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Abstract—A system capable of signalling the loca-
tion of a wildfire to emergency services. Currently, it
takes time and effort for wildland firefighters to con-
stantly monitor possible wildfire locations. This project
intends to create a low power and accurate system that
can detect the location of wildfires, by using a wireless
sensor network. If a fire occurs near a specific node
in the network, that node’s data will be transmitted
across the network in order for wildland firefighters to
then be deployed.
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1 INTRODUCTION

In 2022, California has had approximately 6000
recorded wildfires, spanning almost 300 thousand acres. A
fire itself takes around 1 hour from the ignition of the fire to
become a fully developed fire. This was the inspiration be-
hind our project. We wanted to create a system for wildfire
detection to be used by wildland firefighters. The current
solution for detecting forest fires is if someone calls 911 or
via a system of lookout towers. However, with our solu-
tion, firefighters would be able to pinpoint the location of
conflagrations in a timely manner. The system is designed
for their convenience and safety. Therefore, the goal of the
system that we are creating for our project is to have (1)
accuracy and (2) low power.

In order to do this, we created a wireless sensor network
of eight nodes, in which each node collected data regarding
the temperature in its vicinity to indicate if a fire was ig-
nited. The sensor data collected was transmitted across the
network and collected by a gateway router, which displayed
the node where the fire was detected on a web application.
The web application provides the fire department with the
location to deploy their personnel. We wanted to create a
singular system that does this so there didn’t need to be
any extra work or components to make wildfire control and
eradication unmanageable.

Due to budgeting and time restrictions that come with
completing this project in one semester, the project is
scaled down. However, the network protocol that is being
used is designed to be scaled up. The node architecture is
scalable because there is a variable window for sensor data
collection. However, a mere temperature sensor mounted
on a tree would not be able to detect forest fire, since it is
only detecting the a large change in temperature caused by
a heat gun. At scale, the web application would be hosted

in the cloud to circumvent connectivity issues (i.e. in case
the network was to go down). The main part of our project
is how to use a wireless sensor network for fire detection and
the protocols that make the system useful.

2 USE-CASE REQUIREMENTS

Our use case is rapid wildfire detection for the fire de-
partment. Since it could be catastrophic if a fire is not
detected, we want to detect a fire with 90-95% accuracy.
This is to allow for some slack in the case of any unex-
pected interference to the system. Our spanning tree pro-
tocol would need to adjust itself to find an appropriate
path to the border gateway from the location of the fire,
circumventing any nodes that are offline. It takes one hour
from the ignition of a fire to become an open fire. Hence,
it is critical that the fire is detected during this period,
so that wildland firefighters can put out the fire before it
becomes fully-developed. Therefore, our web application
needs to show active fires within 30 minutes of conflagra-
tion. The nodes also need to be low power to make our
system low-maintenance. The purpose of this is to ensure
that firefighters aren’t constantly needing to check in on
the system. The advantage of using a sensor network is
that people would not have to be stationed in the forest in
lookout tours to keep an eye out for fires. If park rangers
need to frequently visit the nodes to replace the battery,
then it defeats the purpose of the system. In order to meet
the needs of the use case, the nodes need to be able to op-
erate for one month. To reiterate, we want our system to
be accurate and easy maintenance, so we have decided on
the following use-case requirements:

• 90-95% accuracy with fire detection

• 30 minute window of when web application is noti-
fied

• 1 month maintenance for overall system

3 ARCHITECTURE AND PRIN-
CIPLE OF OPERATION

A block diagram visualizing our system is provided in
Fig. 1, but for clarity we have provided a full-page block
diagram of our system in Fig. 13 on page 16. This block
diagram has been broken down into individual components
in the upcoming sections. Our system is broken down into
three major subsystems: Networking, Node Architecture,
and Web Application. The first subsystem is the Network
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that we are constructing. We are using a spanning tree
protocol, a link-state advertisement, and RX/TX timeslot
scheduling. This helps transmit data between the nodes
about the sensor data being collected and adjust itself in
the case of collisions or node failure. We were originally
going to include NTP (Network Time Protocol) in our
protocols run by the gateway; however, due to time con-
straints we ended up rescoping to using a timestamp deter-
mined by the gateway router. The second subsystem is the
Node Architecture which consist of our micro-controller,
transceiver, and temperature sensor for fire detection. This
system needs to maintain low power. The third subsystem
is the web application. This application displays the nodes
where the fire is located and alerts the firefighters of that
destination. The application and router for the first sub-
system are hosted on a Raspberry Pi.

Figure 1: Overall Block Diagram

3.1 Networking

(a)

(b)

Figure 2: (a) Example Mesh Topology (b) Protocol Stack
and Operation Overview

Our main objective for this section is to maximize the
nodes’ sleep time and minimize the amount of time they
spend transmitting and receiving data, while remaining re-
silient to node failures. Figure 2(a) provides an example
of the resulting topology after the network administrator
has setup the nodes, covering a region in the forest. In this
figure, nodes with links to one another are in range (within
15km) of one another and can communicate. In order to es-
tablish this network, a network operator would reset all of
the nodes at once, and then hike across the forest and fas-
ten nodes on trees above RF-obstructing foliage, ensuring
that nodes adhere to the mesh topology rules (described in
system implementation).

3.2 Node

This subsystem is how the nodes are constructed to
create a system that is low power. Our Nucleo-L412KB
with a STM32l4 micro-controller optimizes for low-power,
as this STM32 has built in low-power modes. The LoRA
transceiver also has a low power mode and has a range that
can be used to scale up to a real world scenario. A TMP36
temperature sensor is used for detecting fire. The node is
powered by a 9V battery. Both the LoRa and TMP36 are
powered by the 3V pin on the Nucleo board.

Figure 3: Node Architecture

The image shown above is the test node. This node will
be used to show the power consumption.
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3.3 Web Application

This subsystem is how the web application is going to be
configured. The web application will be written on Django
and will consist of a visual interface. The interface takes in
the inputs from the sensor that are conveyed using a JSON
file and display where the fires are located. The JSON file
walks through the graph that is constructed by the network
and from there determine which nodes are connected and
where the fire nodes and offline nodes are located. The vi-
sual interface includes markers that indicate when the node
is at its control state, on fire, or offline. It also displays links
for the current spanning tree being used by the protocols
and shows links that are not being used or are being used
by offline nodes.

