### **Old Use Case**

- a wearable camera system that detects:
  - Walks signs, when they are on and off
  - A person's alignment with the crosswalk when they're crossing the street
- Gives auditory feedback to:
  - Indicate whether it is safe to cross (walk sign is on)
  - Give person directions if they are misaligned with, or off the crosswalk



#### **ECE Areas:** Software Systems, Signals and Systems

## **New Use Case**

- User is a visually impaired person
- Wants to go from point A to point B
- Ideally, only wants routes with "blind-friendly" crosswalks
  - Crosswalks with audio cues which signal when it is safe to cross
  - Text-to-speech, beeping, etc.
- Aid the visually impaired person in learning a new area



### **Use-case Requirements**

- Update user frequently so they are informed about where they are going
  - Every **15s** if next action is far away (ie. turn or crosswalk approaching)
  - Every **5s** if next action is near
  - Feedback should be concise and include relevant information (ie. turn left on Forbes Ave. in 100m)
- Identification of user location within **1 meter** of actual location
- Battery life of **16 hrs** 
  - Can sustain roughly a whole day of use

### **Use-case Requirements**

- Reliability; user should be confident in directions/information given
  - should give a valid route from point A to point B **100%** of the time
  - Should notify user **100%** of the time when they attempt to cross "blind-unfriendly" crosswalk
    - We will identify user as attempting to cross crosswalk if they are <10m away from crosswalk
- Latency: should return response (ie. directions) <1s after coordinates of user is given
- Weight: **<1kg**

## **Solutions Approach**

- Product: wearable device which gives user route from point A to point B
  - Route will only contain "blind-friendly" crosswalks
  - If user deviates from route, notify user if they attempt to cross "blind-unfriendly" crosswalk
  - If user deviates from route, reroute them based on direction they are currently walking in
- Front-end:
  - Combination of internal measurement unit and GPS locator
    - I2C Serial Communication
  - Audio feedback via wired earbuds
    - 3.5mm audio jack
  - Wireless communication to Maps API
    - Via cellular data network card
    - I2C Serial Communication

# **Solutions Approach**

- Backend:
  - Will keep a database of "blind-unfriendly" intersections
  - Find possible routes from A to B, and filter after for blind-friendly routes
  - Find coordinates of next intersection/crosswalk to turn at, calculate distance between user current location
  - Give feedback to frontend to direct to user
  - Use Google Maps and Overpass API to assist with route planning and intersection mapping



#### Hardware:

- Raspberry Pi 4
- NOTE-NBNA-500 Cellular Data Card
- SparkFun GPS-RTK2 Board ZED-F9P GPS/IMU
- GNSS/GPS antenna
- Cellular antenna

### Software:

- Gather GPS/IMU data
- Communicate with cellular data card
- Pyttsx3 text-to-speech engine library
- Audio output control
- Google Maps, Overpass APIs

### Hardware Block Diagram



### Software Block Diagram



## **Testing, Verification, Metrics**

| Requirements                   | Testing                                                              | Metrics                                                                  |
|--------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|
| Battery Life                   | Run continuously without charging                                    | Measure how long it takes before RPi dies                                |
| Unfriendly crosswalk detection | Stand at various distances<br><10m away from unfriendly<br>crosswalk | What percentage of the time does system detect unfriendly crosswalk      |
| Latency                        | Give custom coordinates                                              | Measure time that it takes for system to provide feedback                |
| User experience                | Walk a full route planned by system                                  | Determine if system can<br>provide accurate and safe<br>route/directions |

## **Technical Challenges**

- Location accuracy
  - Lose GPS signal for a long time
- Latency
  - Bounded by API response time
- Power/weight
  - Minimize power consumption
  - Should not be uncomfortable to wear
- How to detect if user has deviated from route
  - Increased distance from upcoming checkpoint does not necessarily equal deviation from route

## Schedule

