
18-500 Design Review Report - Oct 11, 2021 Page 1 of 9

Gesture Glove
Authors: Sophia Lau, Rachel Tang, Stephanie Zhang: Electrical and Computer Engineering, Carnegie Mellon

University

Abstract—This paper explores the use of sensor
gloves in sign language detection. This project uses a
glove embedded with sensors to recognize and translate
ASL letters. This glove aims to generalize to all users
and to minimize physical components for satisfying user
experience.

Index Terms— American Sign Language (ASL),
ASL recognition, Fingerspelling, Flex Sensors, IMUs

1 INTRODUCTION

The motivation behind our project is to help people
who sign in American Sign Language (ASL) communicate
with those who do not understand it. Thus, our target
users are people who use ASL as their primary form of
communication, such as those who are hard of hearing or
are not able to speak. To achieve this goal, we are creating
a system containing a glove and a computer that will rec-
ognize gestures and display them as audio output through
speakers. From a user standpoint, we would ideally have a
gesture classification accuracy of 100% and an undetectable
latency (less than 15 ms).

We have chosen to create a system using sensors as op-
posed to taking a computer vision approach. An advantage
of using sensors over computer vision is that sensors allow
the product to be more portable since it would not require
the user to have a camera facing them at all times in order
to detect gestures. Additionally, sensors are less variant to
external factors such as lighting. We will also use one of
Perceptron, Support Vector Machine (SVM), Neural Net-
work, K Nearest Neighbors (KNN), and Random Forest
classifiers to determine what is being signed by the user.

2 DESIGN REQUIREMENTS

As the Gesture Glove will be a worn device, it’s crucial
to provide a comfortable user experience and accurate sign
recognition. Based on the user requirements we have pre-
viously mentioned in the introduction, we have established
the following design specifications regarding the product’s
accuracy, latency, gesture frequency, and craftsmanship.

The Gesture Glove should have a classification accu-
racy of at least 90%. This accuracy requirement means
that whenever the user makes an ASL sign, the classifica-
tion model should output the correct letter corresponding
to the sign 90% of the time. Ideally, we want to achieve
100% accuracy to satisfy the user requirements and to en-
sure top-quality experience. While it may be quite difficult
to reach such an accuracy with any type of classification

models, having a recognition rate of 90% or more will not
greatly affect user experience. This requirement is based
off the average typing accuracy of roughly 90% [1]. Since
typing and signing are common forms of communication,
it’s reasonable to have approximately the same accuracy.
We aim to reach as high of an accuracy as possible with
90% simply as a baseline.

In terms of testing, we will be performing accuracy tests
with various users and making adjustments to the classi-
fication model as needed if the product does not reach a
satisfying recognition rate. Along with accuracy tests, we
will perform an experience survey to see user satisfactions
with our product’s accuracy.

The Gesture Glove should have a latency of at most
100ms. Besides having a high accuracy, the Gesture Glove
should also output the results of the sign recognition in a
short amount of time. Our goal aligns with the user’s re-
quirement: to have an undetectable latency for the Gesture
Glove. To determine an ideal latency, we start by looking
through various research papers. We find that while users
can detect latency as low as 33ms, the user experience do
not suffer significant losses until latency is over 100ms[2].
Latencies over 100ms are much more noticeable to the users
and significantly degrade user experience. We have deter-
mined that having a latency of less than 100ms is ideal. To
ensure we achieve this latency, we will set up timers in our
code to check for how long the communications will take
between the glove sensors and the computer and how long
the classification model takes to recognize a sign.

The Gesture Glove should recognize two signs per sec-
ond. Upon researching the rate of ASL signing, we find
that mean signs per second is around 2.5 signs, not tak-
ing into account of pauses in between signs[3]. Consider-
ing this information, we have determined that an average
person likely makes two signs per second, including pauses
between signs. Since we want the users to feel natural when
signing (not too fast and not too slow), we decide to use
the average signing rate as a baseline for the frequency.

