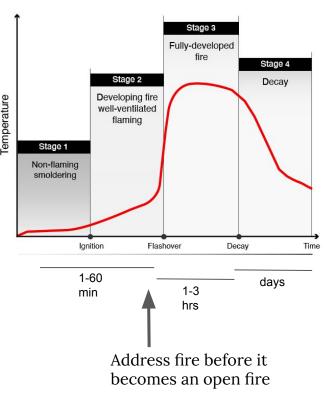
Use Case

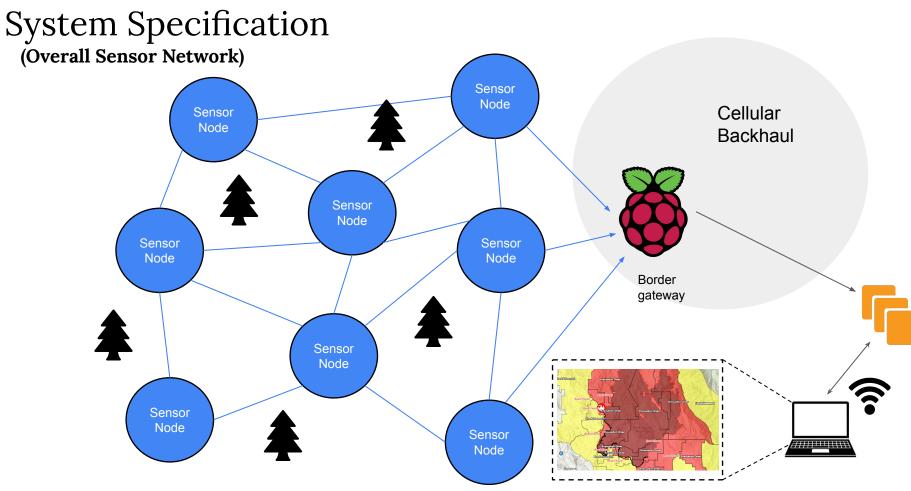

- In 2022, California has had a total of ~ 6000 wildfires recorded, spanning 300K acres
- Notify wildland firefighters of locations of wildfires
 - > Target audience: Fire & Emergency Services
- Project is designed to be scaled to cover an entire forest

ECE Area(s) covered: Software and Hardware Systems

Quantitative Use Case Requirements

Fire Detection Accuracy

- ➢ Goal: > 90−95 % accuracy
- Why? We want our network to be able to detect fires accurately but also give slack in case one of the nodes in our network dies
- Notification Timing
 - > Web application should show active fires within
 - within 30 mins of conflagration
- Low Power System
 - > Nodes operate without maintenance for up to a month

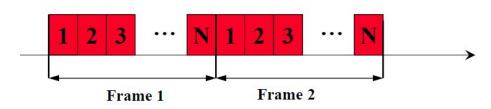

Source:

https://www.firetrace.com/fire-protection-blog/different-stages-of-a-fire

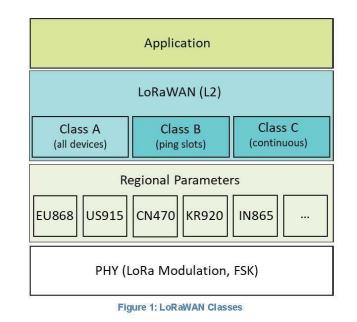
Solution Approach

- ✤ Wireless Sensor Network:
 - > Measuring heat (and/or temperature) to determine if fire is occurring
 - Using 8 nodes to simulate our system
- Node Architecture:
 - ➤ STM32L4 for low power
 - ➢ LoRa Transceiver
 - ➤ Gas/temp sensor
- Routing/Network Protocol:
 - ➢ Time Division MAC protocol
 - Maximize low-power
- Web Application:
 - Hosting WebApp on RPi using Django software
 - Easy to use/well-documented software

Programmed Preamble	6	Symbols	Calculator Outputs							
Total Preamble Length	10.25	Symbols	Timing Performance							
Header Mode	Explicit Header Er	nabled	Equivalent Bitrate	292.97	bps	Time on Air	7151.62	ms		
CRC Enabled	Enabled		Preamble Duration	335.87	ms	Symbol Time	32.77	ms		
RF Settings										
Centre Frequency	915000000	븆 Hz	RF Performance	Consumption						
Transmit Power	15	🖨 dBm	Link Budget	152	dB	Transmit	82	mA		
Hardware Implementation 🗌 RFIO is Shared			Receiver Sensitivity	-137	dBm	CAD/Rx	10.8	mA		
Compatible SX Produ	ucts 1272, 1276		Max Crystal Offset	34.2	ppm	Sleep	100	nA		
BW = 125 kHz, CR =	4/5. Header Disabled	. Preamble =	10.25 syms Payload	= 240 byte	es. Trans	mit Power = 1	5 dBm			



Source: https://www.mercurynews.com/wp-content/uploads/2022/07/oakfire0727.jpg?w=1024


Web Application

MAC Protocol

- Goals: collision avoidance, <u>energy efficiency</u>, scalability and resilience
- Idle state power consumption (Nucleo board only):
 - 0.95 μA[no RX]
 - 158 μÅ [RX]
- Asynchronous B-MAC requires low-power listening
- Synchronous MAC requires clock synchronization
 - Gateway sends time-synchronization packets
 - Node-specific GPS for time synchronization
- <u>LoRaWAN</u>: star-of-stars topology, ALOHA
- <u>Spanning Tree Protocol (STP)</u>: mesh network

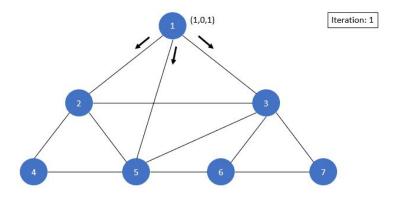
Sources: Lecture 20, 18452 (Spring '21), LoRaWAN® L2 1.0.4 Specification

