18-500 Design Review Report - Oct 11, 2021

Page 1 of 13

Gesture Glove

Authors: Sophia Lau, Rachel Tang, Stephanie Zhang: Electrical and Computer Engineering, Carnegie Mellon
University

Abstract— This project explores the use of sensors
in sign language detection. We built a glove fitted with
sensors to recognize and translate the 26 letters of the
American Sign Language (ASL) alphabet. Our goal for
this glove is to help facilitate smoother communication
between ASL speakers and non-ASL speakers by dis-
playing the letters an ASL user signs as audio output
for others to understand. Many gloves similar to ours
have been made to classify the letters of the ASL al-
phabet. We draw inspiration from and improve upon
these products by attempting to increase classification
accuracy, generalizing to all users, as well as adding
the audio output as a way to increase practicality of
the product. We quantify the effectiveness of our ges-
ture glove by analyzing accuracy as well as measuring
latency and frequency of recognition.

Index Terms— American Sign Language (ASL),
ASL recognition, Fingerspelling, Flex Sensors, IMUs

1 INTRODUCTION

The motivation behind our project is to help people
who sign in American Sign Language (ASL) communicate
with those who do not understand it. Thus, our target
users are people who use ASL as their primary form of
communication, such as those who are hard of hearing or
are not able to speak. To achieve this goal, we are creating
a system containing a glove and a computer that will rec-
ognize gestures and display them as audio output through
speakers. From a user standpoint, we would ideally have a
gesture classification accuracy of 100% and an undetectable
latency (less than 15 ms).

We have chosen to create a system using sensors as op-
posed to taking a computer vision approach. An advantage
of using sensors over computer vision is that sensors allow
the product to be more portable since it would not require
the user to have a camera facing them at all times in order
to detect gestures. Additionally, sensors are less variant to
external factors such as lighting. We also use a Random
Forest Classifier to determine what is being signed by the
user based on the measurements we receive from the glove.

2 DESIGN REQUIREMENTS

As the Gesture Glove will be a worn device, it’s crucial
to provide a comfortable user experience and accurate sign
recognition. Based on the user requirements we have pre-
viously mentioned in the introduction, we have established
the following design specifications regarding the product’s

accuracy, latency, gesture frequency, and craftsmanship.

The Gesture Glove should have a classification accuracy
of at least 90% when classifying all 26 letters in the alpha-
bet. This accuracy requirement means that whenever the
user makes an ASL sign, the classification model should
output the correct letter corresponding to the sign 90%
of the time. Ideally, we want to achieve 100% accuracy
to satisfy the user requirements and to ensure top-quality
experience. While it may be quite difficult to reach such
an accuracy with any type of classification models, having
a recognition rate of 90% or more will not greatly affect
user experience. This requirement is based off the average
typing accuracy of roughly 90% [1]. Since typing and sign-
ing are common forms of communication, it’s reasonable to
have approximately the same accuracy. One thing to recog-
nize is that with auto-correct as well as the backspace key,
we can actually reach 100% accuracy with typing. However,
without the implementation of an auto-correct algorithm,
we aim to reach as high of an accuracy as possible with
90% simply as a baseline.

The accuracy of our glove can vary based on how long
a user holds a sign. The longer the user holds a sign, the
gesture they are holding will become more static and the
most accurate measurements for classification will be cap-
tured since most of the ASL letters are static. To get the
most representative accuracy, it is important that we cap-
ture the accuracy of both statically captured data as well as
data involving some movement— we test this by segmenting
our collected data into training and testing data as well as
testing the glove in real-time (real-time usage of the glove
will inherently have more movement to the gestures).

In terms of testing, we will be performing accuracy tests
with various users and making adjustments to the classi-
fication model as needed if the product does not reach a
satisfying recognition rate. Along with accuracy tests, we
will perform an experience survey to see user satisfactions
with our product’s accuracy.

