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gTTS (Google Text To Speech) library and play them as
the predictions are ready to be outputted using Python’s
playsound library. Figure 9 contains the above described
system in a diagram.

Figure 9: Software subsystem

6 TEST & VALIDATION

6.1 Fake Data Generation

In order to make progress on our project while we
waited on the parts for our glove to arrive, we decided to
generate fake data to test the machine learning models we
are considering. We began by first going through each of
our gestures and determining a range of values for each of
the 14 measurements our glove will take. For the flex sen-
sors on each of the fingers, the data that is being sent to
our machine learning models will be in the form of angles
(in degrees). For the values outputted by the accelerometer
and gyroscope components of the IMU, we were not able to
find good documentation or sample data that could guide
us in modelling our fake data, so we decided to take random
values from the range that the product specification indi-
cates will outputted. For the magnetometer component of
the IMU, we chose the ranges assuming the user will always
be facing one direction with respect to the Earth’s poles.
In reality will not be true, but it will at least provide our
preliminary tests with some IMU data to work with.

After these ranges were determined, for each generated
data point, we obtained a random value from a normal dis-
tribution within the range that we had set, with a small
probability of generating an outlier value. Outlier values
are simply random numbers from a uniform distribution be-
tween 0 and 100. We generated a total of 100 data points
for each of the 26 letters for the training data set and 50
data points for each of the 26 letters for the testing data
set.

6.2 Preliminary Tests on Machine Learn-
ing Models

We did tests on the fake data we generated as well as
real data collected from one person on the prototype of our

glove after it was built. See figure 10 These results should
be viewed sceptically since our fake data generation left out
important information for the data coming out of the IMU.
Additinonally,

Figure 10: Performance of Models on Generated Data

6.3 Performance on Design Requirements

See table 1 for a comparison of the requirements we set
for our project and what we were able to accomplish.

For the accuracy measurement, we tested this on both
collected data and real-time data: collected data refers
to the data that we gathered in order to train the ma-
chine learning model (segmented into a training and test-
ing dataset) and real-time data refers to the information
our glove measures while in use. We were able to get accu-
racies of 98.9% and 75.86% for the collected and real-time
data, respectively. In theory, the two should not be that
di↵erent, but in reality, we find that there is noticeably
more variability in the data that is read in from the glove
in real time compared to what we had collected. We be-
lieve this is because when we were collecting data, we made
a conscious e↵ort to make the gesture a certain way and
collecting several data points in that one position, so the
model is overfitting to those specific gestures. E↵orts were
made to tune our hyperparameters to avoid overfitting and
was successful in improving our real-time accuracy slightly.
See figure 11 for the confusion matrices of collected testing
and real-time testing data.

Figure 11: Confusion matrices of Collected Testing Data
and Real-Time Data
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The latency was measured by setting a software timer
starting when the data is received by the computer program
and ending when the classification is made. The average
for this value was 63.89 ms/prediction, which is well below
or original requirement of 100 ms.

The frequency of output was 0.862 s/gesture, which is
higher than our goal of 0.5 s/gesture. However, this is a
value that can be adjusted– this value was obtained under
the requirement that our system makes eight of the same
consecutive predictions before outputting. Therefore, we
can lower that number in order to allow faster output rates.

Lastly, our glove weighs in at 79 g, which is significantly
less than or initial goal of 200 g.

6.4 Tuning the System

Similar to what we found in testing our models on our
generated data, the Random Forest Classifier performed
the best for our use case. See figure 12 for a comparison of
model performance on our final iteration of the glove.

Figure 12: Model Comparison on Final Iteration of Glove

Figure 13 shows the hyperparameters we tuned for the
Random Forest Classifier. Restricting the minimum for
the number of samples in a leaf node or minimum number
of samples to split an internal node can potentially pre-
vent the model from overfitting to the training data but in-
creasing it significantly can lead to significant underfitting,
hence the consistent downward trend in accuracy. Setting
the number of trees has more of an interesting e↵ect on
accuracy. At first increasing the number of trees in the
classifier significantly improves the accuracy of prediction,
but that accuracy plateaus at around 100 trees, which is
the number we ultimately went with.