The Gesture Glove should have good craftsmanship, Our
product will be a wearable device and its weight and stiff-
ness should not affect the user experience, especially in
making signs. After the glove is fabricated, the total weight
of the glove should not exceed 200 grams so that the users
can feel comfortable while wearing. The completed glove
should also be flexible. Bending of fingers should be easily
achieved without users feeling impeded when signing.

We will be conducting user experience surveys during
data collection to verify user satisfaction. If the users do
not feel comfortable using the glove or had trouble signing
with it, we will collect feedback to make further improve-
ments.

18-500 Design Review Report - Oct 11, 2021 Page 2 of 9

3 ARCHITECTURE OVERVIEW

3.1 System Sketch

Our solution approach entails installing flex sensors
along the length of each finger on a glove and also plac-
ing an IMU and Arduino Nano on the back of the glove
near the wrist. The placement of components is visualized
in Figure 1.

(a)

Figure 1: Overall system sketch

The flex sensors will collect information about the bend
of each finger while the IMU will collect information about
the orientation of the hand such as if the palm is facing up,
down, left or right. The data from the sensors will feed into
an Arduino Nano which will sample the data from the sen-
sors and format the values. The Arduino Nano will then
send the values over a serial connection to the computer
which will analyze the data and run a classification algo-
rithm to determine the pose of the hand.

3.2 Block Diagram

Our block diagram divides our system into two subsys-
tems: the glove and the computer. As shown in Figure
2, the glove part of the system consists of the flex sen-
sors, IMU and an Arduino Nano. The Arduino Nano will
be connected to the computer with a USB cord. Through
the USB connection, the computer will power the Arduino
Nano which will then power the IMU and voltage divider
circuits made with the flex sensors. The Arduino Nano
will communicate with the IMU using I2C protocol which
requires the SDA and SCL lines. The IMU will output
nine data points, three measurements in the x, y, and z
dimensions for acceleration, rotation and magnetic field.
The Arduino Nano’s analog pins will read the voltage fluc-
tuations caused by the flex sensors in the five respective

voltage divider circuits. The Arduino Nano, IMU and flex
sensors will be connected with a PCB in order to keep the
circuitry compact. The flex sensors will not be mounted
on the PCB but will connect to some pinouts on the PCB.
The Arduino Nano will run a script to continuously sample
the voltage of the circuits made with the flex sensors and
the values outputted by the IMU. Then the Arduino Nano
will format the fourteen values (five voltages from the flex
sensor circuits and nine from the IMU) into fourteen by
one vectors and send them serially to the computer.

Figure 2: Overall system block diagram

The computer will run a Python script to read from
the port the Arduino Nano is connected to and do any nec-
essary parsing to manipulate the fourteen by one vectors.
This parsed information will then be sent into a classifi-
cation model which will determine the ASL letter being
formed by the glove wearer. The computer will then speak
the letter using a text to speech library. This library sim-
ply requires an input of a word or letter and will play the
spoken input out of the computer speakers.

The hardware in this project consists of the flex sen-
sors, IMU, Arduino Nano and connective circuitry. The
software in this project consists of the Arduino sketch that
will read, format and send the data to the computer, the
Python script which will receive the data from the Arduino
and the classification model which will determine the shape
of the glove wearer’s hand and corresponding ASL letter.

18-500 Design Review Report - Oct 11, 2021 Page 3 of 9

4 DESIGN TRADE STUDIES

4.1 Sensors vs. Computer Vision

The largest implementation decision we had to make
was whether we would use computer vision or a combina-
tion of several sensors to identify the gestures the user is
making. Both have their benefits and flaws, but we ulti-
mately went with the sensor approach.

Computer vision has the benefit of potentially provid-
ing more data that our machine learning model can train
on since the machine learning model has all the pixels in
a scene (and potentially several frames) to work with to
classify the gesture. Additionally, computer vision would
be able to capture more minute changes in position that
sensors would likely not pick up. However, with computer
vision, the accuracy of our system would heavily depend
on environmental factors such as lighting. Using computer
vision would also make the system less portable since it
would require a camera setup.

