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Abstract—Many pedestrian walk signs nowadays have started
to implement accessibility features, such as text-to-speech
feedback or rapid ticking sounds, to help visually impaired know
when it is safe to cross. However, there is currently no technology
to guide blind pedestrians towards these blind-friendly
crosswalks on their route to their destination. Our system hopes
to simultaneously act as a route navigation system that directs
users to their desired destination, while also helping them avoid
routes or paths with blind-unfriendly crosswalks. In the worst
case, if an unfriendly crosswalk is unavoidable, or purposefully
chosen by the user, then we expect our product to warn them
before they attempt to cross.

Index Terms— Embedded Systems, Geocoding, GPS, HERE
API, Raspberry Pi, Route Planning, Wearable Device

I. INTRODUCTION

While many modern pedestrian walk signals have started to
include accessibility features to assist visually impaired
people, they are not widespread enough where we can assume
they exist on any crosswalk, particularly those on quiet/less
busy streets, or in rural areas. The sidewalks that do provide
these features present a much safer environment for blind
individuals, reducing their dependence on inconsistent factors,
such as sounds of cars, or footsteps of other people around
them, to know when it is safe to cross. Guiding visually
impaired people towards these blind-friendly crosswalks can
greatly mitigate the dangers of crosswalks for blind people,
and help them safely navigate their way to their desired
destination.

This thought process has led us to our idea of the Crosswalk
Guardian, which is a product that we hope will simultaneously
help blind users as a navigation tool (similar to Google Maps),
as well as provide an added functionality of helping them
avoid blind-unfriendly crosswalks, giving users a safe and
complete user experience, tailored toward their needs. In the
worst case, if blind-unfriendly crosswalks are unavoidable, or
if the user deviates from a prescribed route onto an
blind-unfriendly crosswalk, then we expect the Crosswalk
Guardian to warn the user that the crosswalk they are about to
cross lacks the appropriate accessibility features.

To be explicit, a blind-friendly crosswalk is simply a
crosswalk that possesses some form of auditory feedback
when the walk sign is turned on, allowing visually impaired
people to know that it is safe to cross. As mentioned earlier,
some forms of this include text-to-speech feedback, rapid
ticking sounds, or periodic beeping sounds. Then, a
blind-unfriendly crosswalk is just a crosswalk with the
absence of any auditory signal. In other words, if external
signals were not present, then a visually impaired person

would not know if a blind-unfriendly crosswalk was turned on
and off at a given moment.

While there have been studies done on route planning and
navigation for blind individuals, focused on the optimization
of route distance, and avoidance of obstacles (ie. road
construction, natural disasters, etc.), none so far have
experimented with the avoidance of blind-unfriendly
crosswalks as a route optimization heuristic. Our project aims
to implement this heuristic, with an overall goal of reducing
the danger of land transport for visually impaired people.

II. USE-CASE REQUIREMENTS

From the qualitative description of our system, we proceed
by introducing the use case requirements that will guide our
design process and help us create a reliable system.

A. Periodic Updates
We want users to be frequently updated on the remaining

distance of the step of the current route is (ie. how much
distance until the next turn, crosswalk, etc.). Therefore, we
expect our system to update the user every 10 seconds on the
distance remaining on the current step. If the user is within
20m of a turn or crosswalk, then our system will update the
user every 5 seconds instead, so that the user does not miss the
turn or crosswalk. Qualitatively, our updates should be concise
and clear. For example, a piece of concise feedback would be
“Walk straight for 100m before turning left on Forbes Ave.”.
This clearly tells the user the remaining distance on the current
step, and alerts them where they will be turning next.

B. Location Accuracy
In order to reliably route the user to their desired location,

our system must accurately detect their location. Specifically,
we require that our system’s outputted location must be within
1m of the actual location of the user. This ensures that our
feedback and directions given are accurate given their current
location.

C. Long Battery Life
The system should have a battery life of 16 hours, so that it

is able to sustain usage throughout the whole day without
recharging.

D. Lightweight
Since the user will be carrying/wearing this device, we do

not want it to be a burden for them by being too heavy.
Therefore, our system should be less than 1kg in weight, so
that it does not fatigue the user during usage.

