - PARROT, 12/17/2022 Page 16 of 19

8.4 Risk Mitigation

Early in the semester, we completed a preliminary risk
evaluation and risk mitigation and produced many MVP
demos that proved the viability given our initial risks of
project complexity and timeline issues. The following list
of risks and risk mitigations are based on the outstanding
work given our current position.

8.4.1 Webcam sensitivities

We have noticed that the webcam was quite sensi-
tive to the environment in which it is operating. Simple
changes in ambient lighting (room getting brighter/dim-
mer, like a cloud outside passing over the sun) affected the
camera’s auto-exposure, auto-whitebalance, and dynamic
range. This makes our system quite sensitive and not op-
timal.

As risk mitigation, we found a way to manually con-
trol our camera’s settings and disable auto-exposure and
auto-white balance features. Furthermore, we were exper-
imenting with a dynamic calibration method to figure out
what robots are in the environment rather than hard-coded
RGB values for each robot using a Look-Up Table, but we
pivoted away from Neopixesl instead of fiducial markers for
localization, rendering this algorithm obsolete. More infor-
mation about our approaches can be found in Section 6.2.3.

This proved to be unstable, especially with the camera’s
auto-focus causing the computer vision system to intermit-
tently lose track of the robots. Therefore, we switched to
using our iPhones as our webcam due to their exceptional
dynamic range capabilities. We had already performed a
quick demo to analyze the phone to computer wireless la-
tency and found it to be under 20-30 ms. This was more
than acceptable for our needs. If anything, this may be a
better approach if we intend to launch our project as an
open-source robotic platform as more people have access
to personal smartphones than people have access to $100+
USB webcams.

8.4.2 Timing issues

Halfway through the semester, most of our demos used
only a subset of all the systems that were needed in the
whole robot stack. We had a hard-coded emulation to sim-
ulate the other systems. For example, we tested the robot
controller using our computer vision localizer but with sim-
ulated paths from the motion planner. Similarly, we have
tested the motion planner in isolation.

We were concerned that integrating everything would
affect the timing and latency of the entire system mak-
ing it unstable and not working as expected. To miti-
gate this risk, we have pulled our integration timeline up
and allocated more time to iron out potential issues like
these. In the end, we parallelized our software stack so
that one thread was polling for images from the camera,
another thread did the localization and control for all the
robots, and one thread per robot was communicating the
controllers’ output to the individual robots.

9 ETHICAL ISSUES

While the ethical issues for this project are minimal
given that the system is not used by the general public,
there are still several important factors to consider.

9.1 Displacement of Workers

As with all technologies that seek to automate work
previously done manually by humans, the implementation
of our system will most likely result in the displacement of
workers who currently work to move items around ware-
house floors. This shift will occur in large part due to the
large efficiency gains (both in terms of time and financial
cost) that our system will provide over the current status
quo. The solution to this issue is not to prevent the im-
plementation of our system. If we don’t proceed with this
product, it is highly likely that another group/company
will. Instead, a better approach is to find ways to retrain
the workers so that they either have the skills necessary
to help manage and maintain this new system or have the
ability to take on a different job that has not yet been au-
tomated.

9.2 Security & Data Privacy

Another ethical risk that our system faces is security
and data privacy. Since our system is fully wireless and
Wi-Fi-based, it is prone to be hacked and taken over by
malicious actors. One way to mitigate this risk is to ensure
that the system is on a network either not connected to the
outside internet or heavily protected by firewalls. The sys-
tem should also have emergency-stop and safety systems in
place that allow for an immediate system override, should
an outside actor gain control of the robots.

Another risk surrounds data privacy. Our system uses
a camera as the main component of our computer vision
stack and is used to localize the robots, pallets, and goal
positions. In the real world, it is possible that this cam-
era can pick up images of warehouse employees and pose
privacy concerns. To address this issue we have made it
such that our system doesn’t store any image taken by the
camera. These images are discarded immediately after lo-
calization.