Sensors are better than computer vision several aspects.
Unlike computer vision the sensor’s performance is not af-
fected by environmental lighting, allowing more consistent
data collection, which would result in more accurate clas-
sification. Having sensors attached to a glove also makes
our system more portable and easier to use since it would
not require a camera setup and as a result, would also be a
lighter system. On the other hand, sensors are slightly less
sensitive to minute changes in gesture and will give simi-
lar measurements for different gestures. However, we de-
cided that the trade-off between sensitivity to difference in
poses and stability under different environmental settings
was worth it.

4.2 Accuracy vs. Number of Gestures

When designing our system, we were faced with decid-
ing how many gestures our glove would recognize. While
the glove would ideally be able to identify all of ASL, it is
not realistic for our system to do so. The biggest trade-
off here is between the number of gestures our glove can
identify and the accuracy of classification. Fewer gestures
would result in a higher accuracy since the model would
allow more range of motion. The machine learning model
will output a class no matter what, based on the inputted
data, so even if a user makes a gesture that deviates quite
a bit from the ”standard” pose for that gesture, it will
likely still get classified correctly. Conversely, if we allow
for a large amount of gestures, there would need to be min-
imal deviation from the ”standard” pose that the glove is
trained on in order for the system to classify the gesture
correctly. This would both decrease classification accuracy
and difficult for signers to use since everyone makes each
gesture slightly differently due to difference in hand-sizes,
flexibility of fingers, how they were taught, and such other
factors.

While higher classification accuracy is desired, we can-
not reduce the number of classes to an amount that makes

the glove impractical for users. For example, a glove that
can only recognize a couple gestures would not be help-
ful in aiding ASL users to communicate with others since
communication requires much more than a couple of ges-
tures. Eventually, we settled on having our glove classify
the 26 letters of the alphabet because this allows for full
communication without compromising accuracy.

4.3 Comparison of Machine Learning
Models

We considered 5 different machine learning models for
our system: Support Vector Machines (SVM), Nerual Net-
works, Perceptron, K Nearest Neighbors (KNN), and Ran-
dom Forest Classifiers. Of the 5, SVMs, neural networks,
and perceptrons are classifiers that we have seen past
projects similar to ours use, and KNN and random for-
est are two other common classification algorithms in the
machine learning world.

The perceptron algorithm trains the system to find a set
of hyperplanes that separate the data into their respective
classes. Given that our data is linearly separable, meaning
that a set of hyperplanes exists to correctly classify all of
our data, this algorithm would work well and be fast to use
in our system since all the model has to do to classify a
new data point is decide which side of the hyperplanes the
new point lies on. However, due to variance in the data we
will collect (since we are collecting from several people),
the noise from the sensors, and the similarity in some of
the gesture we are attempting to classify, our data is not
likely to be linearly separable.

Support vector machines (SVM) are similar to percep-
trons in that they also look for a set of hyperplanes that
linearly separate the data. However, SVMs improve upon
this concept by using kernel methods to transform the data
into a vector space that makes them linearly separable.
SVMs also finds the hyperplanes that are maximally far
away from each data point in each of the classes, mean-
ing that new data points will be more likely to fall on the
correct side of the hyperplanes for accurate classification.
Due to these additional methods, we expect support vector
machines to perform better than perceptrons. In terms of
latency for this classification method, there is the added
step of kernelling the data, but that transformation should
not make the latency significantly greater than that of the
perceptron algorithm.

Neural networks are also similar to perceptrons since
neural networks are essentially several perceptrons work-
ing in sequence. Rather than the output of a perceptron
being the output of the system, it gets fed into another per-
ceptron, and this process continues for as many layers as is
specified by the model designer. Because there are several
layers in a neural network, the model will be able to extract
information and transform the data for more accurate clas-
sification of the data. However, more layers also implies
higher latency and more storage than both the perceptron
algorithm and SVMs.

