
1
18-500 Design Project Report: A0 - Crosswalk Guardian 10/14/2022

Crosswalk Guardian
Authors: Colin Hackwelder, Zachary Zhao

Department of Electrical and Computer Engineering,
Carnegie Mellon University

Abstract—Many pedestrian walk signs nowadays have started
to implement accessibility features, such as text-to-speech
feedback or rapid ticking sounds, to help visually impaired know
when it is safe to cross. However, there is currently no technology
to guide blind pedestrians towards these blind-friendly
crosswalks on their route to their destination. Our system hopes
to simultaneously act as a route navigation system that directs
users to their desired destination, while also helping them avoid
routes or paths with blind-unfriendly crosswalks. In the worst
case, if an unfriendly crosswalk is unavoidable, or purposefully
chosen by the user, then we expect our product to warn them
before they attempt to cross.

Index Terms— Embedded Systems, Geocoding, GPS, HERE
API, Raspberry Pi, Route Planning, Wearable Device

I. INTRODUCTION

While many modern pedestrian walk signals have started to
include accessibility features to assist visually impaired
people, they are not widespread enough where we can assume
they exist on any crosswalk, particularly those on quiet/less
busy streets, or in rural areas. The sidewalks that do provide
these features present a much safer environment for blind
individuals, reducing their dependence on inconsistent factors,
such as sounds of cars, or footsteps of other people around
them, to know when it is safe to cross. Guiding visually
impaired people towards these blind-friendly crosswalks can
greatly mitigate the dangers of crosswalks for blind people,
and help them safely navigate their way to their desired
destination.

This thought process has led us to our idea of the Crosswalk
Guardian, which is a product that we hope will simultaneously
help blind users as a navigation tool (similar to Google Maps),
as well as provide an added functionality of helping them
avoid blind-unfriendly crosswalks, giving users a safe and
complete user experience, tailored toward their needs. In the
worst case, if blind-unfriendly crosswalks are unavoidable, or
if the user deviates from a prescribed route onto an
blind-unfriendly crosswalk, then we expect the Crosswalk
Guardian to warn the user that the crosswalk they are about to
cross lacks the appropriate accessibility features.

To be explicit, a blind-friendly crosswalk is simply a
crosswalk that possesses some form of auditory feedback
when the walk sign is turned on, allowing visually impaired
people to know that it is safe to cross. As mentioned earlier,
some forms of this include text-to-speech feedback, rapid
ticking sounds, or periodic beeping sounds. Then, a
blind-unfriendly crosswalk is just a crosswalk with the
absence of any auditory signal. In other words, if external
signals were not present, then a visually impaired person

would not know if a blind-unfriendly crosswalk was turned on
and off at a given moment.

While there have been studies done on route planning and
navigation for blind individuals, focused on the optimization
of route distance, and avoidance of obstacles (ie. road
construction, natural disasters, etc.), none so far have
experimented with the avoidance of blind-unfriendly
crosswalks as a route optimization heuristic. Our project aims
to implement this heuristic, with an overall goal of reducing
the danger of land transport for visually impaired people.

II. USE-CASE REQUIREMENTS

From the qualitative description of our system, we proceed
by introducing the use case requirements that will guide our
design process and help us create a reliable system.

A. Periodic Updates
We want users to be frequently updated on the remaining

distance of the step of the current route is (ie. how much
distance until the next turn, crosswalk, etc.). Therefore, we
expect our system to update the user every 15 seconds on the
distance remaining on the current step. If the user is within
15m of a turn or crosswalk, then our system will update the
user every 5 seconds instead, so that the user does not miss the
turn or crosswalk. Qualitatively, our updates should be concise
and clear. For example, a piece of concise feedback would be
“Walk straight for 100m before turning left on Forbes Ave.”.
This clearly tells the user the remaining distance on the current
step, and alerts them where they will be turning next.

B. Location Accuracy
In order to reliably route the user to their desired location,

our system must accurately detect their location. Specifically,
we require that our system’s outputted location must be within
1m of the actual location of the user. This ensures that our
feedback and directions given are accurate given their current
location.

C. Long Battery Life
The system should have a battery life of 16 hours, so that it

is able to sustain usage throughout the whole day without
recharging.