E. Latency
The system should not take too long to provide feedback

after it has detected the coordinates of the user. If it takes a
significant amount of time, the user may have already moved a
considerable amount of distance away from the coordinates
detected, making the system’s feedback potentially inaccurate.
Therefore we require that our device respond within 1 second
after the coordinates of the user has been detected.
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F. Reliability
Our device should give a valid route from the user’s current

location to their desired destination 100% of the time. Further,
when the system detects that the user is attempting to cross a
blind-unfriendly crosswalk, it should alert the user that they
may be attempting to cross a blind-unfriendly crosswalk 100%
of the time.

G. Unfriendly Crosswalk Avoidance
The path from the user to the destination should always

contain the least amount of blind-unfriendly crosswalks,
preferably zero if such a path exists.

H. Rerouting
If the user becomes lost and deviates from the route we

had proposed for them, then our system should recognize this
and reroute them within 30 seconds since they started to
deviate.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Our system can be divided into four subsystems:
1. Location and orientation detection
2. A backend server performing computations regarding

route planning and navigation
3. A frontend interfacing with all the subsystems above,

as well as providing auditory feedback to the user
4. A power supply connected to the Raspberry Pi, which

will power the rest of the components via the
Raspberry Pi power pins.
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IV. DESIGN REQUIREMENTS

Based on our use case requirements in section II., we
outline our design requirements below to meet these
specifications.

A. Periodic Updates
This requirement is not meant to be particularly

constraining, but rather as a tool to provide a good user
experience. The frontend subsystem will keep track of the
time elapsed since the last time it communicated the
coordinates of the user with the backend. By default, it will
wait 10 seconds before sending the next message to the
backend server. However, if the backend indicates to the
frontend that the user is near a turn or crosswalk, then the
frontend will switch states and communicate with the frontend
every 5 seconds, until the backend tells it to stop (ie. go back
to default state). Assuming the backend server does not take
more than 5 seconds to respond to the frontend request (which
will be discussed in the latency section), we will comfortably
meet this requirement.

B. Location Accuracy
To ensure a safe and good user experience, high location

accuracy is crucial. In order to ensure high location accuracy,
our system will use a U-blox ZED-F9R high precision Global
Navigation Satellite Systems (GNSS) module. This module is
able to gather location data from the four major GNSS
constellations (GPS, GLONASS, Galileo and BeiDou)
concurrently, allowing for sufficient satellite connections to
maintain high accuracy. The module also provides IMU sensor
fusion to maintain high accuracy when satellite connection is
lost. Utilizing the ZED-F9R will allow us to achieve ~0.2
meter positional accuracy and ~0.3 degree heading accuracy.
Maintaining these accuracies will allow the user to be
confident that the correct information is given regarding
location and direction with respect to their path.

C. Long Battery Life
Battery life is important to ensure that the user can travel all

day without having to recharge the device’s batteries. In order
to meet this requirement, the device will have a 16 hour
battery life so that a user can go all day without having to
recharge. This number is based on the fact that the average
person will sleep for about 8 hours a day, so the user should be
able to use the device for the remaining 16 hours of a day. A
battery of 26800 mAh at 5V is chosen to meet this
requirement due to high availability and capacity. The
Raspberry Pi draws about 1 Amp at 5V. The GPS/IMU draws
about 130 mA at 3.3V. The Notecard draws about 150 mA at
3.3V, and will draw up to 750 mA at 5V during data
transmission. Data transmission will not occur very frequently,
so this number will not have a large effect on the overall
power consumption. If we transmit data once every 5 seconds,
we will assume that we will use about 750/5 = 150 mAh at 5
V. Combining these numbers gives us ~1335 mAh at 5V,
which will give us about 20 hours of battery life. With 4 hours
of slack in our calculations, we are confident that we can meet
the 16 hour battery life use case.

D. Lightweight
Weight will heavily depend on the power consumption,

given that the majority of weight in the system will be from
the weight of the battery. The 26800 mAh battery we chose to
use weighs 0.4 kg. With a use case constraint of 1 kg, 0.6 kg is
left for the digital boards as well as the container for the
device itself. The weight of the boards combined with the
GNSS antenna is 0.35 kg. The last 0.25 kg will be used for the
plastic container and mounting straps.

E. Latency
Following our use case requirements in section II., we want

our device to respond within 1 second after the user’s
coordinate data is communicated. This specifically targets the
backend server that will do most of the computational work
regarding route planning and navigation.