Figure 4: Web Application Block Diagram

4 DESIGN REQUIREMENTS

We would like our network to have a minimum battery
life of 1 month, in order to make maintenance cost reason-
able. Furthermore, if a node drops offline due to an external
event (such as a branch hitting its antenna), we would want
the network operator to be informed of this. However, a
node dropping offline could also indicate a fire, if the fire
has already engulfed the node within the 30 minute win-
dow (maybe the node was at the epicenter). In any case, a
second verification would have to be performed to ascertain
the root cause of this offline node.

In order to minimize the cost of a single node, we should
minimize battery cost. Transceiver power consumption,
and the MCU will be the primary drain on the battery life.
Since propagation delay will differ based on the specific
configuration of the LoRa transceivers, we are considering
the default settings for power and total runtime of the net-
working protocol stack (see Fig.6). However, in testing, we
used a higher BW than the default setting, leading to a
lower ToA or propagation delay.

Ideally, we would run the protocol every 30 minutes to
detect node or root-link failure, and to detect a conflagra-
tion. We have decided to reduce the mesh network to a
tree topology, and will detect node failure in the first phase
(TDM STP) of the protocol stack, whilst the tree is being
formed. We decided to change these design requirements

from our initial design report in order to save even more
power (as running the DATA phase is only required every
30 minutes instead of every 15 minutes). Moreover, a 30
minutes detection latency still provides wildland firefighters
an advantage as compared to traditional forest-fire detec-
tion methods, allowing them to combat the fire before it
becomes significantly larger at the 1-3 hour mark.

Furthermore, we want the MCU to be in the lowest
power mode for the longest period of time. When the node
is not transmitting DATA packets or performing control-
plane functions (node failure detection or spanning tree-
reconfiguration), we will want to remain in a low-power
mode to prolongue battery life. We are able to achieve such
low power modes by placing the node’s LoRa transceiver
into low-power mode (SLEEP mode), and then transition-
ing the MCU to a low-power mode (STANDBY mode).

The power consumption of a given node is contingent
on the efficiency of the routing protocol. If the protocol
does not allow nodes to go into low-power since the node
has to be able to route packets, we will be losing power
unnecessarily.

Our nodes will be placed 0.25 meters apart from each
other. This will ensure easier testing as we can keep the
node on a single table. This distance was determined know-
ing that the LoRa transceiver can have a range of 250m and
we wanted to scale that down[2].

5 DESIGN TRADE STUDIES

5.1 Network Architecture

In order to enable nodes to sleep for a maximum period
of time, we considered using the LoRaWAN MAC proto-
col. After having read through the Link Layer specifica-
tion, class A operation of network nodes seemed to be meet
our use-case requirements best. According to the specifi-
cation document, “Class A operation is the lowest-power
end-device system for applications that require only down-
link communication from the server shortly after the end-
device has sent an uplink transmission.” [8] The two prin-
cipal downsides to employing the LoRa-WAN protocol are
as follows[8]:

1. Star-of-stars topology: The need for intermedi-
ary gateways which communicate with the Network
server (border gateway) over IP connections

2. Single-hop RF communication from nodes to gate-
ways, not applicable for multi-hop sensor networks,
gateways would need to have a longer battery life

3. ALOHA MAC protocol: Less precise control
over node sleep schedule, and higher collision rate:
throughput S = 1

e for pure ALOHA and S = 1
2e for

slotted ALOHA.

A multi-hop wireless sensor network would reduce ma-
terial cost since higher-capacity expensive batteries would
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be required for intermediate LoRa-WAN gateways. Fur-
thermore, power grows exponentially in a multi-hop WSN,
so we will require technicians to service nodes closer to the
border gateway more frequently than nodes deeper in the
forest. However, nodes closer to the gateway are assumed
to be more accessible. If the same battery was used for
sensor nodes and intermediate LoRa-WAN gateways, these
gateways would need to be serviced much more often, and
depending on the topology these intermediary gateways
may not be very accessible (i.e. they might be far from
the GW router).
When designing our own protocol for low-power medium
access control, we considered two main strategies.

1. Asynchronous B-MAC: Nodes periodically wake
up to check their children nodes. In this protocol, a
node that wants to send a packet sends a preamble
for the same time duration as the receiving node’s
sleep period. Hence, nodes must periodically return
to a “receive-only” state to check if their children
have a packet to send. For a multi-hop network this
approach imposes a prohibitive current draw for all
nodes, since the sampling period is once every 30 min-
utes.

2. Synchronous MAC: Nodes use TDMA to avoid
packet collisions, which allows them to go to a lower
power-consumption sleep state when they are not
scheduled to transmit or receive. The tradeoff is that
this type of MAC protocol comes at a high traffic
control cost, and requires periodic beacons to cor-
rect nodes’ clock drift. A global notion of time is
required so that nodes wake up and transmit in their
actual timeslots, and not an adjacent one. Since each
node’s MCU will have to use its own clock to deter-
mine when it is time for them to transmit, periodic
clock synchronization is necessary to ensure a global
notion of time across nodes.

Figure 5: Modem Attributes

We opted for a multi-hop wireless sensor network
using synchronous MAC protocol and a basic time-
synchronization mechanism in order to increase battery
life and reduce network maintenance cost. We have cal-
culated the worst-case power consumption and times as

follows based on the chosen synchronous MAC routing al-
gorithm. Here, tTS is the duration of a TS in milliseconds,
and tDC is the duration of the data-collection time window
(DC TS) during which the temperature sensor is sampled:

1. STP: The protocol will convergence in 3 iterations,
and in the worst-case for a single iteration, each sen-
sor node will have to transmit and receive at most
N − 1 times. If we also consider timeslots for the
gateway to send STP messages we obtain the follow-
ing. Furthermore, a node will transmit at most N−1
in a star-topology.
total-duration: 3N(tTS)
power consumption: 3(QTX +QRX)(N − 1)