D. Lightweight
Since the user will be carrying/wearing this device, we do

not want it to be a burden for them by being too heavy.
Therefore, our system should be less than 1kg in weight, so
that it does not fatigue the user during usage.

E. Latency
The system should not take too long to provide feedback

after it has detected the coordinates of the user. If it takes a
significant amount of time, the user may have already moved a
considerable amount of distance away from the coordinates
detected, making the system’s feedback potentially inaccurate.
Therefore we require that our device respond within 1 second
after the coordinates of the user has been detected.



2
18-500 Design Project Report: A0 - Crosswalk Guardian 10/14/2022

F. Reliability
Our device should give a valid route from the user’s current

location to their desired destination 100% of the time. Further,
when the system detects that the user is near a
blind-unfriendly crosswalk, it should alert the user that they
may be attempting to cross a blind-unfriendly crosswalk 100%
of the time.

G. Unfriendly Crosswalk Avoidance
The path from the user to the destination should always

contain the least amount of blind-unfriendly crosswalks,
preferably zero if such a path exists.

H. Rerouting
If the user becomes lost and deviates from the route we

had proposed for them, then our system should recognize this
and reroute them within 30 seconds since they started to
deviate.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our system can be divided into four subsystems:
1. Location and orientation detection
2. A backend server performing computations regarding

route planning and navigation
3. A frontend interfacing with all the subsystems above,

as well as providing auditory feedback to the user
4. A power supply connected to the Raspberry Pi, which

will power the rest of the components via the
Raspberry Pi power pins.



3
18-500 Design Project Report: A0 - Crosswalk Guardian 10/14/2022

IV. DESIGN REQUIREMENTS

Based on our use case requirements in section II., we
outline our design requirements below to meet these
specifications.

A. Periodic Updates
This requirement is not meant to be particularly

constraining, but rather as a tool to provide a good user
experience. The frontend subsystem will keep track of the
time elapsed since the last time it communicated the

coordinates of the user with the backend. By default, it will
wait 15 seconds before sending the next message to the
backend server. However, if the backend indicates to the
frontend that the user is near a turn or crosswalk, then the
frontend will switch states and communicate with the frontend
every 5 seconds, until the backend tells it to stop (ie. go back
to default state). Assuming the backend server does not take
more than 5 seconds to respond to the frontend request (which
will be discussed in the latency section), we will comfortably
meet this requirement.



4
18-500 Design Project Report: A0 - Crosswalk Guardian 10/14/2022

B. Location Accuracy
To ensure a safe and good user experience, high location

accuracy is crucial. In order to ensure high location accuracy,
our system will use a U-blox ZED-F9R high precision Global
Navigation Satellite Systems (GNSS) module. This module is
able to gather location data from the four major GNSS
constellations (GPS, GLONASS, Galileo and BeiDou)
concurrently, allowing for sufficient satellite connections to
maintain high accuracy. The module also provides IMU sensor
fusion to maintain high accuracy when satellite connection is
lost. Utilizing the ZED-F9R will allow us to achieve ~1 meter
positional accuracy and ~5 degree heading accuracy.
Maintaining these accuracies will allow the user to be
confident that the correct information is given regarding
location and direction with respect to their path. These
accuracies are also required so that the device can reliably
determine what side of the road that the user is on so that it
can avoid necessary blind-unfriendly crosswalks.

C. Long Battery Life
Battery life is important to ensure that the user can travel all

day without having to recharge the device’s batteries. In order
to meet this requirement, the device will have a 16 hour
battery life so that a user can go all day without having to
recharge. This number is based on the fact that the average
person will sleep for about 8 hours a day, so the user should be
able to use the device for the remaining 16 hours of a day. A
battery of 26800 mAh at 5V is chosen to meet this
requirement due to high availability and capacity. The
Raspberry Pi draws about 1 Amp at 5V. The GPS/IMU draws
about 130 mA at 3.3V. The Notecard draws about 150 mA at
3.3V, and will draw up to 750 mA at 5V during data
transmission. Data transmission will not occur very frequently,
so this number will not have a large effect on the overall
power consumption. If we transmit data once every 5 seconds,
we will assume that we will use about 750/5 = 150 mAh at 5
V. Combining these numbers gives us ~1335 mAh at 5V,
which will give us about 20 hours of battery life. With 4 hours
of slack in our calculations, we are confident that we can meet
the 16 hour battery life use case.

