
Use Case
- User is a visually impaired person
- Wants to go from point A to point B
- Ideally, only wants routes with

“blind-friendly” crosswalks
- Crosswalks with audio cues which signal when it

is safe to cross
- Text-to-speech, beeping, etc.

- Aid the visually impaired person in learning
a new area

- Rescope: Only around area immediately
surrounding CMU

Use-case Requirements
- Update user frequently so they are informed about where they are going

- Identification of user location within 1 meter of actual location

- Battery life of 16 hrs

- Reliability: user should be confident in directions/information given

- Latency: should return response (ie. directions) <1s after coordinates of

user is given

- Weight: <1kg

Solutions Approach
- Product: wearable device which gives user route from point A to point B

- Route will only contain “blind-friendly” crosswalks
- If user deviates from route, notify user if they attempt to cross “blind-unfriendly”

crosswalk
- If user deviates from route, reroute them based on direction they are currently walking in

- Front-end:
- Combination of inertial measurement unit and GPS locator

- I2C UART Serial Communication
- Audio feedback via wired earbuds

- 3.5mm audio jack
- Wireless communication to Maps HERE API

- Via cellular data network card
- I2C Serial Communication

Solutions Approach
- Backend:

- Will keep a database of “blind-unfriendly” intersections

- Find possible routes from A to B, and filter after for blind-friendly routes (Taken care of by

HERE API)

- Find coordinates of next intersection/crosswalk to turn at, calculate distance between

user current location

- Give feedback to frontend to direct to user

- Use Google Maps and Overpass API HERE API to assist with route planning and

intersection mapping

Complete Solution

GPS/IMU LocationDataGather.py

Data request

Location data

LocationInterpreter.py

Location data

Directions

Cellular Data Card

Route request Route data*

*Route data is snapped to sidewalk then cached, LI references
cache for subsequent requests

HERE API

Route request

Route data*

Complete Solution (Hardware)

TODO: add on/off switch, charging port, aux port

TODO: Incorporate into full wearable device (currently using a bag now)

Complete Solution (Software)

- Translation of coordinates (Lat, Lng) between two points to distance:
Haversine Function

- paa

- Call to HERE API to get direction from user location to intended
destination

- Returned data is cached, cache is accessed for subsequent requests, reducing monetary
cost and latency

- TODO: “Snap”/translate road coordinates to account for which side of the
street user is on

Complete Solution (State Transitions)
- API data consists of checkpoints

- State transitions required to

know:
- when to proceed to next

checkpoint, or

- when to reroute the user because

they are deviating from original

path

Testing, Verification, Metrics
Requirement Test Goal Our Measurement

Battery Life Monitor power
consumed during
normal operation

16 hours Peak: 1.1 A @ 4.93 V
24 hours

Unfriendly
crosswalk
detection

Stand at various
distances <10m
away from
unfriendly
crosswalk

What percentage of
the time does
system detect
unfriendly
crosswalk

TBD

Latency Measure time that it
takes for system to
provide feedback

< 1 second Without re-route: 0.0046 s
During re-route: 1.72 s

Testing, Verification, Metrics
Requirement Test Goal Our Measurement

Location
Accuracy

Walk at known
coordinates and
measure accuracy

< 1 meter deviation
from actual location

Ideal conditions (out in the open):
0.9m - 1m
Urban conditions (against large
buildings): 5m

Weight Scale < 1 kg 0.85 kg

User
experience

Walk a full route
planned by system

Determine if system
can provide
accurate and safe
route/directions

TBD

Schedule

Challenges/Trade-offs
- Location accuracy falls off in an urban environment

- IMU sensor fusion was supposed to be the solution
- IMU/GPS unit is optimized for faster moving applications (cars)
- In reality IMU does not help our situation
- Trade-off: To gain IMU accuracy, must increase device rigidity (increase weight)

- No APIs support sidewalk-specific routes
- Not all blind-unfriendly intersections need to be avoided
- Need to gather coordinates of all sidewalk corners
- Translate route: snap API route to nearest sidewalk

- Smallest street+sidewalk width (one side): ~4.5 meters < 5 meters (our urban
accuracy)

- Cannot reliably determine which side of the street a user is on