The Gesture Glove should have a latency of at most
100ms. Besides having a high accuracy, the Gesture Glove
should also output the results of the sign recognition in a
short amount of time. Our goal aligns with the user’s re-
quirement: to have an undetectable latency for the Gesture
Glove. To determine an ideal latency, we start by looking
through various research papers. We find that while users
can detect latency as low as 33ms, the user experience do
not suffer significant losses until latency is over 100ms|2].
Latencies over 100ms are much more noticeable to the users
and significantly degrade user experience. We have deter-
mined that having a latency of less than 100ms is ideal. To
ensure we achieve this latency, we will set up timers in our
code to check for how long the communications will take

18-500 Design Review Report - Oct 11, 2021

Page 2 of 13

between the glove sensors and the computer and how long
the classification model takes to recognize a sign.

The Gesture Glove should recognize two signs per sec-
ond. Upon researching the rate of ASL signing, we find
that mean signs per second is around 2.5 signs, not tak-
ing into account of pauses in between signs[3]. Consider-
ing this information, we have determined that an average
person likely makes two signs per second, including pauses
between signs. Since we want the users to feel natural when
signing (not too fast and not too slow), we decide to use
the average signing rate as a baseline for the frequency.

The Gesture Glove should have good craftsmanship, Our
product will be a wearable device and its weight and stiff-
ness should not affect the user experience, especially in
making signs. After the glove is fabricated, the total weight
of the glove should not exceed 200 grams so that the users
can feel comfortable while wearing. The completed glove
should also be flexible. Bending of fingers should be easily
achieved without users feeling impeded when signing.

We also got feedback from actual ASL speakers on the
practicality of the glove and ways we could improve our
project.

3 ARCHITECTURE OVERVIEW

3.1 System Sketch

Our solution approach entails installing flex sensors
along the length of each finger on a glove, installing touch
sensors in between each of the fingers and on the pad of
the thumb, and placing an IMU and Arduino Nano on the
back of the glove near the wrist. The placement of the
components is visualized in Figure 1.

lex
fsmms

Arduing
Nangy

Figure 1: Overall system sketch

The flex sensors collect information about the bend of
each finger. The touch sensors detect which fingers the
thumb is in between and whether the index and middle fin-
gers are in contact. The IMU collects information about
the orientation of the hand such as if the palm is facing
up, down, left or right. The Arduino Nano samples the
data from the sensors and formats the values. The Ar-
duino Nano then sends the values over a serial connection
to the computer which analyzes the data and runs a classi-
fication algorithm to determine the letter made by the pose
of the hand.

3.2 Block Diagram

Our block diagram divides our system into two subsys-
tems: the glove and the computer. As shown in Figure
2, the glove part of the system consists of the flex sen-
sors, touch sensors, IMU, and an Arduino Nano. The Ar-
duino Nano is connected to the computer with a USB cord.
Through the USB connection, the computer will power the
Arduino Nano which will then power the IMU, touch sen-
sor circuits and flex sensors circuits. The Arduino Nano
communicates with the IMU using 12C protocol which re-
quires the SDA and SCL lines. The IMU outputs nine data
points, three measurements in the x, y, and z dimensions
for acceleration, rotation and magnetic field. The Arduino
Nano’s analog pins read the voltage fluctuations caused by
the flex sensors in the five respective voltage divider cir-
cuits. The Arduino Nano’s digital pins will read either a 1

18-500 Design Review Report - Oct 11, 2021

Page 3 of 13

or 0 if the touch sensors on the middle, ring and pinky fin-
gers are engaged. The Arduino Nano, IMU, touch sensors
and flex sensors are connected with a PCB in order to keep
the circuitry compact. The flex sensors are not mounted
on the PCB but are connected to some pinouts on the PCB
for ease of maintenance and iteration. The Arduino Nano
runs a script to continuously sample the voltage of the cir-
cuits made with the flex sensors, the circuits made with
the touch sensors and the values outputted by the IMU.
Then the Arduino Nano formats the seventeen values (five
voltages from the flex sensor circuits, three from the touch
sensors, and nine from the IMU) into seventeen by one vec-
tors to send them serially to the computer.

Glove Off the shelf
Protoboard Connecting
Components

Flex | | Arduino
Sensors
Read and
IMU | format
data
Touch | |
sensors

PC /

Python/ Classification :eex;t::‘
Arduino — Model B (gﬁ-Ts+
interface (scikit-learn) playsound)

Figure 2: Overall system block diagram

The computer runs a Python script to read from the
port the Arduino Nano is connected to and does any nec-
essary parsing to manipulate the values in the seventeen
by one vectors. This parsed information is then sent into a
classification model which determines the ASL letter being
formed by the glove wearer. The computer then speaks the
letter by playing the audiofile of the corresponding letter.