2. LSA: A spanning tree of N nodes will have at most
N−1 links (if the “tree” is a line-topology in the worst
case). Since we are transmitting both LSA REQ and
LSA RESP, and acknowledging each packet, we ob-
tain the following maximum time for this phase. Fur-
thermore, a node will transmit a packet and receive
a packet in the worst-case N − 1 times, if it is the
center of a star topology. It is important to note that
the two worst-case scenarios for power consumption
and total-duration are disjoint, or unlikely to occur
at the same time.
total-duration: 2(N − 1)tTS

power consumption: (N − 1)(QTX +QRX)

3. RX/TX: This is the same worst-case time duration
as the LSA phase, since SCH ACK’s are used to
iteratively query nodes and avoid packet collisions.
In this case, as a comparison for worst-case power
metric calculations, SCH packets take the role of
LSA REQ packets, and SCH ACK packets take the
role of LSA RESP packets. SCH ACK packets also
provide a form of MAC, since the next child node is
not queried before an SCH ACK is received from the
first queried node, so no two nodes transmit simulta-
neously.
total-duration: 2(N − 1)tTS

power consumption: (N − 1)(QTX +QRX)

4. DATA: For a WSN of N nodes, we have that each
node will necessarily need to take sensor readings
and transmit them upstream to the GW router. A
minimal total duration was obtained via the RX/TX
scheduling algorithm. Furthermore, in a star topol-
ogy, a node would have to receive N − 1 times, but
each node is only transmitting once in this phase.
total-duration: (tDC + tTS)(N − 1)
power consumption: 2(N − 1)(QRX) +QTX

Considering the ToA based on the LoRa modem pa-
rameters and a timeslot buffer of 0.5 seconds:
tTX TS = tRX TS = tTS =ToA+0.5s = 2.271s
tDC = tTS

tToA = 1771.52ms represents the ToA for modem RX and
TX functions (see Fig. 5)[9]
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IRX = 13mA, QTX = 82mA, Ilora low = 100nA [9]
IRUN = 3.79mA, ISLEEP = 0.95uA [15]
ITEMP = 50uA [11].

The average power consumption for one iteration
through the protocol stack and node sleep-time (between
iteration low-power mode) is as follows:

IRUN
(9tTS(N−1))

1800 + ISLEEP
(1800−9tTS(N−1))

1800

+IRX
6(N−1)(tToA)

1800 + ITX
(5N−4)tToA

1800 +

Ilora low
(1800−tTS(9N−6))

1800 + ITEMP

At the time of our design report, we had not yet con-
sidered that every packet would require its individual ac-
knowledgment (as part of stop-and-wait). Therefore the
following estimate is slightly inaccurate. A 9-node network
run at a 30min data sampling period and link/node fail-
ure detection period consumes on average 4.34mA. Run-
ning this WSN for a period of 1 month would consume
(4.34)(720) = 3124.7mAh. Hence, a battery with 4000mAh
of capacity would make a node last one month.

5.2 Low Power Networking VS BMS

One of our ideas for making the system low power was
to have a battery management system and a solar panel.
The idea was we could power the node and charge the bat-
tery when it was sunny, and when it was not sunny we
could use the battery to power the node. If the node got
low on power, we could change how often we transmit data
or put the node into a really low power mode to preserve
power until the battery could be recharged. However, we
decided not to go with this idea for a few reasons. None of
us are familiar with a BMS, and due to the time constraints
of the class we were worried about figuring out how to get
it to work in time. There was also concern that since the
sensors are meant to be placed on trees in a forest, the trees
would block too much of the sun and that they would not
be able to recharge the battery quickly enough to avoid the
battery completely running out of power.

5.3 Node Architecture

For the sensor nodes, we decided to use the Nucleo-
L412KB with an STM32L4 as our micro-controller as it is
one of ST’s ultra-low-power microcontrollers. It has the
lowest current in its lowest power mode with RAM reten-
tion and the RTC enabled compared to the other ultra-low-
power STM32s.[13] It also has a larger variety of low power
modes than most of the other ultra-low-power STMs, which
allows for more flexibility when entering a low power state.

In addition to the STM32L4, we decided to use LoRa
tranceivers because they are relatively low power for the
range they offer. 4G routers have a range of 100-300m, and
use more power than LoRa [5]. Wifi has a typical range of
150-300ft, which is not enough to meet the requirements
of our use case [12]. LoRa, however, has a range of 250m

in a forest environment. This would indeed fulfill our use
case requirements and help when this node architecture is
scaled up in a real world scenario.

5.4 Web Application

Regarding the web application, we wanted to create a
way to visualize the location of the fires. We are using a
Raspberry Pi to host the web application. We chose to use
an RPi for convenience as the RPi will be used as both
the border gateway for the network and as the host for the
web application. For the webapp itself, we will be using
Django as our framework software. Django uses Python
which is easier to use in terms of implementation. Django
is also well-documented and there are plenty of tutorials
that can be of assistance. Django also has a library called
Folium [3] that is beneficial for the design of the web appli-
cation, making it a favorable option. Folium allows using
a library that is used for creating interfaces that display
maps, making it ideal for our project. It also allows links
in between the markers on the map, to help us show our
topology being used in the protocols. In addition, using
geojson.io [4] allows us to get accurate longitude and lati-
tude coordinates of locations in the world that we can use
to show where our project can be applied. Originally, we
were going to use GeoDjango as our main library for the
web application; however, we found that Folium was more
user-friendly and relevant to our project’s design. GeoD-
jango had a lot more complicated documentation which
made it a little diffiuclt to use. It is important to note why
we are using the RPi to host the web server instead on the
cloud. The web application that is being created is simply
being used as a visualization of the nodes and the location
of the fire. The web application itself is not to scale if this
project would be scaled up. A web application would need
to be reconfigured and redesigned for it to be used on a
larger scale, as it currently only accounts for eight nodes
not a whole system. It also has a pop-up window displayed
when a fire is located. For the purposes of our project, it
is simply a visualization tool.