D. Lightweight
Weight will heavily depend on the power consumption,

given that the majority of weight in the system will be from
the weight of the battery. The 26800 mAh battery we chose to
use weighs 0.4 kg. With a use case constraint of 1 kg, 0.6 kg is
left for the digital boards as well as the container for the
device itself. The weight of the boards combined with the
GNSS antenna is 0.35 kg. The last 0.25 kg will be used for the
container and mounting straps.

E. Latency
Following our use case requirements in section II., we want

our device to respond within 1 second after the user’s
coordinate data is communicated. This specifically targets the
backend server that will do most of the computational work
regarding route planning and navigation.

To meet this requirement, we will first use an API (called
HERE, which will be discussed in section V.) to plan the route
for the user, at the beginning of the trip. Since communicating

back and forth incurs a higher latency (and cost), we want to
store the results of the request at the beginning of the trip,
instead of communicating repeatedly during the trip. By doing
so, we minimize the backend processing time to an estimate of
at most 50ms. This will leave 950ms for the backend and
frontend to communicate with each other, and for the frontend
to transform the information given by the backend into
text-to-speech feedback, which is ample time to fulfill our
requirements.

In the case where the backend needs to reroute the user, it
will communicate with the API again to receive the new route.
According to HERE documentation, the 98th percentile
latency is 350ms for routes under 100km. Although more
constraining, this still leaves at least 650ms for all other
communication for processing.

F. Reliability and Blind-unfriendly Crosswalk
Avoidance

Our optimal backend system must always find a valid route
between the user’s current location, and their desired
destination. It must also ensure that blind-unfriendly
crosswalks are avoided unless there are no alternative routes
available.

In the case where the user must or chooses to cross a
blind-unfriendly crosswalk, the backend server must recognize
that the user may be planning to cross, and warn them that the
crosswalk is blind-unfriendly.

G. Rerouting
Our optimal backend system must recognize when a user

has deviated from the planned route, and reroute them within
30 seconds after they’ve deviated. Since the use case
requirements state that the backend server will receive user
coordinates at least every 10 seconds, it will have the
capability to detect if a user is moving away from the next
checkpoint. If their distance has increased from the next
checkpoint for the last two communications (ie. 20 seconds),
then the backend should assume that the user has deviated, and
perform rerouting.

V. DESIGN TRADE STUDIES

There are several ways to implement each of our design
requirements, and exploring the tradeoffs of each, and why we
chose a certain method, will clarify our design.

A. Route Planning API
While designing our system, we contemplated whether we

should implement route planning on our own, or use an API to
do this for us. After some research, we realized that
implementing route planning from scratch may be too
ambitious, and instead decided to go with the latter option.
There were several options for APIs that we could use:

1) Google Maps API
This was originally our first choice. The Google Maps API

is quite comprehensive, has multi-language support (including
Python, our backend language of choice), good map coverage,
and the API is generally very easy to use. However, it lacks
functionality to avoid certain areas or roads when doing route
planning. There are custom alternatives to this; for example,



5
18-500 Design Project Report: A0 - Crosswalk Guardian 10/14/2022

Google Maps’ Directions API allows users to specify whether
they want multiple routes to the same destination. One way we
could have leveraged this was to allow the API to find these
routes, then filter out the ones that contained blind-unfriendly
crosswalks. However, this would significantly increase our
code complexity, while not providing a scalable or efficient
solution.

2) OpenStreetMaps API
We also considered the OSM API for this task. However,

while it is a free service, compared to the other APIs on this
list, it does not provide nearly as much functionality, and is
inherently scalable since it is a public API, and will not allow
services (like ours) to make large amounts of calls to its API.
Therefore, we decided this API would not be suitable for our
needs.

3) HERE API
Finally, we discovered the HERE API. After looking into it,

we believe it provides the best specifications for our needs.
Specifically, it provides support for Python, and supports route
planning and geocoding. In particular, it fills in the gaps of the
Google Maps API, allowing us to specify points that should be
avoided during route planning (ie. blind-friendly crosswalks).
It also has reasonable latency (< 350ms for route planning),
and is overall what we believe to be the best choice for our
project.