18-500 Design Review Report - Oct 11, 2021 Page 4 of 9

K Nearest Neighbors (KNN) is a model that takes a
new data point and gives it the same classification as the
majority class of the K number of nearest training points.
This requires no training, just remembering the training
data and their classifications. Assuming that our training
data can generalize to new data, this algorithm should per-
form quite well. The downside to this algorithm is that
the latency is high since it takes a lot of computation to
figure out the K nearest data points and also requires a
lot of space to store all the training data. If we were to
move away from using a computer to do the classification
computations, the amount of memory required to store this
information would need to be considered.

Random Forest is an algorithm that utilizes multiple
decision trees that all operate on a subset of the data in-
putted. Each of these many decision trees will output a
class for the data point and the class that appears the most
among these decision trees is outputted as the final class.
Because the decision trees within this random forest are un-
correlated with each other and use subsets of the data, the
algorithm is more resistant to outliers and are less likely to
overfit to training data. The disadvantage to this method,
similar to KNN, is that it requires more memory to store
each of the individual decision trees as well as needs more
computational power to run all of the decision trees.

We have not decided which algorithm to use in our final
product, but through preliminary tests, we have ruled out
the perceptron algorithm. More discussion on the results
of our preliminary testing in the Testing and Validation
section (Section 6).

5 SYSTEM DESCRIPTION

5.1 Subsystem A - Glove

The glove subsystem consists of five flex sensors, an
IMU, Arduino Nano and PCB.

5.1.1 Flex Sensors

When deciding what sensors to use to collect informa-
tion on the shape of the hand, we considered placing IMUs
on each of the joints on each of the fingers. If we decided
on this strategy, we would need small enough IMU modules
in a way which would not constrain the movements of the
glove wearer. Although IMU chips are very small, making
connections to them would be incredibly difficult without
mounting them on a PCB. If the chips were mounted on a
PCB, we felt that it would make the glove more bulky and
less flexible. Thus we decided to use flex sensors. They
would be easier to place on the glove and less bulky. Ini-
tially we had some concerns that the data from the flex
sensors would not be enough to determine hand shape, but
research into similar projects showed that flex sensors can
be sufficient.

The two main flex sensors on the market are built by
BendLabs and Spectra Symbol. We decided to choose the

SpectraSymbol flex sensors over BendLab’s for various rea-
sons. The BendLabs flex sensor is very expensive at $50
per sensor for a 1-D sensor and $129 per sensor for a 2-D
sensor. On the other hand, the SpectraSymbol flex sensors
were only $13 per sensor. We have a budget of $600 and
we needed at least five of these sensors, so we could not
even purchase the 2-D BendLabs sensors. Additionally,
the BendLabs flex sensors required six connections total
to read data while the SpectraSymbol would only require
three connections. Lastly, the BendLabs sensors had little
documentation; there was only one tutorial about how to
interface with the Sparkfun Pro mini. The SpectraSymbol
sensors had been used in projects similar to ours and proved
to be sufficient and had a lot more associated documenta-
tion on how to interface with different microcontrollers. To
summarize, we decided on the SpectraSymbol sensors be-
cause (1) they were cheaper and we could buy multiple
of them in case any of the five we needed got damaged
(2) purchasing the minimum five sensors and three extras
would still leave us a lot money left in our budget (3) they
required fewer connections and we wanted to limit the bulk-
iness of our glove and (4) they had a lot more associated
documentation.

5.1.2 IMU

There are a few ASL letters in which the finger poses
are similar, but the orientation of the fingers make them
different which is why we needed a way to determine the
orientation of the hand. We decided to use an IMU to
determine the orientation of the hand.