The hardware in this project consists of the flex sen-
sors, touch sensors, IMU, Arduino Nano and connective
circuitry. The software in this project consists of the Ar-
duino sketch that will read, format and send the data to
the computer, the Python script which will receive the data
from the Arduino and the classification model which will
determine the shape of the glove wearer’s hand and corre-

sponding ASL letter.

4 DESIGN TRADE STUDIES

4.1 Sensors vs. Computer Vision

The largest implementation decision we had to make
was whether we would use computer vision or a combina-
tion of several sensors to identify the gestures the user is
making. Both have their benefits and flaws, but we ulti-
mately went with the sensor approach.

Computer vision has the benefit of potentially provid-
ing more data that our machine learning model can train
on since the machine learning model has all the pixels in
a scene (and potentially several frames) to work with to
classify the gesture. Additionally, computer vision would
be able to capture more minute changes in position that
sensors would likely not pick up. However, with computer
vision, the accuracy of our system would heavily depend
on environmental factors such as lighting. Using computer
vision would also make the system less portable since it
would require a camera setup.

Sensors are better than computer vision in several as-
pects. Unlike computer vision the sensor’s performance is
not affected by environmental lighting, allowing more con-
sistent data collection, which would result in more accu-
rate classification. Having sensors attached to a glove also
makes our system more portable and easier to use since it
would not require a camera setup and as a result, would
also be a lighter system. On the other hand, sensors are
slightly less sensitive to minute changes in gesture and will
give similar measurements for different gestures. However,
we decided that the trade-off between sensitivity to differ-
ence in poses and stability under different environmental
settings was worth it.

4.2 Accuracy vs. Number of Gestures

When designing our system, we were faced with decid-
ing how many gestures our glove would recognize. While
the glove would ideally be able to identify all of ASL, it is
not realistic for our system to do so. The biggest trade-
off here is between the number of gestures our glove can
identify and the accuracy of classification. Fewer gestures
would result in a higher accuracy since the model would
allow more range of motion. The machine learning model
will output a class no matter what, based on the inputted
data, so even if a user makes a gesture that deviates quite
a bit from the "standard” pose for that gesture, it will
likely still get classified correctly. Conversely, if we allow
for a large amount of gestures, there would need to be min-
imal deviation from the ”standard” pose that the glove is
trained on in order for the system to classify the gesture
correctly. This would both decrease classification accuracy
and difficult for signers to use since everyone makes each
gesture slightly differently due to difference in hand-sizes,
flexibility of fingers, how they were taught, and such other

18-500 Design Review Report - Oct 11, 2021

Page 4 of 13

factors.

While higher classification accuracy is desired, we can-
not reduce the number of classes to an amount that makes
the glove impractical for users. For example, a glove that
can only recognize a couple gestures would not be help-
ful in aiding ASL users to communicate with others since
communication requires much more than a couple of ges-
tures. Eventually, we settled on having our glove classify
the 26 letters of the alphabet because this allows for full
communication without compromising accuracy.

4.3 Comparison of Machine Learning

Models

We considered 5 different machine learning models for
our system: Support Vector Machines (SVM), Nerual Net-
works, Perceptron, K Nearest Neighbors (KNN), and Ran-
dom Forest Classifiers. Of the 5, SVMs, neural networks,
and perceptrons are classifiers that we have seen in past
projects similar to ours use, and KNN and random forest
are two other common classification algorithms in the ma-
chine learning world.

The perceptron algorithm trains the system to find a
set of hyperplanes that separate the data into their respec-
tive classes. If our data is linearly separable, meaning that
a set of hyperplanes exists to correctly classify all of our
data, this algorithm would work well and be fast to use
in our system since all the model has to do to classify a
new data point is decide which side of the hyperplanes the
new point lies on. However, due to variance in the data we
will collect (since we are collecting from several people),
the noise from the sensors, and the similarity in some of
the gesture we are attempting to classify, our data is not
likely to be linearly separable without data mapping. To
determine whether our data is linearly separable, we can
check if the perceptron algorithm has reached convergence
by calculating its loss. The loss function for perceptron is
called 0-1 loss, which means a loss of 1 is incurred when an
incorrect prediction is made. Preliminary testing showed
high loss and low accuracy, which signals that our data is
not linearly separable and perceptron would not be an ideal
algorithm to use.