B. Hardware
1) Processor

We chose a Raspberry Pi 4 due to the fact that most of the
other hardware we are deciding to use is compatible with the
board. We will also be using python to develop the software,
and the Raspberry Pi provides a good platform to run all of the
software that we need. We contemplated using an Arduino,
however due to the need for more complicated threading,
power requirements, as well as speed of development, we
decided that the Raspberry Pi would be a better fit.

2) Location Device
We needed a high-precision location device that was capable

of giving locational accuracy on the scale of the size of a
sidewalk. Most crude GPS devices including most devices in
smartphones are capable of providing GPS location within
10-40 meters of the device. This will not suit our requirements
because of the possibility of giving false location information
to the user. A benefit to the crude GPS devices is that they are
cost effective, however we needed better accuracy so we
decided to make the tradeoff of cost for higher accuracy. We
chose the u-blox ZED-F9R GPS/IMU to provide us with high
location accuracy even in poor satellite connection conditions.

VI. SYSTEM IMPLEMENTATION

In this section, we hope to explicitly describe our
implementation corresponding to our design and use case
requirements.

A. Backend Server
The general implementation of the backend will be as

follows:

1. Preprocessing, Database and Caching
At the start of the trip, the backend will first receive a

message from the frontend, indicating the current user
location, and the user’s desired destination. Using these two
data points, the backend will call the HERE API for route
planning. Note that the backend will keep a database of
unfriendly crosswalks, and will use this database as an input to
the areas that need to be avoided when calling the API. Since
the database itself is not the core focus of our project, we will
use a lightweight dictionary implementation, where the postal
codes are the keys, and the values are lists of JSON-formatted
data, where each data point includes information on the
latitudinal and longitudinal coordinates, and street names of a
blind-unfriendly crosswalk in that postal code.

Once the HERE API returns a route, we will use a cache to
store this route in local memory, and reference this cache from
now on till the end of the trip, saving additional
communication time between the API. Our cache will be
implemented as a nested list. Each element in the outer list
will represent a checkpoint en-route to the destination, and
each element will contain the directions to be performed at
that location (ie. turn left/right, etc.), and also the latitude and
longitude coordinates of that checkpoint.

Once we have the route results from the API, the directions
must be snapped to the sidewalk that the user will be on when
starting the route. This is to ensure that we are properly
avoiding blind-unfriendly intersections only when they need to
be crossed. In order to do this, a graph of all sidewalk corners
is kept in our database, and we iterate through the API route,
snapping to the closest/next sidewalk corner until we reach the
end of the route and have a full route following the sidewalk.

2. Coordinate to Distance Conversion
In order to reliably route our user, we must be constantly

calculating the distance between the user and their next
checkpoint en-route to their destination. However, both the
GPS coordinates and the routing data that the HERE API
gives us consists of latitude, longitude coordinates. Therefore,
we need a method to translate these coordinates into actual
distance.

While the user is en-route to the destination, the backend
will do as follows: Every time the backend receives a message
from the frontend (which will communicate the user’s
latitudinal and longitudinal coordinates), the backend will use
the Haversine formula to calculate the distance of the user
from the next waypoint (the backend will keep track of an
index that indicates which step of the route the user is on):

where ഴ represents the latitude, and λ represents the longitude.
Referencing the formula above, we will calculate the
Haversine function of the differences in latitude and longitude
as such:



6
18-500 Design Project Report: A0 - Crosswalk Guardian 10/14/2022

Finally, we can calculate distance:

,
where h is hav(Ө).

After this distance is calculated, we may choose to provide
feedback to the user, if appropriate. This will be discussed
further in the subsections below.

3. State Transition Model/Routing Scheme
As aforementioned, the HERE API returns a route consisting

of checkpoints, represented as latitude, longitude coordinates.
However, the user obviously does not need to be exactly at a
coordinate, in order for our system to realize that the user has
reached the checkpoint (that would be almost impossible to
accurately measure). Therefore, we provide some leeway: If
the user is within 5 meters of the coordinates of a checkpoint
(measured by the Haversine Function), then our system will
start routing the user to the next checkpoint.

Using this scheme, a similar issue arises. What if the user is
still on the originally prescribed route, but was not close
enough to a checkpoint (within 5 meters, to be exact), before
proceeding to the next checkpoint? Our system must be able to
differentiate between these “slightly-off” errors, versus when
the user really has deviated from the route, and proceed
accordingly. This scenario provides a need to implement a
state transition model.