When researching IMUs to use, we found we could
choose between purchasing a 6-DoF or 9-Dof IMU. A 6-DoF
IMU has an accelerometer and gyroscope while a 9-DoF
IMU has an accelerometer, gyroscope and magnetometer.
The 6-DoF IMUs were cheaper and there was even one
that we found which had some built in gesture recognition.
However, we chose to go with the 9-DoF IMU since we
found one that was marginally more expensive. Our re-
search also revealed that 9-DoFs were more accurate since
the addition of the magnetometer offset drift in the gyro-
scope. Furthermore, since we’re feeding all of this data into
a machine learning model, more data (the extra three data
points from the magnetometer in a 9-DoF IMU) would be
more beneficial. We chose the cheapest 9-DoF IMU we
could find which was the Adafruit TDK InvenSense ICM-
20948 9-DoF IMU. We had the option to just purchase just
an IMU chip, however, we felt we did not have the skills
or time to learn the tools to place it on a PCB. The prod-
uct that we purchased included a breakout board with a
1.8V voltage regulator as well as level shifting circuitry to
allow interface with 5V microcontrollers such as Arduino
and Raspberry Pi.

5.1.3 Microcontroller

After selecting our sensors, we needed to figure out how
to collect, read and parse the data so that it could be fed

18-500 Design Review Report - Oct 11, 2021 Page 5 of 9

into a machine learning model to classify the shape of the
hand. At first we were not sure if we wanted a microcon-
troller to perform ML, or if we wanted a device to act as a
gate reading from the sensors and feeding in the data. We
decided we would use our laptops to run the models and use
a small microcontroller to format and forward the data be-
cause we found that the microcontrollers recommended for
running ML models were quite bulky and would be difficult
to comfortably install on the glove.

There were various requirements for the device that
would act as our gate and forward the sensor readings to
the computer. The device needed to be capable of I2C or
SPI to communicate with the IMU. It needed to have at
least five analog pins to read from the five flex sensors. It
also needed to be small. The Arduino Nano and RPi Zero
were two devices which fit all these requirements, however,
the Arduino Nano is smaller with a size of 45x18mm while
the RPi Zero is 66x30.5mm. Additionally, Arduino is some-
thing that all of our team members were familiar with, so
we chose to use the Arduino Nano.

5.1.4 PCB Design

In order to keep the circuitry compact, we decided to
design a PCB to make all the connections instead of mak-
ing the connections with jumper wires. Our PCB design is
shown in Figure 5.

The circuit for utilizing the flex sensors with the Ar-
duino Nano is shown in Figure 3. A flex sensor acts as a
variable resistor. Its resistance changes depending on how
much it is bent. By putting it in a voltage divider circuit,
the Arduino can then read the fluctuating voltage in be-
tween the resistor and flex sensor to detect how much the
flex sensor is bending. Since the flex sensors need to be
placed along the fingers of the glove, the PCB simply has
pinouts for the flex sensors to connect to as shown in Figure
5.

Figure 3: Flex sensor circuit and Arduino Nano connections

The circuit for connecting the IMU to the Arduino Nano
for I2C communication is shown in Figure 4. Although the
Adafruit TDK InvenSense ICM-20948 9-DoF IMU came
with a QWiiC connection, we plan to communicate with it
through I2C using its SCL and SDA ports in our PCB to
reduce the amount of wires on the devices.

Figure 4: InvenSense ICM-20948 9-DoF IMU and Arduino
Nano Connections

Figure 5: PCB 3D Model

5.2 Subsystem B - Computer

In terms of the Computer subsystem, we start off by
reading the data that’s passed to the Arduino Nano us-
ing Python. As the Arduino Nano will be connected to
a computer using its serial port, we will use pySerial, a
Python module for accessing serial port, to read data from
the Arduino Nano. This module was chosen because it is

18-500 Design Review Report - Oct 11, 2021 Page 6 of 9

frequently updated library with ample documentation and
testings.

While the sensor data has been pre-processed on the Ar-
duino to be more human readable, such as converting values
from flex sensors to actual bending angles, further normal-
ization and scaling will be done to ensure that the models
can be trained correctly. This is a crucial step as certain
models can have different results if data is not properly pro-
cessed. This may also help in speeding up the calculations
for model. The scaled data will then be passed through
the classification model, which will output the most likely
letter based on the given data.

