USE CASE REQUIREMENTS

Motivation: Locations like California experience multiple wildfires every year, spanning large areas (7,490 fires in 362,455 km)

Goal: Notify wildland firefighters of wildfire locations

Use Case Requirement	Desired Quantitative Metrics
Fire Detection Accuracy	> 90-95%
Notification Timing	30 mins
Low Power	1 mo. maintenance

MODIFIED SOLUTION APPROACH/RESCOPING

- Assuming a certain amount of packet losses

 Assume at most N packet errors can occur in each phase
- Web app does not automatically reload when JSON is updated with new data
 - Manual reload
- Removed NTP from protocols

COMPLETE SOLUTION: NETWORK HARDWARE

Demo Expectation: Nodes will be distributed around the room within 0.25m

COMPLETE SOLUTION: NETWORK SOFTWARE

COMPLETE SOLUTION: WEB APPLICATION

FireAway Map How To Use About

COMPLETE SOLUTION: SAMPLE RUN

Phases 1-3: Network Configuration

Phase 4: Data Collection (Heating of Node 2)

Data Notification

TEST, VERIFICATION, & VALIDATION: CHANGES

- Turn on heat gun next to sensor and check that response time is within 30 mins
 - \succ Match \rightarrow Heat Gun: Safety and Consistency
- No longer assume that a node failing/going offline is a fire
 - Not an assumption that is realistic to make
 - Detecting node failure within 30 mins of node going offline remains
- Maximize low power modes in the framework of our network protocol:
 - > Turn nodes on for a period of time and measure how much battery is drained
- ✤ If clock synchronization fails, we were going to use GPS to calibrate RTC
 - We no longer are doing clock synchronization and are using ACKs to recover from any packet errors and fails

TEST, VERIFICATION, & VALIDATION: TEST CASES

- Topology Tests:
 - 2-node exchange (one node being gateway)
 - > 4-node tree
 - ➢ 8-node line topology
 - > 8-node fully connected \rightarrow Test being used currently
 - ➢ 8-node mesh topology (FINAL/IDEAL)*
- Types of Tests:
 - ➢ Control (No fire set)
 - > 1 fire being set
 - Multiple fires being set*
 - Node going offline/dead*

*Tests that are currently not working/not been tested yet

TEST, VERIFICATION, & VALIDATION: RESULTS

Design Requirement	Desired Quantitative Metrics	Results			
Fire Detection Accuracy*	> 90-95%	75%			
Notification Timing/Web App displays fire location*	30 mins	7-8 mins			
Detect node failure	<= 30 mins of node going offline	(TO BE TESTED)			
Maximize low power modes (measure how much battery has drained)	battery should last for 1 mo.	(TO BE TESTED)			

*Results collected by running 10 tests with a 8-fully connected topology

TEST, VERIFICATION, & VALIDATION: TRADE-OFFS

- Acknowledgements (ACKs)
 - > Transmission a lot more reliable
 - Sender now knows if receiver received a packet
 - Sending more packets = more time, more power
 - Reliability > Low Power in terms of priority

PROJECT MANAGEMENT: SCHEDULE

TASKS	Week 3		eek 4	Week		Week 6		Veek 7	Fall Break	Week 8	Wee		Week 10		ek 11	Week 12	Week 13	Week 14	
		9/12	ę	9/17	9/26		10/02	10/10	10/17	1	10/24	10/31		11/07	11/14	¢ 11/2	1 11/2	8 12/04	
lass Assignments		_																	
roject Proposal Presentation		DU	JE																
Design Presentation						DUE													
Design Document							C	UE											
Ethics Assignment										DUE									
Interim Demo													DUE						
Final Presentation																		DUE	
Overall Project Work																			
Research Equipment/Materials																			
Order Equipment/Materials																			
Individual Parts Development																			
Integrating Nodes + Network																			
Integrating Network + WebApp																			
Whole Project Integration																			
Slack Time																			DIVISION OF TAS
Web Application																			EVERYONE
Create a dummy web server to test Django/RPi				2011															KAREN
Interface with nodes and router shown																			ARDEN
Animation during conflagration																			ARDEN
Notification system																			
Adding the topology links to the map																			
Gateway writes data to json file																			
Galeway whites data to json me																			
Node Architecture/Embedded System																			
Get ADC readings and put node into low power																			
Send nodes into low power & ADC using timers																			
Nodes transmit on schedule																			
Assemble all the nodes																			
Nodes enter standby and collect data on schedule																			
Routing Network System																			
Connecting singular node to border gateway																			
Connecting star topology of nodes to border gateway																			
Connecting all nodes to border gateway																			
Spanning Tree Protocol Implementation																			
Data Scheduling																			
Data Mode for all nodes																			
ntegration of protocol phases and low power nodes																			
Testing of protocol stack and debugging																			

WHAT'S LEFT? & LESSONS LEARNED

- Fixing Bugs
 - > Make sure to check the extensiveness and reliability of a component's documentation
 - Always expect that integration of multiple parts reveals bugs/flaws
- Further testing
 - ➢ Testing if a node "dies"
 - ➢ Testing Low Power
- Adjusting Power Consumption and Timing:
 - More testing needs to be done and walking through working code to see if any timing and power usages can be pared down