9.3 Safety of Warehouse Employees

The biggest ethical issue that we face is warehouse em-
ployee safety. In the real-world, it is extremely likely that
there will be people working in warehouses alongside our
robots. In this situation, it is highly important that our
robots behave in a safe manner that doesn’t collide with
or otherwise harm these humans. In our current state, our
robots are not able to account for uncertain dynamic obsta-
cles (i.e. humans) in their environment. This is an area of
future work discussed in Section 11.1 that must be worked
on for our system to be safe enough to work with humans.
In addition to this, we must also add sensors to the robot

18-500 Final Project Report - PARROT, 12/17/2022 Page 17 of 19

such that they can emergency stop if they detect they are
too close to obstacles in their environment not detected by
the CV system.

10 RELATED WORK

There are several different systems being developed to
tackle the issue of warehouse automation. The one most
similar to ours is the space of Automated Guided Vehicles
[16]. These types of systems use robot forklifts to move
pallets around a warehouse floor and into trucks. Another
type of system is Automated Storage and Retrieval sys-
tems which allow for goods on the warehouse floor to be
brought to humans quickly [16]. An example of this is the
Amazon Kiva robots [8]. Finally, we have pick-and-place
robots which are more used for organizing products on an
assembly line [16]. These robots are used in a warehouse
setting, but not for the same task we are trying to solve.

11 SUMMARY

In this project, we recreated the parallelization of robots
in a factory/warehouse setting via a tabletop model. By us-
ing custom, modular robotics with the PCB as the frame,
we were able to design and build extremely simple and
mass-producible robots. Using computer vision for local-
ization of the robots, pallets, and trucks, we created a path
within a (x, y, angle, time) state space and enforced that
path with a controller to eliminate manufacturing errors
between robots. Our goal was a 2x speedup with 3 robots
which we exceeded with a 3x speedup for 3 robots.

11.1 Future Work

There are three main areas for future work: communi-
cation protocol updates, dynamic planning, and servo im-
provements.

11.2 Communication Protocol Updates

One of the biggest issues that we faced with the ro-
bustness of our system was the inherent latency of CMU’s
Wi-Fi network. This had major effects on the quality of
our controller as slow or dropped packets made it increas-
ingly hard for the robot to reliably and accurately follow
the path it was provided. As an improvement on this, we
would like to test with our own private network to see if
it can provide any improvements over the current system.
We suppose it should be better given the significant reduc-
tion in network traffic and lack of firewalls. Furthermore,
we would like to experiment with other network protocols
(ex. Bluetooth / Zigbee) to see if they provide any further
gains over Wi-Fi.

11.3 Dynamic Planning

Given the scope of this class, we decided to have our
planner precompute all of the robot paths that would then
be executed by the controller. While this planner works
well for our current purposes, it is not able to react to
uncertainties in the environment (ex. unsuccessful pallet
pickup, humans). For these situations, it would be benefi-
cial to have a ”dynamic” planner which can keep checking
the state of the environment and quickly replan parts of the
path if it is detected the robot is on a collision course or
performed unexpectedly. These types of ”dynamic” plan-
ning are commonly used in current industrial applications.

11.4 Servo Improvements

The current servos used on our robots are cheap, yet
extremely unreliable leading to a significant burden on our
controller feedback loop to correct for the inherent errors
and make our robot follow its desired path. Purchasing
more accurate servos will enable our robots to travel faster
with increased accuracy.

11.5 Lessons Learned

If future groups want to explore projects in the area of
swarm robotics and multi-agent path planning and control,
they should be aware of the work that has to happen be-
fore any of the subsystems could be integrated. We wrote
simulators to test the motion planner and the controllers to
ensure that they were working as expected before we could
integrate them with the computer vision subsystem. We
also had to validate the localization algorithm was working
independently before we could feed that into the planner
and the controller. Then, when it came time to integrate
with the hardware, we spent the majority of a weekend try-
ing to get a single robot to drive in a straight line. There
were issues with the coordinate frames that were difficult to
hunt down. The localizer used the image coordinate frame
and returned an angle between 0 and 2π, but in the clock-
wise direction. The planner used a Cartesian coordinate
frame with counterclockwise angles between 0 and 2π. The
controller was also using a Cartesian coordinate frame but
with counterclockwise angles between −π and π. Resolving
this issue became a quite difficult challenge for us.

There were several hardware bugs that we discovered
during integration, like the electromagnet drawing too
much current and causing our regulator to reset our MCU,
or the pallets getting magnetized once the robots have held
onto them for too long. We were able to fix these issues,
but it was integral that we had prior experience debugging
hardware as well as software to understand how to diagnose
and fix these issues.