6 SYSTEM IMPLEMENTATION

6.1 Networking

Our MAC protocol seeks to reduce power consumption,
and to be resilient in the face of link or node failures. If
a node drops offline or the single link connecting a node
to the rest of the WSN fails, a field technician should be
informed of that node’s failure. Furthermore, the network
can recover from a node failure if the node goes offline /
unresponsive during the node’s SLEEP period (after hav-
ing run the protocol stack), or before that node’s address-
specific transmission time slot in the TDM STP phase. In
this case, the network creates a new tree topology from the
initial links (links which indicate nodes are in range of one
another), and re-adjusts the schedule accordingly.
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1. TDM STP: On node startup, it will run the span-
ning tree protocol until it has heard a message from
the true root (which is the gateway router with net-
work address 1). This will take 3 iterations given the
following constraints on the initial mesh topology:

• In a single loop-free path (GW to end-node),
there cannot be more than two monotonously-
decreasing nodes in between two monotonously-
increasing nodes.

This constraint disallows some initial line-topology
configurations, imposing some limitations on where
nodes can be installed in the forest region. However,
line topologies are rare, and not robust against node
failures: this sensor network would be deployed to
monitor a forest region in a mesh topology to cir-
cumvent this issue.

In order to ensure that no packet collisions occur, a
node will wait for a(TS) before transmitting, where
for a topology of N nodes, a ∈ [2, N ] is the sensor
node’s address.

Figure 6: Spanning Tree Protocol with time-division
multiplexing

2. LSA: Once the spanning tree protocol has converged
(in three maximum iterations, given the constraints
for the initial topology). Propagate link-state re-
quests down the spanning tree. Each node iteratively
forwards a link-state request to each of its children
and gathers the link-state response from the quer-
ried child before querrying the next one. Once all
LSA responses from children sensor nodes have been
received, the sensor node sends the response to its
spanning-tree parent node.

In this phase, each node begins in RUN mode with
active listening.

• If the node has children,

– on receiving an LSA REQ, forward that re-
quest to each child node starting with the

child with the lowest address, and wait to
receive the complete LSA RESP from that
child node before querying the next one.

– once the node receives an LSA responses
from each of its children, store these re-
sponses locally (it now knows the topology
of all its children - the entire child sub-tree),
and aggregate the responses and send them
to the parent node (one packet is sent to
the parent node per child node in the child
sub-tree). For instance in Fig. 9, node 3
would send 3 response packets: one for its
neighbors (6,7), one for node 6’s neighbors
(3), and one for node 7’s neighbors (3).

• If the node has no children,

– on receiving an LS request, respond with the
topology of your sub-tree (the downstream
tree topology from the node’s perspective)
to your parent.

• If the node (node B) receives a LS request from
an inactive port, there must be a uni-directional
link from the sending node (node A) to this node
(i.e A has an open port to its neighbor B, but
the B has a blocked port to A). In this case, the
node B sends a link state invalidate (LSA INV)
response to node A, signifying to node A to re-
move its uni-directional link to the B. On re-
ceving an LSA INV response after sending an
LSA REQ to node B, node A would block the
port to its neighbor node B.

We chose to send one LSA response per neighbor in
a node’s sub-tree because the LoRa transceivers only
allow for a maximum packet payload of 240 bytes.
However, these transceivers support a 16-bit address
space, hence, packing an entire graph structure in a
single packet imposes a severe limitation on the scal-
ability of the network. Therefore, the LSA RESP for
each node in a sub-tree (i.e. each node’s neighbors
the sub-tree) is encoded in a single packet.
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Figure 7: Link State Protocol Overview

3. RX/TX Scheduling: Once LSA protocol has run,
the gateway router knows the overall topology of the
sensor network, hence, it can schedule transmission
and receive slots for each node to ensure a power-
efficient TDM schedule, which allows all nodes to
propagate data up the spanning tree back to the root.
Having a global view of the tree from the LSA phase,
the gateway router schedules TX and RX data slots
as follows:

• nodes which have immediate children nodes in
the spanning tree have RX slots when their im-
mediate children have TX slots. In other words,
during the DATA phase at a certain DATA TS,
these nodes will be listening for their immediate
children’s packets. A node also has its TX slot
scheduled for the DATA TS immediately after
all of its children’s TX timeslots. As a node re-
ceives packets from its immediate children dur-
ing its RX slots, it will record locally in RAM
whether one of them have detected a fire.

• nodes which have no children only have TX
slots.

The transmission schedule accounts for a sampling
time tDC TS during which the node can poll its tem-
perature sensor. Hence, each “slot” in the sched-
ule (each DATA TS) is set such that DATA TS ≥
tTS + tDC . In its designated TX slot, a node will
take a temperature reading at ti = 0 and another
at tf = tDC , measuring the temperature increase. If
this increase is greater than a predetermined thresh-
old, the node will have detected a fire, and will alert
whichever node is listening (whichever node is in RX
mode for that DATA TS) that it has detected a fire,
and whether any of its children have detected a fire.

For instance, in Fig.10(a), node 3 is listening for
DATA packets from its immediate neighbor node

6. During that timespan (DATA TS seconds), node
6 takes polls the temperature sensor, determines
whether the temperature increase is sufficient to in-
dicate a fire, and transmits a DATA packet to node 3.

(a)

(b)

Figure 8: (a) Example schedule created by GW router
(b) Overview of RX/TX Schedule Distribution Algo-
rithm

After the gateway router computes the schedule
for all N − 1 sensor nodes, it must distribute the
schedule to ensure that each node knows at which
data timeslots to receive packets and which timeslots
to take temperature readings and transmit packets.
Each node (including the GW router) sub-divides the
schedule before distributing it to its immediate chil-
dren. From a given node’s perspective, each imme-
diate child only needs to know the RX/TX schedule
up to the point when it is scheduled to transmit (its
TX slot). This subdivision allows for smaller packets
since no superfluous information is included. Notice
that each schedule has (N − 1) DATA TS’s (where
N is the number of responsive nodes after STP has
run) because all nodes (except for the gateway node)
must attempt to detect forest fires.
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The gateway router includes a timestamp
(phase4 start time) in each SCH packet. Subsequent
sensor nodes receiving a sub-schedule from the gate-
way router copy this timestamp to their SCH packets
before sending a sub-schedule to an immediate child
node.

Each node follows this protocol:

• on receiving a sub-schedule (SCH packet),

– Store sub-schedule and received timestamp
(phase4 start time) in memory.