Figure 13: Performance as a Result of Tuning Hyperpa-
rameters

We also tested our glove’s performance while changing
the speed of the system as well as the user’s signing rate. To
perform the test changing the speed of the system, we kept
the user signing at one gesture per second and adjusted
the number of consecutive classifications required for an
output. This performed the best at requiring 8 consecutive
predictions. A higher number resulted in the model missing
letters from time to time because it would not receive the
required number of consecutive letters. On the other hand,
a lower value would result in extraneous intermediate out-
puts since it would make predictions more often than the
user was signing.

For the user signing rate test, we kept the system re-
quiring 8 consecutive predictions while changing the speed
at which the user is signing. As expected, this performs
the best at one gesture per second since 8 consecutive clas-
sifications was determined to be the best at a signing rate
of one gesture per second.

See figure 14 for a plot of the Speed vs. Accuracy tests
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Table 1: Design Requirements

Requirement Specification Performance
Accuracy 90% 98.9% / 75.86%
Latency <100 ms/prediction 63.89 ms/prediction
Frequency 0.5 s/gesture 0.862 s/gesture
Craftsmanship <200 g 79 g

(using averages from multiple trials). As demonstrated
with these tests, the number of consecutive classifications
we require should be set according to how fast we expect
our target users to sign. While the average ASL user signs
at around 0.5 s/sign, we decided to keep this parameter of
our system at 8 consecutive classifications since the glove
makes movement slower and is quite fragile in its current
stage.

Figure 14: Speed vs. Accuracy Plots (Averages across 3
Trials)

7 PROJECT MANAGEMENT

7.1 Schedule

Our schedule can be viewed in Figure 7. In general,
we plan to spend the first half of the semester building the
glove, and the second half of the semester training, testing
and refining the ML model.

7.2 Team Member Responsibilities

Sophia is leading the hardware and construction part
of the project. She is responsible for building the physical
glove, making repairs and researching how to improve the
design to create a robust, yet comfortable product. Her sec-
ondary responsibility includes gathering subjects for train-
ing/testing the ML models and helping conduct and com-
pare experiments of competing design choices.

Rachel is primarily responsible for data collection, serial
streaming of data, and normalizing the data as to reduce
the noise from the data read in from the sensors. Her sec-
ondary responsibility also includes gathering subjects to
collect training and testing data as well as analyzing the
performances and costs/benefits of each ML model we are
considering.

Stephanie is in charge of training and tuning the ma-
chine learning models. She also has a secondary responsi-
bility of gathering subjects to collect training/testing data
and helping determine how much data we want to read in
and at what rate to get the best results (in terms of accu-
racy) without compromising the latency of our product.

7.3 Budget

The budget for our project is $600. We only used
$194.67 of it. A breakdown of our components purchased
can be found in Table 2.

7.4 Risk Management

The primary risks to the success of our project involved
the reliability of our sensors. The sensors are how we detect
the motion and pose of the hand. If those are not accurate,
then the rest of the pipeline will not be accurate.

To mitigate the risk of faulty sensors, we bought mul-
tiple extra flex sensors, IMUs and Arduino Nanos. If we
find any of these components to be faulty or if they get
damaged during construction or testing, they can easily be
replaced. Throughout the process we found that the flex
sensors would frequently come loose or stop giving variable
readings, so having extra flex sensors we could replace the
broken ones was helpful in creating a working final product.