Our model is shown below in Fig. 4. The system’s start state,
and the state it will predominantly stay in, is the Same
Checkpoint state. This state signifies that the user is on their
way to the upcoming checkpoint. If at any point, the device
detects the user’s distance with the checkpoint is increasing, it
will initiate a reroute by contacting the HERE API (indicated
by the Rerouting User state). Meanwhile, if the device sees
that the user’s distance to the checkpoint is less than 15
meters, then it will proceed to the Near Checkpoint state. In
the standard case, if the user’s distance to the checkpoint
becomes less than 5 meters, then we increment the cache,

which will allow us to begin routing the user to the next
checkpoint, and revert back to the Same Checkpoint state.
However, if the user’s distance to the checkpoint ever
increases in this state, then we must refer to the user’s distance
to the next checkpoint. If the user’s distance to the next
checkpoint has also increased, then the user has probably
deviated from the route, and we will reroute them. However, if
it has decreased, then the user is most likely still on course,
but has just slightly missed the checkpoint radius, so we still
increment the cache, and continue routing them to the next
checkpoint.

4. Feedback to User
Referencing our Design Requirements section A and our

state transition diagram, we will only be providing verbal
feedback to the user every 15 seconds if they are in the Same
Checkpoint state, and every 5 seconds if they are in the Near
Checkpoint state. We will still be requesting user coordinates
from the GPS around once every second, but will not always
be providing audio feedback in order to reduce unnecessary
noise to the user.

There are certain times where we must “force” the system to
give feedback, even if not enough time has passed yet since
the last feedback. The first case is when the system detects a
distance increase in the Same Checkpoint state. Then, we need
to reroute the user and provide feedback immediately on the
updated route. The second case is when the user is within 5
meters of the checkpoint. Then, we need to immediately tell
them to perform an action (ie. turn) and proceed to the next
checkpoint.

The feedback given to the user while in the Same
Checkpoint state is as follows: Continue on (street name) for
x meters. We extract the street name from the data that the
HERE API returns, and we calculate x using the Haversine
Function. In the Near Checkpoint state, we give feedback as
such: In x meters, (perform action). x is calculated as before,
while perform action is the action prescribed by the HERE
API data. Finally, when the user is near an unfriendly
crosswalk (within 10 meters, which the system checks for
every iteration), it will provide feedback: You are near an
unfriendly crosswalk. Please be careful.

B. Front End
The front end will have three separate components, the

location data gathering system, the cellular data interface, and
the auditory feedback system.

1. Location Data
We use a u-blox ZED-F9R GPS/IMU device in order to

determine the user location with high accuracy. This device
utilizes IMU sensor fusion to be able to provide high accuracy
location information even in poor satellite connection
conditions. We communicate to this device via UART serial
protocol. This device provides latitude and longitude
coordinates that will be able to be correlated to the coordinates
provided by the HERE API. The device also provides heading



7
18-500 Design Project Report: A0 - Crosswalk Guardian 10/14/2022

information based on the cardinal directions. This information
will be given to the backend server to determine if the user is
on course and where they have to go next to reach their
destination. Initially when designing the system, the IMU
sensor fusion was a plus due to the fact that we thought it
would allow for a more precise location of the user to be
derived. However, the IMU was meant for faster moving and
more rigid applications where wheel-tick sensor inputs can be
provided. For our application, the IMU fusion hurt our
accuracy when compared to just using a 3D satellite fix.

2. Cellular Data Interface
We use a Blues Wireless LTE-M cellular data card to access

the HERE API that the back-end needs to communicate with.
We will communicate to this device via an I2C Serial Bus.
The cellular data card allows us to access the internet
anywhere as long as we have access to cell towers. In remote
areas this may be a problem, however as long as a user can use
their cell phone they will be able to use this system as well.

3. Auditory Feedback
The system will provide a 3.5mm audio jack for the user to

plug headphones of their liking into. Audio will be played
periodically when the back-end determines that it is necessary.
The front-end will then take in the back-end string of text and
run it through an offline text-to-speech engine (pyttsx3). This
audio text-to-speech file will then be played out of the 3.5mm
audio jack through the Raspberry Pi audio interface.