– If the node has children,

∗ cut the sub-schedule so as to include ev-
erything from the beginning of the sub-
schedule to the DATA TS when the im-
mediate child node has its TX slot. Save
this as a new schedule

∗ Place this new schedule and a copy of
phase4 start time into an SCH packet,
and send this packet to the immediate
child node.

∗ wait for an SCH ACK packet from
the immediate child node before sub-
dividing and distributing the schedule
to the next child node.

∗ Once the schedule has been distributed
to all child nodes (and acknowledged via
SCH ACK packets), send an SCH ACK
packet to parent node.

– If the node has no children,

∗ send an SCH ACK packet to parent
node.

Once a sensor node has sent its SCH ACK packet to
its parent node, it waits until its millisecond-accurate
internal clock (implemented using timer interrupts)
reaches phase4 start time [6].

Since the GW router set the exact timestamp since
the start of the iteration, this implies that it is assum-
ing a certain minimum amount of packet timeouts
and re-transmission during the schedule distribution
phase. If more packet timeouts were to occur, nodes
would not enter Phase 4 (DATA sampling phase) si-
multaneously.

4. Data Sampling Since all sensor nodes were reset at
the same time, installed throughout the forest region,
and all began phase 1 (TDM STP) simultaneously,
their clocks will be synchronized to millisecond-level
accuracy for the entire first iteration. Therefore,
all nodes will reach the phase4 start time (originally
set by the GW) simultaneously, and being executing
their schedule.

During the DATA phase, the RX/TX schedule is ex-
ecuted globally. In a given DATA TS, if a node has a:

• TX slot: The node will poll the temperature
sensor for DC TS seconds to detect a fire, then
will check its local database for whether any of
its children have reported fires, and will trans-
mit to its parent node whether it or any of its
children have detected fires

• RX slot: The node will receive a DATA packet
from one of its children nodes. If one its children
nodes sends a packet mentioning that it or any
of its children have detected a fire, this informa-
tion is added to a local database.

• IDLE slot: The node either has yet to trans-
mit its data or receive from its children be-
cause other nodes are busy transmitting or re-
ceiving (this provides a form of medium-access
control), or the node has already transmitted
its data and is waiting for the end of the DATA
phase (i.e. the node is waiting for the remaining
DATA TS’s).

Once all DATA TS’s have elapsed and DATA phase
is complete, the nodes will sleep for the remaining
time in the iteration in order and will reset at the
30 minute mark to re-run through the protocol stack.
Once the node exits STANDBY after 30 minutes has
elapsed, it will reset both the STM and the LoRa
transceiver. Note that in our demonstration, the
nodes are waiting in standby only 1 minute before
running through the protocol stack in the next itera-
tion, in order to facilitate testing.

5. ACK and Re-transmission Scheme Nodes
required an acknowledgment and re-transmission
scheme (Stop-and-Wait protocol) in order to offer re-
liable data transfer in phases 2-4 (LSA, SCH, DATA).
Essentially, we need to ensure that if packets were
dropped or had CRC errors at the receiving end, the
sender would know to re-transmit the packet. Sim-
ilarly, the receiving node would need to listen for a
re-transmission after responding with an acknowledg-
ment because it is possible that the ACK packet was
lost due to channel errors as well. Fortunately, the
LoRa modules make it easy to calculate ToA, since
on issuing a sending command, the module responds
with “+OK” only after ToA milliseconds have al-
ready elapsed. In Fig. 9 below, the “+RCV” re-
sponse from the module indicates packet reception,
and the sender (node A) would re-transmit its packet
(SEQ 0) if it has not yet received an ACK by the
time the re-transmission timer expires. The sending
function rdt send() returns slightly before the receiv-
ing function rdt recv(), so delays are inserted at the
application level in order to ensure that packets sent
back-to-back can be properly received.
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Figure 9: Stop-and-Wait protocol on LoRa module

6.2 Node Architecture

We implemented a sensor network by creating a system
of 8 wireless sensor nodes. The sensors used an STM32L4
microcontroller, as it is designed to be low power and has
multiple low power modes. A LoRa transceiver, which the
STM32 will communicate with using UART, was used to
send data between the nodes and the gateway. The nodes
had a TMP36 analog temperature sensor in order to detect
fire, which the STM32 got data from using ADC. Fig. 10
shows a schematic for the nodes.

The STM32 has multiple different low power modes.
The ones we used are run mode and standby. When the
node needs to be “awake” the STM32 operated in run
mode. When the node was finished executing the sched-
ule during data phase, the STM32 went into standby mode
and used the RTC to wake up for the next iteration of
protocols [10].

Figure 10: Node Schematic

6.3 Web Application

To create our web application, we used Django as web
framework. Upon receiving data from the sensors (i.e. the
fire was sensed at node X) and having a JSON file parse
the network and obtain the nodes on fire and those that
are offline, the web application takes this data as input.
Using the Folium library, the web application consists of
a topographical map of a forest, which is overlayed with

markers. The library lets us choose from different maps
and for the purposes of our project, Yosemite National Park
was chosen, due to its suffering from wildfires every year.
The markers (the pins on the map) represent the individual
nodes in our network system. All the nodes have associated
longitude and latitude coordinates that are displayed when
a user hovers over the node. Each node is represented in
a light blue color with the navy blue marker representing
the gateway router, where the user would be monitoring
the system. When the sensor data is received, the marker
that is associated with the node where the fire is located
will turn red. and have a pop-up window. If a node was
offline, it would turn grey. The topology of the map is also
displayed in the web application using black and grey lines.
The black lines indicate the paths of the spanning tree be-
ing used by the protocols. The grey lines could indicate
one of two things: the links associated with an offline node
or the links that are not being used by the spanning tree.
The web application updates and should be instant after
receiving the data from the sensors.

Fig.11 shows an overview of what the web application
interface looks like. Note how there are blue nodes, a grey
node, and a red fire node, as well as the gateway at the bot-
tom of the tree. It is also important to take note that all
the links to the grey node’s neighbors are also grey meaning
that those are invalid links for the spanning tree to consider.
Essentially, the web application is the visualization of what
is happening in the “forest” and helps a user understand
what is happening in the wireless sensor network.

