Crosswalk Guardian

Team A0 Colin Hackwelder, Zachary Zhao, Eshita Shrawan

Introduction

- General lack of safety measures for visually impaired people trying to cross the road

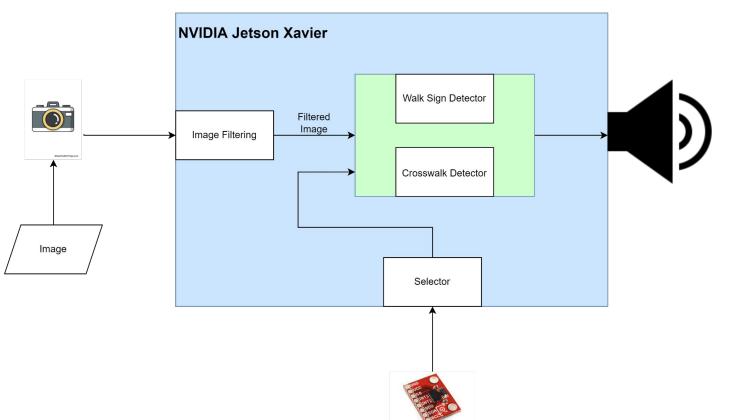
	Walk Sign Detection	Crosswalk Detection	Price	Availability
Audible Tones	Yes	No	~\$800	Poor; Not accessible on quiet streets, rural areas
Walking canes	No	No	~\$20	Good; easily purchasable
Guide Dogs	No	Yes	~\$50,000	Poor; Expensive to train, expensive to adopt

Use Case

- a wearable camera system that detects:
 - Walks signs, when they are on and off
 - A person's alignment with the crosswalk when they're crossing the street
- Gives auditory feedback to:
 - Indicate whether it is safe to cross (walk sign is on)
 - Give person directions if they are misaligned with, or off the crosswalk

Use Case Requirements

- Detection Range: <= 15m
 - Must cover the length of the crosswalk
- Feedback Latency: < 1s
 - Must provide feedback relatively quickly, to ensure person has enough time to cross, and can steer themselves within the crosswalk while walking
 - Minimalistic, simple feedback: "Go", "Wait", "Steer left", etc.
- (walk sign) Accuracy: >95% total accuracy
 - **< 5% false negative rate**: Telling person to wait when walk sign on
 - **< 1% false positive rate**: Telling person to go when walk sign off
- (crosswalk) Accuracy: >90% accuracy
 - The person crossing should be spending **>90%** of their time within the edges of the crosswalk
- Battery life: 10 hours
 - Should have enough battery life for a whole day
- Weight: **<1kg**


Technical Challenges

- How to track crosswalks with blurry/faded lines
- Applicability across different intersections, different weather conditions
- Minimizing power usage
 - No estimate of how much power this will take yet
- Keeping the system lightweight
- Need to train images for walk signs, no online datasets found yet
 - We have chosen Bayard St + Morewood St for training and testing purposes

Solutions Approach

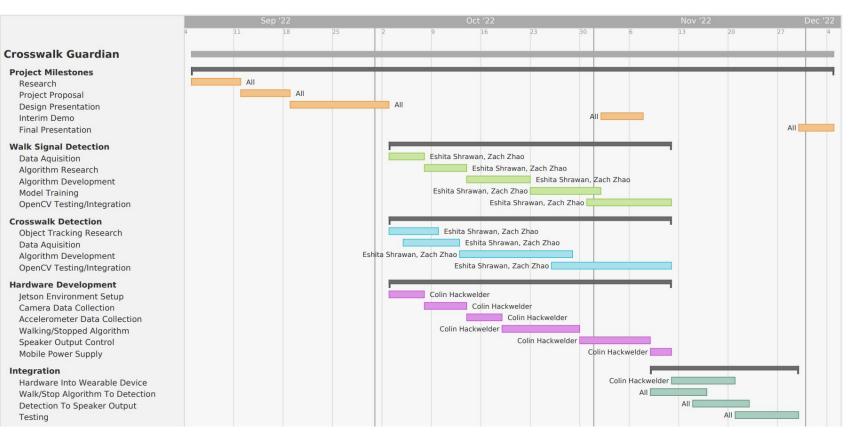
- <u>Software</u>
 - OpenCV using Python to detect walk signs, edges of crosswalks and user's current alignment w/ crosswalk
 - ML model training to predict if walk sign is on
- <u>Hardware</u>
 - An NVIDIA Jetson with OpenCV installed to perform image processing.
 - An accelerometer to determine if person is still (walk sign detection) or moving (crosswalk detection)
 - camera capable of streaming images to the Jetson
 - speaker to notify the user when to cross and what direction to walk in.

Solutions Approach, Cont.

Video introduction to testing location

Testing, Verification and Metrics

- Testing of CV algorithm correctness and robustness
 - Walk Sign Test Dataset: Multiple angles, granularity/distances
 - Crosswalk Test Dataset: Multiple angles, different types (striped, edges, slanted)
 - Walking/Stopped Algorithm Testing
 - Different weather conditions (sunny, cloudy, rain, snow, night)
 - Latency testing:
 - Walk sign: how long does feedback take after walk sign is turned on
 - Crosswalk: how long does feedback take when walking at a misaligned angle


- User testing

- Will not test with actual visually impaired people
- Instead, will test individually within team members
- Will test in real settings; ie. Bayard and Morewood

Tasks and Division of Labor/Schedule

Task	Eshita	Zachary	Colin
Data collection: taking pictures of signs	x	x	
CV/algorithm training and development of signal detection	x	x	
Crosswalk detection algorithm	x	x	
Equipment procurement			x
Hardware Assembly			x
Assembly: Integration of software and hardware	x	x	x

Schedule

Conclusion: Summary

- Two problems
 - Detection of walk signs
 - Detection of crosswalks
- Solving both problems provides visually impaired people with the safest environment possible while crossing the road
- Reduces a visually impaired person's dependence on inaccurate/inconsistent factors to know when/where to cross the road
 - Sounds of cars and people around them