C. Physical Device
The physical device is an aluminum box containing all of the

components outlined in Figure 3, sitting inside of a drawstring
bag. The box was drawn out on a piece of aluminum and then
bent to provide a bottom carriage portion as well as a top cap.
The two parts are screwed together, protecting the internals.

VII. TEST, VERIFICATION AND VALIDATION

A. Tests for Battery Life
The battery life use case is 16 hours. To test the battery life,

a USB ammeter was used to provide peak current usage
information. The device draws 1.1A at 4.93V at peak usage.
With a 26800 mAh battery at 4.93V, we are able to achieve a
battery life of 24 hours

B. Tests for Location Accuracy
The location accuracy use case is 1 meter error from the

actual location of the user. To test this, we walked with the
device along known locations and viewed the distance error
from the known locations after gathering the location data. In
open environments we are able to achieve 0.9 meter error.
This satisfies our use case requirement of 1 meter. However, in
urban environments up against tall buildings, we get 5 meters
error. This does not meet the use case requirement of 1 meter,
however we are still able to make the device work by
assuming that the user will not cross the middle of the street
and they will stay on the sidewalk. We then snap their location
to the nearest point on the sidewalk to find where they most

likely are. Location accuracy is improved when near an
intersection so we can rely on the coordinates from the device
to make sure the user is not deviating from the route at
intersections.

C. Tests for Latency
The latency use case is less than 1 second latency from the

point of time when we gather location data to the time when
auditory feedback is given. To test this we inserted a timer into
the software starting when we gather location data. The timer
stops when audio feedback begins. When not rerouting (using
a cached route), the latency is 0.0046 seconds. However, when
rerouting, our latency is 1.72 seconds. This is primarily due to
the fact that the Blues Wireless cellular data card acts as a
proxy when communicating to external APIs, so our latency is
double that of what it would be without going through a proxy.
Due to the fact that we do not reroute often, this extra delay is
not detrimental to the design, as we can regather the users
location data again once we get the rerouted data back.

D. Tests for Weight
We used a scale to determine the weight of the device. The

use case is 1 kilogram. The weight of the device was 0.85kg,
meeting our use case requirement. We believe that a heavier
design that provides a more rigid structure would have
provided better IMU sensor fusion results due to the fact that
the GPS antenna would not be moving as much relative to the
IMU. However, this more rigid structure would most likely go
over our 1kg use case requirement.

E. Tests for Reliability/Crosswalk Detection
We require a use case of 100% avoidance of

blind-unfriendly crosswalks. To test this, we ran the routing
algorithm 50 times, and successfully avoided blind-unfriendly
crosswalks each time, meeting our use case requirements.

Further, we want to test that the device detects
blind-unfriendly crosswalks that are nearby (within 10 meters)
100% of the time. To do so, we ran 10 tests, where we began
outside of the 10 meter range, and walked within the 10 meter
range. We were able to receive feedback from the system
indicating that we were near an unfriendly crosswalk every
time, which meets our use case requirements as well.

VIII. PROJECT MANAGEMENT

A. Schedule
Our schedule is outlined in Figure 4. We aim to have the

sensor systems integrated with the back-end around November
4th. We plan to continue improving our system based on the
feedback we get from integration until November 15, where
we aim to have a fully built and usable device. We have 2
weeks of slack after that point to improve on the functionality
of the device, where we will be finished on November 29th.

B. Team Member Responsibilities
Colin will be working on the hardware implementation, the

construction of the wearable device, the process
communications, and interfacing with the hardware, as well as
helping Zach with some extra software design and validation.
Zach will be working on the back-end of the system including



8
18-500 Design Project Report: A0 - Crosswalk Guardian 10/14/2022

the routing and deciding what information to give back to the
user based on the location information from the front-end.

C. Bill of Materials and Budget
See Figure 5 for the bills of materials and budget.
We ended up not using the grove to I2C connector due to

the lack of I2C libraries to communicate to the ZED-F9R.
Instead we used UART with some extra wires we had. We also
used a set of earbuds and USB-C cables that we already had to
get feedback from the device and power the device.

D. Risk Mitigation Plans
The critical risk factors in our design revolve around two

major factors.
The first factor is the lack of wireless communication

experience that our group has. Our device must communicate
to the internet in order for our implementation to work, and we
are counting on the cellular data card that we chose to perform
our needs. However, if the cellular card does not work out we
may be able to implement some sort of routing scheme using
an offline database of streets and locations.