Figure 11: Web Application Interface

7 TEST,VERIFICATION, & VAL-
IDATION

The following section has many references to our team’s
code and the iterations that we went through to get to our
final results [7].

7.1 Unit Tests: Network

1. 4 Node Topologies
Before the interim demo, we had worked on getting
LSA and STP working on a fixed-tree topology of
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four nodes. The root node (hosted on an STM) was
informed of the entire topology through a series of
LSA packets (one per child node - as described in the
system implementation section).
We then tested a fully linked topology, which was re-
duced into a star topology centered at the GW node
(also hosted on an STM). The gateway node received
the entire star topology after LSA finished running.
Furthermore, if a node died before its transmission
timeslot in the phase 1 (TDM STP), it did not appear
in the adjacency-list implementation of the spanning
tree at the GW node (once LSA finished running).

2. Integration with RPi
The RPi used a very different UART library [14] than
the interface provided by the STM32’s HAL library,
so some testing was required in order to test sending
AT commands to the LoRa module from the RPi,
and to test non-blocking packet receiving calls.
The code had to be ported over from the STM plat-
form to the RPi, which also posed challenges as some
STM32 libraries were non-existant on the RPi.

Tests with four nodes and the RPi were performed in
order to determine whether it was still able to send
out the first LSA REQ to a child node. Since the
function of the gateway router is a subset of the re-
quired functions of a given node, this test of a 4-node
line topology was quite streamlined.

We then tested a 6-node line topology with the GW
router implemented on the RPi, and started to ex-
perience more packet errors, which our stop-and-wait
re-transmission scheme was still able to recover from.

3. Line Topology of 8 Nodes
In order to work up to a test of our final 8 sensor-
node mesh topology, we tested a line topology with
8 nodes (one with the GW router implemented on
an STM32, and another with the GW router imple-
mented on the RPi). A run through all phases of
the protocol stack took significantly longer, and had
more failed runs than the 4-node line topology for two
principal reasons:

• A line topology represents the worst case tim-
ing for phase 2 (LSA). Given a line of consec-
utive nodes [1, 8], since we are sending a sepa-
rate LSA RESP for each node in a given node’s
sub-tree, the number of packets sent grows expo-
nentially as you approach the GW router node
(address 1). More concretely, node a ∈ [1, 8]
must transmit (9 − a) packets to its upstream
parent.

• Since more packets are being sent in general
(without an ACK and re-transmission scheme),
there were more opportunities for packets being

dropped or CRC errors occurring; errors which
were not being immediately addressed.

Since this test took the longest out of all of the topolo-
gies we tested, there was more opportunity for chan-
nel interference from the CMU LoRa network. Essen-
tially, since the implementation details of the SX1276
LoRa radio in the REYAX transciever modules were
abstracted away to an AT-command set, we could
not employ methods like carrier-sense or exponential
backoff because we could not detect ongoing trans-
missions on the frequency bands that we wanted to
use. The next step was to implement stop-and-wait
for each packet sent in phases after TDM STP.

4. Reliable Data Transfer In order to test our stop-
and-wait implementation and integrate reliable data
transfer functions into the codebase, we ran tests be-
tween a pair of STMs, where one STM would send
a packet, wait for an ACK from the other, and then
the roles would change (i.e the original sender would
be recieving a packet and ACK’ing it).
Unfortunately, we quickly noticed that although the
tests were passing (calling rdt send() with sequence
number 40 on each end before external reset - 160
packets sent over-the-air in total), they were not con-
sistent due to channel contention. Since the LoRa
frequency bands are public use, there was no way
to stop external transmissions at the frequencies we
were running our tests on. Furthermore, without ac-
cess to the internal SX1276 radio inside the LoRa
transceiver module itself, it was complete guesswork
to find a center frequency within the LoRa spectrum
allocation (902-928MHz) without channel contention.
Therefore, our tests for reliable data transfer, and
consequently the integration testing phase, worked
inconsistently due to ongoing channel contention at
the time of testing.

5. Final Testing After having implemented and tested
reliable data transfer, we transitioned to testing our
final 8-node mesh topology (as shown on the web
application in Fig.11) that we used in our demo. We
configured the initial links for the topology in all 8
sensor nodes’ memory. The logs collected at node 3
(printed via the STM’s UART to a serial monitor)
show the progression of node 3 through all phases of
the protocol stack (see Fig. 14, 15 at the end of the
report). Note the highlighted and red sections:

• in Phase 1: the ports to neighboring nodes are
opened (1) or blocked (0), which is the represen-
tation of the spanning tree from node 3’s per-
spective.

• in Phase 2: LSA requests are iteratively sent
out to each of node 3’s child nodes (note that a
uni-directional link to node 5 has been disabled
- underlined in the ports:[...] printout)
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• in Phase 3: Node 3 receives its sub-schedule and
further divides it before sending it off to its ac-
tual child nodes (according to the spanning tree
i.e which ports are enabled)

• in Phase 4: Node 3 is executing the schedule
in sync with all other nodes in the network, it
receives in two slots, aggregates data (in this
particular run no fires are lit at node 3 or its
sub-tree, which is shown marked in red), then
transmits in its DATA TS.

7.2 Unit Tests: Node Architecture

The main unit testing done with the nodes themselves
involved the temperature sensors and making sure they
were calibrated correctly. The temperature sensors were
first connected to the nucleo board and data was retrieved
using the ADC. Before using the heat gun used later for
testing, a hairdryer was used to safely simulate an increase
in temperature. A timer was then added to ensure that
an interrupt was triggered after a given wait time to take
temperature sensor readings. This ensured that there was
some temperature sensor data being calculated and in a
given time frame to easily integrate this in with the data
collection phase in the networking protocols. Temperature
calculations were then done to convert the ADC readings
to Celsius. Then, more unit testing was done to decide
a threshold that would be used in the final integration to
determine whether or not a fire had occurred at a node.