Glossary of Acronyms

• ADC - Analog to Digital Converter

18-500 Final Project Report - PARROT, 12/17/2022 Page 18 of 19

• BOM - Bill of Material

• CAD - Computer Aided Design

• DOF - Degree of freedom

• DCIR - Direct Circuit Internal Resistance

• HSV - Hue, Saturation, Vibrance

• HTTP - Hypertext Transfer Protocol

• IC - Integrated Circuit

• JSON - JavaScript Object Notation

• MAC - Media Access Control

• MCU - Microcontroller Unit

• PID - Proportional, Integral, Derivative control

• PCB - Printed Circuit Board

• PWM - Pulse Width Modulation

• SOC - State of charge

References

[1] Amazon Robotics Uses Amazon SageMaker and AWS
Inferentia to Enable ML Inferencing at Scale. 2022.
url: https://aws.amazon.com/solutions/case-
studies/amazon-robotics-case-study/.

[2] Omead Amidi. Integrated Mobile Robot Control.
Tech. rep. CMU-RI-TR-90-17. Pittsburgh, PA:
Carnegie Mellon University, 1990.

[3] Muhammad Asif et al. “Feedforward and feedback
kinematics controller for wheeled mobile robot trajec-
tory tracking”. In: Journal of Automation and Con-
trol Engineering 3.3 (2015), 178–182. doi: 10.12720/
joace.3.3.178-182.

[4] David Benady. How robotics are Optimising Ware-
house Operations. 2017. url: https : / / www .

raconteur . net / technology / automation /

how - robotics - are - optimising - warehouse -

operations/.

[5] Chris Cacioppo. Advantages of system-directed robots
vs. swarming robots. 2022. url: https://6river.
com/what- are- the- advantages- of- directed-

picking-robots-vs-swarming-robots/.

[6] Devin Connell and Hung Manh La. Dynamic Path
Planning and Replanning for Mobile Robots using
RRT*. Number: arXiv:1704.04585 arXiv:1704.04585
[cs]. Apr. 2017. url: http://arxiv.org/abs/1704.
04585 (visited on 10/14/2022).

[7] R. Craig Coulter. Implementation of the Pure Pur-
suit Path Tracking Algorithm. Tech. rep. CMU-RI-
TR-92-01. Pittsburgh, PA: Carnegie Mellon Univer-
sity, 1992.

[8] How Kiva Systems and Warehouse Management
Systems Interact | RoboticsTomorrow. en-US. url:
https : / / roboticstomorrow . com / article /

2011 / 12 / how - kiva - systems - and - warehouse -

management - systems - interact / 23/ (visited on
10/15/2022).

[9] Marius Jurt et al. “Collective transport of arbitrar-
ily shaped objects using robot swarms”. In: Artifi-
cial Life and Robotics 27.2 (2022), 365–372. doi: 10.
1007/s10015-022-00730-5.

[10] Alonzo Kelly. Mobile Robotics: Mathematics, models,
and methods. Cambridge University Press, 2013.

[11] Geekplus International Company Limited. Robotics.
2022. url: https : / / www . geekplus . com /

technology/robotics.

[12] Robots. 2022. url: https://cajarobotics.com/
robots/.

[13] Adrian Rosebrock. Detecting aruco markers with
opencv and python. 2021. url: https : / /

pyimagesearch . com / 2020 / 12 / 21 / detecting -

aruco-markers-with-opencv-and-python/.

[14] Dawei Sun et al. Multi-agent Motion Planning
from Signal Temporal Logic Specifications. Number:
arXiv:2201.05247 arXiv:2201.05247 [cs, eess]. Jan.
2022. url: http://arxiv.org/abs/2201.05247
(visited on 10/14/2022).

[15] Tesla plans ’thousands of humanoid robots within fac-
tories’. 2022. url: https://electrek.co/2022/
09 / 23 / tesla - thousands - humanoid - robots -

factories/.