To meet this requirement, we will first use an API (called
HERE, which will be discussed in section V.) to plan the route
for the user, at the beginning of the trip. Since communicating
back and forth incurs a higher latency (and cost), we want to
store the results of the request at the beginning of the trip,
instead of communicating repeatedly during the trip. By doing
so, we minimize the backend processing time to an estimate of
at most 50ms. This will leave 950ms for the backend and
frontend to communicate with each other, and for the frontend
to transform the information given by the backend into
text-to-speech feedback, which is ample time to fulfill our
requirements.

In the case where the backend needs to reroute the user, it
will communicate with the API again to receive the new route.
According to HERE documentation, the 98th percentile
latency is 350ms for routes under 100km. Although more
constraining, this still leaves at least 650ms for all other
communication for processing.

F. Reliability and Blind-unfriendly Crosswalk
Avoidance

Our optimal backend system must always find a valid route
between the user’s current location, and their desired
destination. It must also ensure that blind-unfriendly
crosswalks are avoided unless there are no alternative routes
available.

In the case where the user must or chooses to cross a
blind-unfriendly crosswalk, the backend server must recognize
that the user is planning to cross, and warn them that the
crosswalk is blind-unfriendly.

G. Rerouting
Our optimal backend system must recognize when a user

has deviated from the planned route, and reroute them within
30 seconds after they’ve deviated. Since the use case
requirements state that the backend server will receive user
coordinates at least every 10 seconds, it will have the
capability to detect if a user is moving away from the next
checkpoint. If their distance has increased from the next
checkpoint for the last two communications (ie. 20 seconds),
then the backend should assume that the user has deviated, and
perform rerouting.
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V. DESIGN TRADE STUDIES

There are several ways to implement each of our design
requirements, and exploring the tradeoffs of each, and why we
chose a certain method, will clarify our design.

A. Route Planning API
While designing our system, we contemplated whether we

should implement route planning on our own, or use an API to
do this for us. After some research, we realized that
implementing route planning from scratch may be too
ambitious, and instead decided to go with the latter option.
There were several options for APIs that we could use:

1) Google Maps API
This was originally our first choice. The Google

Maps API is quite comprehensive, has multi-language support
(including Python, our backend language of choice), good
map coverage, and the API is generally very easy to use.
However, it lacks functionality to avoid certain areas or roads
when doing route planning. There are custom alternatives to
this; for example, Google Maps’ Directions API allows users
to specify whether they want multiple routes to the same
destination. One way we could have leveraged this was to
allow the API to find these routes, then filter out the ones that
contained blind-unfriendly crosswalks. However, this would
significantly increase our code complexity, while not
providing a scalable or efficient solution.

2) OpenStreetMaps API
We also considered the OSM API for this task.

However, while it is a free service, compared to the other APIs
on this list, it does not provide nearly as much functionality,
and is inherently scalable since it is a public API, and will not
allow services (like ours) to make large amounts of calls to its
API. Therefore, we decided this API would not be suitable for
our needs.

3) HERE API
Finally, we discovered the HERE API. After looking

into it, we believe it provides the best specifications for our
needs. Specifically, it provides support for Python, and
supports route planning and geocoding. In particular, it fills in
the gaps of the Google Maps API, allowing us to specify
points that should be avoided during route planning (ie.
blind-friendly crosswalks). It also has reasonable latency (<
350ms for route planning), and is overall what we believe to
be the best choice for our project.

B. Hardware
1) Processor

We chose a Raspberry Pi 4 due to the fact that most
of the other hardware we are deciding to use is compatible
with the board. We will also be using python to develop the
software, and the Raspberry Pi provides a good platform to
run all of the software that we need. We contemplated using an
Arduino, however due to the need for more complicated
threading, power requirements, as well as speed of
development, we decided that the Raspberry Pi would be a
better fit.

2) Location Device
We needed a high-precision location device that was

capable of giving locational accuracy on the scale of the size
of a sidewalk. Most crude GPS devices including most devices
in smartphones are capable of providing GPS location within
10-40 meters of the device. This will not suit our requirements
because of the possibility of giving false location information
to the user. A benefit to the crude GPS devices is that they are
cost effective, however we needed better accuracy so we
decided to make the tradeoff of cost for higher accuracy. We
chose the u-blox ZED-F9R GPS/IMU to provide us with high
location accuracy even in poor satellite connection conditions.