7.3 Unit Tests: Web Application

The web application went through many phases to get
to its current iteration. Originally, the plan was to use
GeoDjango but as stated in Section 5, the library was a lit-
tle more complicated than necessary. The next step taken
was to create an image map of the map and the nodes
which would involve superimposing images over other im-
ages. That was being tested originally, until there were
some bugs that we were running into with adding images
into the Django application. This led to the pivot to use
the Folium library to create the web application. The first
iteration of the web application was simply adding the gate-
way router node and the eight other nodes and hardcoding
a variable to signify the ”fire node.” That node would turn
red based on what was set in the code. After the interim
demo, we decided it would be beneficial to add the topol-
ogy of the map and show the links between the nodes, so
that was added to the web application. The last part of
testing involved making sure that dead nodes were treated
appropriately. In the case of a dead node, its links to its
neighbors would also turn grey, similar to the inactive links
in the spanning tree. Before moving the finalized code to
the Raspberry Pi, test cases of different paths between the
eight nodes were used to ensure that all cases were covered
and appropriately displayed on the web application. This
included making sure that all fire nodes, offline nodes, and

all active spanning tree links were correctly shown to the
user.

7.4 Integration Testing

Once the sensor database on the RPi was populated
from running phase 4 of the protocol stack (DATA), we
needed to get the web application (also hosted on the RPi)
to display the results of this DATA phase. This required
parsing the results of the protocol iteration (out of the orig-
inal 8 sensor nodes, which ones detected a fire, and which
ones were offline) into a JSON file. Once the JSON file was
properly created from the simulation results, we ensured
that the web application was able to read this JSON file
and adjust its UI accordingly to show the updated results
of the last-run iteration.

7.5 Results for Accuracy Testing

Before testing the accuracy of the network and how the
system was able to relay the information of the network,
iterative tests were completed. This included running tests
between two nodes and then adding one or two nodes at
a time until we were at a system of eight nodes. Once we
were at our final topology, we ran a series of twenty tests
in which we started all the protocols and either heated no
temperature sensors or heated one or two temperature sen-
sors. We found that 16/20 of the tests went through the set
of protocols leading to an 80% accuracy when it came to
the network. The tests that failed often encountered packet
errors and led to some of the nodes to get stuck and fail to
transmit or receive packets. We also found that the tests
ran smoother earlier in the day due to the interference of
the on-campus LoRA network being used by other parties.
Therefore, all the twenty tests were completed before noon.

7.6 Results for Power Testing

To test if the nodes is low power, we measured the volt-
age of a 43Ω shunt resistor connected in series to the Nucleo
board. The voltage during run mode was 2.75V, while the
voltage during standby mode without the LoRa was 1.8V.
We then connected the shunt resistor in series with the
LoRa and put the LoRa in sleep mode, and measured a
voltage of 5.46mV. This gave a current of 0.127mA for
the LoRa in sleep mode. This gave us a run current of
64mA and an overall sleep current of 42.127mA. It took
10 minutes to run the protocols, so in an hour time-span
the node would be in run mode for 20 minutes and standby
for 40 minutes. This means the average current during the
hour is

Iavg = 64mA ∗ 0.33 + 42.127mA ∗ 0.67 = 49mA (1)

Since the battery would need to last a month, it would
need to last 720 hours. 49mA ∗ 720H = 35.28AH. A 9V,
40AH battery would be sufficient for powering one node
for a month. This is much greater than our initial metric
for the following reasons:
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• We only calculated the power consumption of the
STM32L4 chip itself (as we could not find power met-
rics for the entire Nucleo board)

• The STM32 Nucleo board’s on chip ST-LINK debug-
ger is always connected even when in a low-power
mode, which led to a constant increase in power con-
sumption regardless of the STM32’s mode (Running
or Standby), which we did not account for in our ini-
tial power calculations

7.7 Summary of Testing Results

Refer to Table 1 on Page 12 for the final testing results.

8 PROJECT MANAGEMENT

8.1 Schedule

Refer to Fig. 12. on page 13 for our semester sched-
ule and the division of our work. Our schedule did shift
from the initial creating of the Gantt chart. We found that
integration of the individual parts ended up taking longer
than we had expected. Also, unexpected bugs caused some
backlog in the testing part of our schedule.

8.2 Team Member Responsibilities

• Arden: I was responsible for the design and imple-
mentation of the network protocol stack: STP, LSA,
SCH distribution, and DATA on both the RPi and
STM32 platforms. I covered communication between
the STM and the LoRa modules (via UART inter-
rupts) and communication between the RPi and the
LoRa modules (via the termios UART library). Us-
ing timer interrupts on the STM, and standard C
time functions on the RPi, I implemented transceiver
functions to send and receive packets (blocking and
non-blocking mode), as well as the ACK and re-
transmission scheme used by the LSA, SCH, and
DATA phases.

• Ankita: I was responsible for the web application in-
terface. I hadn’t taken the class here at the univer-
sity prior so it was a new experience having to work
with Django and designing the web application. I
also helped create the RX/TX schedule that was dis-
tributed to the nodes. This also included creating a
order for which the nodes would be receive the sched-
ule. In addition, I helped with testing and debugging
wherever necessary.

• Karen: I was responsible for implementing the Data
Phase on the STM32s, and having the nodes execute
the schedules received during the Schedule Phase. I
ensured that nodes closely followed the schedule, so
that there was no overlap in transmissions and that
no transmissions would be missed. I also made sure a
large change in temperature would be detected by the

STM by polling the TMP36. I implemented the code
for the gateway to write the data received from the
network into a JSON file for WebApp. I also helped
with testing and debugging.

8.3 Bill of Materials and Budget

Refer to Table 2 on Page 13 for the bill of materials.

8.4 Risk Management

One of the risks our project faces is that the timestamps
received by the nodes from the border gateway will not be
enough to synchronize the clocks to account for clock drift,
which will cause nodes to miss their TX/RX slot. If this
becomes a problem, we have implemented using ACKs to
ensure the packets are received as intended. We also found
that our batteries would drain when testing our project, so
we had to sometimes manage that by using wires to con-
nect in between the nodes and use a singular power source.
We eventually had no need for that once we purchased new
batteries.

9 ETHICAL ISSUES

Our product relies on its availability to provide early
wildfire detection to fire departments. If a backpacker or
a camper was to build a small campfire close to a node,
the wind might blow smoke towards a local sensor, causing
that node’s sensors to react as if a real forest fire were
starting. Furthermore, a malicious adversary could light a
fire directly under a node to trigger a false positive, effec-
tively calling wildland firefighters to their location.