[16] Warehouse Robotics & Different Types of Robots. en-
US. Jan. 2020. url: https://6river.com/what-
is-warehouse-robotics/ (visited on 10/14/2022).

https://aws.amazon.com/solutions/case-studies/amazon-robotics-case-study/
https://aws.amazon.com/solutions/case-studies/amazon-robotics-case-study/
https://doi.org/10.12720/joace.3.3.178-182
https://doi.org/10.12720/joace.3.3.178-182
https://www.raconteur.net/technology/automation/how-robotics-are-optimising-warehouse-operations/
https://www.raconteur.net/technology/automation/how-robotics-are-optimising-warehouse-operations/
https://www.raconteur.net/technology/automation/how-robotics-are-optimising-warehouse-operations/
https://www.raconteur.net/technology/automation/how-robotics-are-optimising-warehouse-operations/
https://6river.com/what-are-the-advantages-of-directed-picking-robots-vs-swarming-robots/
https://6river.com/what-are-the-advantages-of-directed-picking-robots-vs-swarming-robots/
https://6river.com/what-are-the-advantages-of-directed-picking-robots-vs-swarming-robots/
http://arxiv.org/abs/1704.04585
http://arxiv.org/abs/1704.04585
https://roboticstomorrow.com/article/2011/12/how-kiva-systems-and-warehouse-management-systems-interact/23/
https://roboticstomorrow.com/article/2011/12/how-kiva-systems-and-warehouse-management-systems-interact/23/
https://roboticstomorrow.com/article/2011/12/how-kiva-systems-and-warehouse-management-systems-interact/23/
https://doi.org/10.1007/s10015-022-00730-5
https://doi.org/10.1007/s10015-022-00730-5
https://www.geekplus.com/technology/robotics
https://www.geekplus.com/technology/robotics
https://cajarobotics.com/robots/
https://cajarobotics.com/robots/
https://pyimagesearch.com/2020/12/21/detecting-aruco-markers-with-opencv-and-python/
https://pyimagesearch.com/2020/12/21/detecting-aruco-markers-with-opencv-and-python/
https://pyimagesearch.com/2020/12/21/detecting-aruco-markers-with-opencv-and-python/
http://arxiv.org/abs/2201.05247
https://electrek.co/2022/09/23/tesla-thousands-humanoid-robots-factories/
https://electrek.co/2022/09/23/tesla-thousands-humanoid-robots-factories/
https://electrek.co/2022/09/23/tesla-thousands-humanoid-robots-factories/
https://6river.com/what-is-warehouse-robotics/
https://6river.com/what-is-warehouse-robotics/

18-500 Final Project Report - PARROT, 12/17/2022 Page 19 of 19

F
ig
u
re

15
:
S
ch
em

at
ic

of
th
e
R
ob

ot
P
C
B
.

	INTRODUCTION
	USE-CASE REQUIREMENTS
	Pallet Pick-Up / Drop-Off
	Run-time and Latency
	Multi-Robot Scaling Efficiency

	ARCHITECTURE AND/OR PRINCIPLE OF OPERATION
	DESIGN REQUIREMENTS
	Pallet Pick-Up / Drop-Off
	Run-Time and Latency
	Multi-Robot Scaling Efficiency

	DESIGN TRADE STUDIES
	Robot design - PCB
	Robot design - why Computer Vision?
	Robot design - electromagnet vs mechanical pickup
	Robot Planner
	Controller

	SYSTEM IMPLEMENTATION
	Robots
	Batteries and Power Regulation
	Web Server
	Servos
	Electromagnet
	Neopixels
	Screen

	Computer Vision
	Camera Stack
	Sandbox Detection
	Robot Localization and visualizer

	Robot Planner
	Task Planner
	Path Planner

	Control System
	Waypoint Interpolation
	Feed Forward Control
	Feedback Control
	Robot Commands
	Emergency Stop

	TEST, VERIFICATION, & VALIDATION
	Tests for power consumption and battery life
	Computer Vision Resolution Tests
	Latency Tests
	Controller & Actuator Tests
	Planner Tests
	Scalability Testing
	Pickup and Dropoff Testing

	PROJECT MANAGEMENT
	Schedule
	Team Member Responsibilities
	Bill of Materials and Budget
	Risk Mitigation
	Webcam sensitivities
	Timing issues

	ETHICAL ISSUES
	Displacement of Workers
	Security & Data Privacy
	Safety of Warehouse Employees

	RELATED WORK
	SUMMARY
	Future Work
	Communication Protocol Updates
	Dynamic Planning
	Servo Improvements
	Lessons Learned