The second factor is the complexity of the user tracking
with respect to the path that we are providing for them. This
includes the re-routing functionality and making sure that the
user is in fact where we think that they are. Given the amount
of time that we have to make this work (about 7 weeks), this
will be challenging. To mitigate this risk, we may reduce the
scope to a smaller area that we have more information about to
be able to provide a higher accuracy of feedback to the user.

IX. ETHICAL ISSUES

Our design raises several ethical issues. One of the main
ethical issues is that our design is tracking the location of users
and some users may not like their location being tracked.
Although we are not keeping their location data, we are still
interfacing with the HERE API which is an external API that
we have no control over. If there is a security breach of the
HERE API, or our device itself, a user’s location history may
be trackable.

Another major ethical issue is that our device is attempting
to tell users where to turn, and if we tell them to turn in the
wrong direction, the user may turn into a dangerous location,
such as an unsafe street or corridor. This could have adverse
side-effects on the user in extreme situations. However, we
advise that users still be using cane when walking to make
sure that they are not walking off of the sidewalk into a street
or other dangerous situation.

Other ethical issues have to do with the reliability of the
device, specifically regarding the possibility of losing
connection to the cellular data network or losing power
halfway through the route. If the device loses power or we can
no longer reroute the user, they may be stuck halfway through
the route and the device would not be able to route them the
rest of the way to their destination. The user would be
negatively affected in this situation as they may not know
where to go.

X. RELATED WORK

1. Google Maps
Google Maps is a web based location service which

provides directions to users based on their current location and
their desired destination. Google Maps is made for
smartphones and computers to be able to provide directions to
users. Access to the real time directions functionality is
limited as you must go through a smartphone for those
features.

XI. SUMMARY

Our design aims to provide a high accuracy direction service
for the visually impaired. A combination of GPS/IMU data
will provide high accuracy location data to the system to allow
for a reliable and pleasant user experience. With careful
attention to power usage and weight, the user will be
comfortable while using the device. Some upcoming
challenges include the complexity of user tracking algorithms
to ensure a high feedback accuracy so the user is not told false
information. Other challenges include the combination of all
of the physical hardware parts to make sure that all of the units
work as needed for the system to be able to function properly.

Our group learned a lot of lessons. One lesson on the
hardware side of design is that more attention should be given
to the information on the datasheets of the devices to make
sure that the device will actually perform as needed. In our
case, we thought that the GPS/IMU sensor fusion would help
our design, however the IMU sensor fusion actually hurt our
design due to our slow-moving, pedestrian use case. We ended
up not using the IMU portion of the device as we could get
better accuracy without it. Another lesson we learned about
was to fully research and understand the limits and flaws of
APIs that we intend to use. Using the HERE API as a specific
example, it would often switch between side-specific and non
side-specific street coordinates, which was a huge pain point
for us during the implementation of routing.

GLOSSARY OF ACRONYMS

GNSS - Global Navigation Satellite Systems
GPS - Global Positioning Service
IMU - Inertial Measurement Unit
MQTT – Message Queuing Telemetry Transport
OBD – On-Board Diagnostics
RPi – Raspberry Pi

REFERENCES

[1] Blues Wireless, Cellular Data Card, 2019
[2] Bhat, Natesh, “pyttsx3,” Jul 6, 2020.

[3] Build apps with here maps API and SDK Platform Access: Here
Developer. Build apps with HERE Maps API and SDK Platform Access
| HERE Developer. (n.d.). Retrieved December 17, 2022, from
https://developer.here.com/

[4] Google. (n.d.). Google maps platform  |  google developers. Retrieved
December 17, 2022, from https://developers.google.com/maps



9
18-500 Design Project Report: A0 - Crosswalk Guardian 10/14/2022
[5] Upadhyay, A. (2018, June 20). Haversine formula - calculate

geographic distance on Earth. Haversine formula - Calculate geographic
distance on earth. Retrieved December 17, 2022, from
https://www.igismap.com/haversine-formula-calculate-geographic-distan
ce-earth/



10
18-500 Design Project Report: A0 - Crosswalk Guardian 10/14/2022



11
18-500 Design Project Report: A0 - Crosswalk Guardian 10/14/2022