Such misuse of our system evokes the question of how
the fire department should react to a node detecting a fire
or dropping offline. If the fire department is informed of
a conflagration at node X via the web interface, then they
should check via a lookout tower if smoke is even present.
If the lookout notices a column of smoke, then a crew of
wildland fire-fighter could be dispatched to that node’s
location. Although this would provide some robustness
against a malicious adversary falsifying a fire, it does not
fully address the issue, as such an adversary could simply
create a bigger fire, to warrant the fire department’s at-
tention. Nevertheless, if a node drops offline, the severity
of the issue is much less than a node detecting a fire since
there could be several root causes of a node dropping of-
fline, namely: a falling branch knocks the node off of its
tree, and the antenna cannot receive signals from in-range
nodes, or if the node simply runs out of battery power (af-
ter a month of operation). Nevertheless a node dropping
offline could indicate a fire if the epicenter of the fire is at
the node, and if the node is engulfed in the flames before
reaching its DATA phase of the protocol stack (before it
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takes a temperature reading).

Essentially, responsible use of this early wildfire detec-
tion system recommends a secondary traditional evaluation
of fire risk (i.e. lookout towers, or local scouts in the area)
at the time of fire detection in order to mitigate the amount
of false positives. If it has been approximately a month
since the last maintenance check, and a node drops offline,
and no fire is visually detectable, then it is likely that a
node’s offline state is due to a lack of battery charge, or
that it fell off of its tree. This scenario would necessitate
the dispatch of maintenance technician personnel rather
than an entire wildland forest fire crew.

We require such a high level of accuracy due to the
disastrous consequence of false negatives, and the incon-
venience of false positives. If a malicious adversary were
to build a jammer by the gateway (blocking the 915MHz
LoRa frequency band), they could effectively cause the sys-
tem to be inoperable. Although the LoRa frequency band
is free for public use according to the FCC, this would still
count as deliberate misuse, and regulation would have to
prohibit transmission on the LoRa frequency spectrum al-
location within X kilometers of the wireless sensor network
gateway router.

10 RELATED WORK

There are other projects that are documented about
creating a wireless sensor networks. For example, there
is study completed by researchers in the University of the
Coast in Barranquilla where they also created a wireless
sensor network for fire detection [16]. This project focuses
more on the sensing aspect of the fire detection system and
how to determine if a fire is at a location. There are also
projects that use machine learning to take the aggregate
data to predict the future locations of fires [1]. There are
lots of uses of satellite imaging to view the locations of nat-
ural disasters like floods and fires [17]. In comparison to
those projects, due to our use case as well as the constraints
of budgeting and time, our project focuses on the network
as we wanted to create a accurate and low power system for
fire detection. We wanted to ensure lower maintenance of
the system by firefighters. Our project also focuses mainly
on the network and how to adjust that architecture to make
our project most efficient. More than determining the fire,
we are focusing on whether the location of the fire can be
relayed correctly.

11 SUMMARY

In our project, we hoped to create a low power and
accurate system for wildfire detection. Our system con-
sisted of a wireless sensor network of 8 nodes that transmit
data regarding the locations of the fire. This data would
be displayed on a web application for wildland firefight-
ers. Our system was intended to be low power, leading
to low maintenance as well as high accuracy. The system
would help pinpoint the fire’s location. Our system didn’t
end up meeting all our requirements that we had set out
for. Using a LoRA network while on CMU campus led to
some issues achieving our intended accuracy for fire detec-
tion; however, we were able to get the notification of the
fire’s location within our requirements. Regarding the low
power nature of our system, we were able to measure the
power consumption of our design though it was not as low
as we had hoped. As expected, integration of the individ-
ual parts proved to be a challenge. If our team had more
time, we would look into testing where there is no interfer-
ing LoRA network as that wouldn’t apply in the context of
a forest. We would also make sure to find hardware that is
well-documented and reliable.

Groups working on similar wireless network projects
should ensure that the channel they intend to use is avail-
able and contention-free for a pre-determined time period,
during which they will be able to run tests. This particular
issue caused sporadic experiment failures and let to such a
hassle in development and testing. There is a pre-exisitng
LoRa network on CMU campus, and since the 915Mhz fre-
quency band is public-use (as per FCC regulations), anyone
with a radio can broadcast whatever message they want at
whatever time suits them on the bandwidth you plan to
test your project on!

Glossary of Acronyms

• RPi – Raspberry Pi

• TS - the timeslot duration in seconds.

• TDMA - Time Division Multiple Access

• MAC - Medium Access Control

• LSA - Link State Advertisement

• LS - Link State

• LoRa-WAN - Cloud-based MAC protocol designed
for the LORA-PHY (physical) layer

Table 1: Testing Results

Description Requirement Results
Fire Accuracy 90 - 95% 80%
Notification Timing 30 mins 10 mins
Low Power 1 mo. maintenance 40AH battery required
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Table 2: Bill of materials

Description Model # Manufacturer Quantity Cost @ Total
Temperature Sensor TMP36 Adafruit 8 $2.75 $22.00
Breadboards 3.25”x2.2” Adafruit 9 $4.95 $44.55
Nucleo Board NUCLEO-L412KB DigiKey 10 $11.00 $110.00
LoRA Transceiver RYLR896 REYAX 12 $19.50 $234.00
9V Batteries Pack of 8 Amazon 1 $12.99 $12.99
9V Battery Clip 5.5mm/2.1mm plug Adafruit 8 $2.95 $80.00
Barrel Jack 2.1mm Adafruit 8 $0.95 $7.60
USB cables USB Micro B Amazon 1 $13.99 $13.99
USB expansion port 7-port USB 3.0 Amazon 1 $21.99 $21.99

with shipping costs : $547.12

• ToA - Time-on-air: time from when a signal is trans-
mitted by a sender until the receiver receives it.

• DC TS - Data Collection Timeslot (seconds)

• DATA TS - Data Phase Timeslot (seconds)

• TX TS - Transmission Timeslot (seconds)

• RX TS - Reception Timeslot (seconds)
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