Further, after looking at the flex sensor specification
sheets more in depth, the manufacturers recommend read-
ing the voltage after passing it through an op-amp which
acts as an impedance bu↵er. If our readings had proven too
unstable, this is a path we were prepared to take. However,
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Table 2: Bill of materials

Description Model # Manufacturer Quantity Cost @ Total
Microcontroller Arduino Nano Arduino 1 $14.98 $14.98
Flex Sensors 182 Adafruit 8 $12.95 $103.6
Pack of 12 Gloves n/a Donfri 1 $11.99 $11.99
A-Male to Mini-B USB Cable n/a AmazonBasics 1 $7.01 $7.01
9 DoF IMU ICM20948 Adafruit 2 $14.95 $29.90
Embroidery Thread n/a Pllieay 1 $6.99 $6.99
Arduino Nano BLE Arduino Nano BLE Arduino 1 $20.20 $20.20

$194.67
Note: Shipping costs are not included in the calculations.

we found that the flex sensors gave pretty consistent read-
ings without the presents of an op-amp.

Lastly, we are normalizing the data the computer re-
ceives and filtering out any outliers. Normalizing the data
ensures that our data is always within the same range, cor-
recting for some minor variation in sensor data.

We had also initially planned on ordering a PCB, but
settled on using a protoboard to complete our circuitry in-
stead. While it would make the circuitry cleaner, we could
risk the PCB taking too long to get manufactured and de-
livered. Additionally, any changes to our circuitry would
mean we would have to order another PCB to support those
changes. Using a protoboard instead of a PCB mitigates
the risk of delayed delivery since we can solder one together
virtually whenever we need.

8 ETHICAL ISSUES

Sign language interpreting gloves have been built in the
past without input from ASL signers. It’s important that
ASL gloves accurately represent the language. For exam-
ple, facial expressions are an important part of ASL, how-
ever that aspect of the language is inherently disregarded
with a solution like a sign recognizing glove. We are well
aware of this fault in our design and plan to consult actual
ASL users during our development to collect and if time
permits, integrate their feedback.

Another ethical concern is mis-translation. If an ASL
speaker uses our glove and the messages are not trans-
lated correctly, or if a malicious party interfers to translate
phrases incorrectly, others could perceive the ASL speaker
in a negative light. To mitigate this risk, before produc-
tion, the product should be tested with ASL speakers to
gather their feedback.

Another ethical issue we faced when first figuring out
our implementation details was privacy. As previously
mentioned, computer vision is a viable option for detecting
and identifying ASL gestures. However, using a camera as
part of our system could have privacy implications since
anything that is captured in the scene could be a privacy
violation. Since we decided to take a sensor approach in-
stead, this issue is no longer relevant.

However, privacy could still be an issue in a di↵erent

way. The volume of the audio output could be adjusted so
that information directed at one person could be heard by
an entire group of people. This issue could be addressed
by adding a feature to allow the user to vary the output
volume depending on how many people they are addressing
and how near they are to their conversational partners.

Lastly, this product could also create some class con-
cerns if it is something only available to a more wealthy
subset of the population. Additionally, this device could
reduce people’s will to learn ASL. If this product goes to
market, it’s important it is also advertised as an educational
tool so that it is accessible to all classes and encourages
people to get excited about learning ASL.

9 RELATED WORK

Gesture-recognizing gloves are not uncommon nowa-
days. During our research into implementation details, we
have found quite a few similar projects. Here are a few that
we feel closely resonated with our project.

Sign Language Glove[4] This project was built by
two students from Cornell University. Similar to our ob-
jective, they wanted the glove to recognize ASL letters.
Their finished product uses sensors to collect data, mainly
flex sensors, an IMU, and contact sensors. They set up
an o↵-glove circuitry on a breadboard to communicate be-
tween the sensors and the computer, which will train and
test the data. The classifier models were then trained on
data specific to each user.

The flaws within this design are quite obvious. The first
and foremost being the glove is trained for specific users,
and new users will have to train a set of data on it be-
fore they can use it. This greatly degrades user experience
and can be confusing to new users if this were a commer-
cial product, as users would likely expect a pre-configured
product. The second drawback is the o↵-glove circuitry
which adds complexity to the physical component and is
inconvenient to set up and carry around. This also may
impede movement while gesturing.

We are attempting to improve upon this project by find-
ing a larger set of data to train on to generalize to a broad
audience. We are also constructing a printed circuit board
to aggregate our hardware components to help reduce the