VI. SYSTEM IMPLEMENTATION

In this section, we hope to explicitly describe our
implementation corresponding to our design and use case
requirements.

A. Backend Server
The general implementation of the backend will be as

follows:

1. Preprocessing and Database
At the start of the trip, the backend will first receive a

message from the frontend, indicating the current user
location, and the user’s desired destination. Using these two
data points, the backend will call the HERE API for route
planning. Note that the backend will keep a database of
unfriendly crosswalks. It will use this database as an input to
the areas that need to be avoided when calling the API. The
database will be implemented as a dictionary, where the postal
codes are the keys, and the values are lists of JSON-formatted
data, where each data point includes information on the
latitudinal and longitudinal coordinates, and street names of a
blind-unfriendly crosswalk in that postal code.

Once the HERE API returns a route, we will use a
cache to store this route in local memory, and reference this
cache from now on till the end of the trip, saving additional
communication time between the API.

2. En-route
While the user is en-route to the destination, the

backend will do as follows: Every time the backend receives a
message from the frontend (which will communicate the
user’s latitudinal and longitudinal coordinates), the backend
will use the Haversine formula to calculate the distance of the
user from the next waypoint (the backend will keep track of an
index that indicates which step of the route the user is on):

where ഴ represents the latitude, and λ represents the longitude.
Referencing the formula above, we will calculate the
Haversine function of the differences in latitude and longitude
as such:

Finally, we can calculate distance:
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,
where h is hav(Ө).

After this distance is calculated, we will return a String
message to the frontend, which should then be directly used as
text-to-speech feedback for the user.

When we detect that a user is within 20m of a turn and/or
crosswalk, our system will increment its index to this next step
of the route (ie. the turn, or crosswalk). During this step, we
expect the system to give them feedback telling them to turn
and/or cross. Once the user is 20m away from that step, we
will assume that they have turned or crossed, and increment
our index to the next step of the route.

3. Rerouting
The backend will keep track of the most recent user

coordinates. When it is given a new set of coordinates, and
calculating the Haversine distance on this point and the next
waypoint gives a greater distance than the previous
coordinates, it will assume the user is moving away from the
next waypoint. If this happens two times in a row, then the
backend will reroute the user by calling the HERE API using
the user’s most current coordinates, and their desired
destination. Note that this may occasionally still give the same
route. There are multiple ways to deal with this issue: we may
choose to avoid the next step on the original route, so that the
API is forced to choose a new route. Or, we may choose to set
a fixed waypoint (possible using the HERE API) between the
direction the user is currently walking in, and the destination,
so that the API plans a route in that direction. Yet another way
of dealing with this is to simply let the backend continuously
reroute the user (every two iterations), until the user is closer
to an alternative route. These are all viable solutions, and we
will experiment with and choose the one offering the most
simplicity and performance.

B. Front End
The front end will have three separate components, the

location data gathering system, the cellular data interface, and
the auditory feedback system.

1. Location Data
We will use a u-blox ZED-F9R GPS/IMU device in

order to determine the user location with high accuracy. This
device utilizes IMU sensor fusion to be able to provide high
accuracy location information even in poor satellite
connection conditions. We will communicate to this device via
an I2C serial bus. This device provides latitude and longitude
coordinates that will be able to be correlated to the coordinates
provided by the HERE API. The device also provides heading
information based on the cardinal directions. This information
will be given to the backend server to determine if the user is
on course and where they have to go next to reach their
destination.

2. Cellular Data Interface

We will use a Blues Wireless LTE-M cellular data
card to access the HERE API that the back-end needs to
communicate with. We will communicate to this device via an
I2C Serial Bus.  The cellular data card will allow us to access
the internet anywhere as long as we have access to cell towers.
In remote areas this may be a problem, however as long as a
user can use their cell phone they will be able to use this
system as well.

3. Auditory Feedback
The system will provide a 3.5mm audio jack for the

user to plug headphones of their liking into. Audio will be
played periodically when the back-end determines that it is
necessary. The front-end will then take in the back-end string
of text and run it through an offline text-to-speech engine
(pyttsx3). This audio text-to-speech file will then be played
out of the 3.5mm audio jack through the Raspberry Pi audio
interface.