Routing and WSN simulation

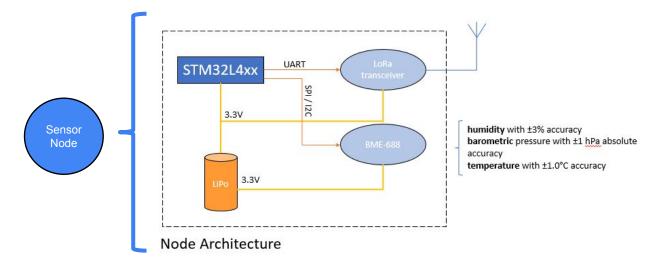
Phase I. Mesh Network reduction

- mesh topology:
 - In a single loop-free path (GW to end-node), there cannot be more than two monotonously-decreasing nodes in between two monotonously-increasing nodes.
- STP runs on each node, tree topology converges in 3 iterations (rerun every 30 minutes)

Phase II. Data Transmission Scheduling, Clock Sync


- 2N timeslots from the GW are subdivided and assigned by the parent node to its children nodes (if any exist)
- GW's timestamp is piggybacked onto the scheduling messages

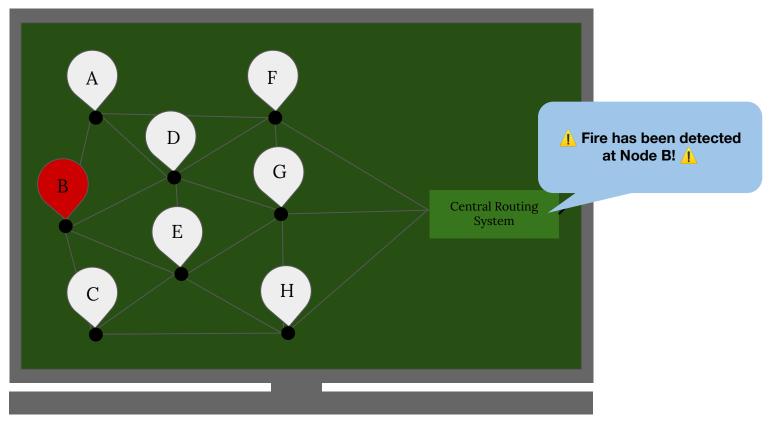
Phase III. Sensor Data Collection


- Nodes follow their own data transmission schedules
 - unused timeslots recycled by leaf nodes

Routing and WSN simulation (cont'd)

Phase I. Mesh Network Tree reduction Phase II. Data TX Scheduling, Clock Sync Phase III. Sensor Data Collection

System Specification (Node Architecture)



Transceiver power consumption:

 $[3(Q_{TX}+(Q_{RX})(N-2))] + [Q_{TX}+Q_{RX}] + [Q_{TX}+(N-2)(Q_{RX})] = 4.8759 C$ Total duration: [3N(TS)] + [(N+1)TS] + [(2N-3)TS] = 243 seconds

2038.27mAh required for sampling rate of 1/30min 2588mAh required for sampling rate of 1/15min timeslot TS = TOA + m_1 $Q_{TX} = (I_{A_TX})(t_s) = 586432.5 \text{ x}10^{-6} \text{ C}$ $Q_{RX} = 77751.4 \text{ x}10^{-6} \text{ C}$ Battery B = 3.3V @ 3000mAh

Web Application Design

Implementation Plan

- Routing/Networking Protocol
 - Adapting a time-division MAC protocol based off a clock-synchronization algorithm from TDM MAC protocol design and implementation for wireless mesh networks by Koutsonikolas and Salonidi
- Node Architecture
 - > Designing the node's architecture from scratch
- Web Application
 - Designing from scratch using Django software
 - > Will be using online resources as tutorials/reference

Test, Verification, & Validation

- Light a match next to a sensor, response time on the web application within 30 minutes of conflagration.
- Detection of (implicit) fire 30 minutes after node failure
- Maximize low power modes in the framework of our network protocol:
 - > Turn nodes on for a period of time and measure how much battery is drained
 - Successful test: battery would last a month
- Successful test: fire is detected and shown on web application within 30 mins
- ✤ If a test fails:
 - > If clock synchronization fails, we will use a GPS module to calibrate the RTC

Project Management

Tasks	Week 6	Week 7	Fall Break	Week 8	Week 9	Week 10	Week 11	Week 12	Week 13	Week 14	
	10/2	10/10	10/17	10/24	10/31	11/	7 11/14	11/2	1 11/28	12/4	1
Class Assignments			-								
Project Proposal Presentation			-								
Design Presentation	DUE		-								
Design Document		DUE	-								
Ethics Assignment			-	DUE							
Interim Demo			-			DUE					
Final Preentation			-							DUE	
Overall Project Work			-								
Individual Project Parts			-								
Connecting node architecture to router system			-								
Connecting router system to web app			-								
SLACK											
Web Application System			-								
Create a dummy web server to test Django			-								
Create the nodes and router interface to show											
Notification System working			-								
Connection with Router System			5								
Nodes/ Embedded System			<u>-</u>								
Put node into low power modes on a schedule			-								
Nodes listen, take measurement, and transmit data			-							Division of Taks	
Nodes accept beacon and syncs clocks										Karen	
Nodes are synched and listen/transmit/sleep on schedule			-							Ankita	
										Arden	
Routing Network System			-								
STP Protocol (Phase I) and Phase II (Data Schedule TX)			-								
Phase III (Data Mode for all nodes)			-								
Integration of protocol phases and low-power modes			-								
Testing of protocol stack and debugging			-								