Support vector machines (SVM) are similar to percep-
trons in that they also look for a set of hyperplanes that
linearly separate the data. However, SVMs improve upon
this concept by using kernel methods to transform the data
into a vector space that makes them linearly separable.
SVMs also finds the hyperplanes that are maximally far
away from each data point in each of the classes, mean-
ing that new data points will be more likely to fall on the
correct side of the hyperplanes for accurate classification.
Due to these additional methods, we expect support vector
machines to perform better than perceptrons. In terms of
latency for this classification method, there is the added
step of kernelling the data, but that transformation should
not make the latency significantly greater than that of the
perceptron algorithm.

Neural networks are also similar to perceptrons since
neural networks are essentially several perceptrons work-
ing in sequence. Rather than the output of a perceptron
being the output of the system, it gets fed into another per-
ceptron, and this process continues for as many layers as is
specified by the model designer. Because there are several
layers in a neural network, the model will be able to extract
information and transform the data for more accurate clas-
sification of the data. However, more layers also implies
higher latency and more storage than both the perceptron
algorithm and SVMs.

K Nearest Neighbors (KNN) is a model that takes a
new data point and gives it the same classification as the
majority class of the K number of nearest training points.
This requires no training, just remembering the training
data and their classifications. Assuming that our training
data can generalize to new data, this algorithm should per-
form quite well. The downside to this algorithm is that
the latency is high since it takes a lot of computation to
figure out the K nearest data points and also requires a
lot of space to store all the training data. If we were to
move away from using a computer to do the classification
computations, the amount of memory required to store this
information would need to be considered.

Random Forest is an algorithm that utilizes multiple
decision trees that all operate on a subset of the data in-
putted. Each of these many decision trees will output a
class for the data point and the class that appears the most
among these decision trees is outputted as the final class.
Because the decision trees within this random forest are un-
correlated with each other and use subsets of the data, the
algorithm is more resistant to outliers and are less likely to
overfit to training data. The disadvantage to this method,
similar to KNN, is that it requires more memory to store
each of the individual decision trees as well as needs more
computational power to run all of the decision trees. Af-
ter testing on various datasets, We found that the random
forest and the neural network had the best accuracies. We
did consider KNN but it can be computationally expensive
when the training dataset gets larger and may add delays
to prediction times. The neural network was only able to
reach such a high accuracy after cross-validation and its
real-time performance was not as good as the random for-
est’s, hence eventually we have chosen the random forest
classifier.

5 SYSTEM DESCRIPTION

5.1 Subsystem A - Glove

The glove subsystem consists of five flex sensors, an
IMU, five touch sensors, Arduino Nano and PCB.
5.1.1 Flex Sensors

When deciding what sensors to use to collect informa-
tion on the shape of the hand, we considered placing IMUs
on each of the joints on each of the fingers. If we decided

18-500 Design Review Report - Oct 11, 2021

Page 5 of 13

on this strategy, we would need small enough IMU modules
in a way which would not constrain the movements of the
glove wearer. Although IMU chips are very small, making
connections to them would be incredibly difficult without
mounting them on a PCB. If the chips were mounted on a
PCB, we felt that it would make the glove more bulky and
less flexible. Thus we decided to use flex sensors. They
would be easier to place on the glove and less bulky. Ini-
tially we had some concerns that the data from the flex
sensors would not be enough to determine hand shape, but
research into similar projects showed that flex sensors can
be sufficient.