C. Physical Device
The physical device will be a plastic box containing all of

the components outlined in Figure 3. This box will be 3d
printed and will have straps to attach to a person’s shoulders
so they can wear the device like they would a backpack. The
user must wear this on their back due to the fact that the
device calibration will be assuming that the user is wearing it
in the correct orientation on their back. This will ensure that
the location information is correct.

VII. TEST, VERIFICATION AND VALIDATION

A. Tests for Battery Life
The battery life use case is 16 hours. To test the battery life

of the device, we will use the device in various conditions for
2 hours. We will then see how much energy the device
consumed and then multiply the energy value by 8 to achieve
a 16 hour value of battery consumption, and compare against
the energy capacity of our battery.

B. Tests for Location Accuracy
The location accuracy use case is 1 meter error from the

actual location of the user. To test this, we will stand in various
spots with known coordinates and then programmatically see
what coordinates the device gives back. From these 2 sets of
coordinates, we can determine the distance between them and
see if the error was less than 1 meter. We will do this test at 20
various locations and if any reading has more than 1 meter
error we will have considered the test to have failed.

C. Tests for Latency
The latency use case is less than 1 second latency from the

point of time when we gather location data to the time when
auditory feedback is given. To test this we will insert a timer
into the software starting when we gather location data. The
timer will stop when audio feedback begins. This elapsed time
will determine if we have met the 1 second latency use case
requirement
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D. Tests for Weight
We will use a scale to determine the weight of the device.

The use case is 1 kilogram, we will have considered to meet
the requirement if our device is less than 1 kilogram in weight.

E. Tests for Reliability/Crosswalk Detection
We require a use case of 100% avoidance of

blind-unfriendly crosswalks. To test this, we will run the
routing algorithm 100 times and see if it includes any
blind-unfriendly crosswalks. The algorithm should succeed
every time in order to consider a success.

VIII. PROJECT MANAGEMENT

A. Schedule
Our schedule is outlined in Figure 4. We aim to have the

sensor systems integrated with the back-end around November
4th. We plan to continue improving our system based on the
feedback we get from integration until November 15, where
we aim to have a fully built and usable device. We have 2
weeks of slack after that point to improve on the functionality
of the device, where we will be finished on November 29th.

B. Team Member Responsibilities
Colin will be working on the hardware implementation, the

construction of the wearable device, and the process
communications. Zach will be working on the back-end of the
system including the routing and deciding what information to
give back to the user based on the location information from
the front-end.

C. Bill of Materials and Budget
See Figure 5 for the bills of materials and budget.

D. Risk Mitigation Plans
The critical risk factors in our design revolve around two

major factors.
The first factor is the lack of wireless communication

experience that our group has. Our device must communicate
to the internet in order for our implementation to work, and we
are counting on the cellular data card that we chose to perform
our needs. However, if the cellular card does not work out we
may be able to implement some sort of routing scheme using
an offline database of streets and locations.

The second factor is the complexity of the user tracking
with respect to the path that we are providing for them. This
includes the re-routing functionality and making sure that the
user is in fact where we think that they are. Given the amount
of time that we have to make this work (about 7 weeks), this
will be challenging. To mitigate this risk, we may reduce the
scope to a smaller area that we have more information about to
be able to provide a higher accuracy of feedback to the user.

IX. RELATED WORK

1. Google Maps
Google Maps is a web based location service which

provides directions to users based on their current location and
their desired destination. Google Maps is made for

smartphones and computers to be able to provide directions to
users. Access to the real time directions functionality is
limited as you must go through a smartphone for those
features.

X. SUMMARY

Our design aims to provide a high accuracy direction
service for the visually impaired. A combination of GPS/IMU
data will provide high accuracy location data to the system to
allow for a reliable and pleasant user experience. With careful
attention to power usage and weight, the user will be
comfortable while using the device. Some upcoming
challenges include the complexity of user tracking algorithms
to ensure a high feedback accuracy so the user is not told false
information. Other challenges include the combination of all
of the physical hardware parts to make sure that all of the units
work as needed for the system to be able to function properly.

GLOSSARY OF ACRONYMS

GNSS - Global Navigation Satellite Systems
GPS - Global Positioning Service
IMU - Inertial Measurement Unit
MQTT – Message Queuing Telemetry Transport
OBD – On-Board Diagnostics
RPi – Raspberry Pi
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