The two main flex sensors on the market are built by
BendLabs and Spectra Symbol. We decided to choose the
SpectraSymbol flex sensors over BendLab’s for various rea-
sons. The BendLabs flex sensor is very expensive at $50
per sensor for a 1-D sensor and $129 per sensor for a 2-D
sensor. On the other hand, the SpectraSymbol flex sensors
were only $13 per sensor. We have a budget of $600 and
we needed at least five of these sensors, so we could not
even purchase the 2-D BendLabs sensors. Additionally,
the BendLabs flex sensors required six connections total
to read data while the SpectraSymbol would only require
three connections. Lastly, the BendLabs sensors had little
documentation; there was only one tutorial about how to
interface with the Sparkfun Pro mini. The SpectraSymbol
sensors had been used in projects similar to ours and proved
to be sufficient and had a lot more associated documenta-
tion on how to interface with different microcontrollers. To
summarize, we decided on the SpectraSymbol sensors be-
cause (1) they were cheaper and we could buy multiple
of them in case any of the five we needed got damaged
(2) purchasing the minimum five sensors and three extras
would still leave us a lot money left in our budget (3) they
required fewer connections and we wanted to limit the bulk-
iness of our glove and (4) they had a lot more associated
documentation.

5.1.2 IMU

There are a few ASL letters in which the finger poses
are similar, but the orientation of the fingers make them
different which is why we needed a way to determine the
orientation of the hand. We decided to use an IMU to
determine the orientation of the hand.

When researching IMUs to use, we found we could
choose between purchasing a 6-DoF or 9-Dof IMU. A 6-DoF
IMU has an accelerometer and gyroscope while a 9-DoF
IMU has an accelerometer, gyroscope and magnetometer.
The 6-DoF IMUs were cheaper and there was even one
that we found which had some built in gesture recognition.
However, we chose to go with the 9-DoF IMU since we
found one that was marginally more expensive. Our re-
search also revealed that 9-DoFs were more accurate since
the addition of the magnetometer offset drift in the gyro-
scope. Furthermore, since we’re feeding all of this data into
a machine learning model, more data (the extra three data
points from the magnetometer in a 9-DoF IMU) would be

more beneficial. We chose the cheapest 9-DoF IMU we
could find which was the Adafruit TDK InvenSense ICM-
20948 9-DoF IMU. We had the option to just purchase just
an IMU chip, however, we felt we did not have the skills
or time to learn the tools to place it on a PCB. The prod-
uct that we purchased included a breakout board with a
1.8V voltage regulator as well as level shifting circuitry to
allow interface with 5V microcontrollers such as Arduino
and Raspberry Pi.

5.1.3 Microcontroller

After selecting our sensors, we needed to figure out how
to collect, read and parse the data so that it could be fed
into a machine learning model to classify the shape of the
hand. At first we were not sure if we wanted a microcon-
troller to perform ML, or if we wanted a device to act as a
gate reading from the sensors and feeding in the data. We
decided we would use our laptops to run the models and use
a small microcontroller to format and forward the data be-
cause we found that the microcontrollers recommended for
running ML models were quite bulky and would be difficult
to comfortably install on the glove.

There were various requirements for the device that
would act as our gate and forward the sensor readings to
the computer. The device needed to be capable of 12C or
SPI to communicate with the IMU. It needed to have at
least five analog pins to read from the five flex sensors. It
also needed to be small. The Arduino Nano and RPi Zero
were two devices which fit all these requirements, however,
the Arduino Nano is smaller with a size of 45x18mm while
the RPi Zero is 66x30.5mm. Additionally, Arduino is some-
thing that all of our team members were familiar with, so
we chose to use the Arduino Nano.

5.2 Touch Sensors

After analyzing the performance of our glove with only
flex sensors and IMU information, we found that similar
shaped letters would not be reliably classified correctly.
These letters included m, n, and t, which are fists with
the thumb in between different fingers, and also u and v,
which are two fingers extended touching together and apart
respectively. Since a way to differentiate between these let-
ters is to see whether certain fingers are in contact with
each other, we decided to add contact sensors.

The contact sensors are made of conductive tape. This
was a design choice made in the final weeks of the project,
and this was a material immediately accessible to us, so
we could start testing sooner. However, the tape is easily
broken. After continued strain, the conductive tape often
breaks. A more robust touch sensor might be made of con-
ductive fabric.

5.2.1 Protoboard Design

In order to keep the circuitry compact, we at first
planned to design and manufacture a PCB to make all the