As we are in the early phase of the project, we are still
collecting data and have not determined the exact classifi-
cation model to use. There are five models that we are cur-
rently considering: SVM, KNN, perceptron, random forest,
and neural network. With our current set of data and fake
data that we have generated prior to glove fabrication, we
have found that random forest classifier gives the best re-
sult while the perceptron gives the worst. Other models’
accuracy are in between.

We believe that perceptron is not doing well because it
is simply linear regression and our data is likely not linearly
separable. Random forest uses subset of data to train deci-
sion trees and takes the majority vote. The reason it works
so well on our data may be because it uses subsets of data
which can filter out the less relevant data in training and
that decision trees tend to use the most important features
to determine an outcome.

As for the other models that we considered, neural net-
work, a widely used machine learning model, is not working
as well as we expected. We deduct this is because our data
does not contain many features since they are all 14 by 1
vectors. If we were to capture snapshots of data, neural net-
work’s performance may improve. As for KNN, k-nearest
neighbor, this model finds the nearest neighbors of a data
point and takes the majority value. This model has an ac-
curacy of 82% on our first set of real data, which is already
quite goood. However, as there are a few similar ASL let-
ters and we are collecting more data in the future, this ac-
curacy may decrease and its time on testing will increase,
which will not be ideal if we want to meet our require-
ment for latency. SVM, support vector machine, is a linear
model, but it is capable of performing non-linear classifica-
tions through data transformation. This is the model that
performs the best after the random forest classifier. From
our previous assumptions of nonlinear data, this may be
the reason why it is doing well. Further analysis on mod-
els and data will be performed in the future to see if our
assumptions hold.

After the classification model outputs the correspond-
ing letter, we will then use Python’s Text-to-Speech library,
pyttsx3, to speak it out. Figure 3 (b) contains the above
described system in a diagram.

(b)

Figure 6: System picture. (a) hardware subsystem (b) soft-
ware subsystem

6 TEST & VALIDATION

6.1 Fake Data Generation

In order to make progress on our project while we
waited on the parts for our glove to arrive, we decided to
generate fake data to test the machine learning models we
are considering. We began by first going through each of
our gestures and determining a range of values for each of
the 14 measurements our glove will take. For the flex sen-
sors on each of the fingers, the data that is being sent to
our machine learning models will be in the form of angles
(in degrees). For the values outputted by the accelerometer
and gyroscope components of the IMU, we were not able to
find good documentation or sample data that could guide
us in modelling our fake data, so we decided to take random
values from the range that the product specification indi-
cates will outputted. For the magnetometer component of
the IMU, we chose the ranges assuming the user will always
be facing one direction with respect to the Earth’s poles.
In reality will not be true, but it will at least provide our
preliminary tests with some IMU data to work with.

After these ranges were determined, for each generated
data point, we obtained a random value from a normal dis-
tribution within the range that we had set, with a small
probability of generating an outlier value. Outlier values
are simply random numbers from a uniform distribution be-
tween 0 and 100. We generated a total of 100 data points
for each of the 26 letters for the training data set and 50
data points for each of the 26 letters for the testing data
set.

6.2 Preliminary Tests on Machine Learn-
ing Models

We did tests on the fake data we generated as well as
real data collected from one person on the prototype of our
glove after it was build. See Table 1 to see the classification
accuracies of each ML model and Table 2 for the confusion

18-500 Design Review Report - Oct 11, 2021 Page 7 of 9

Table 1: Model Accuracy Comparison

Dataset SVM Perceptron KNN Random Forest Neural Network
Generated Data 0.736 0.637 0.744 0.818 0.731
Real Data 0.873 0.760 0.821 0.968 0.798

Table 2: Confusion Matrices for each ML Model

Perceptron SVM Neural Network KNN Random Forest

matrices of each algorithm trained and tested on our gener-
ated data. All of these results should be viewed sceptically
since our fake data generation left out important informa-
tion for the data coming out of the IMU and there were
some slightly loose connections in our prototype that likely
affected data collection and will need to be fixed for the
final product.

7 PROJECT MANAGEMENT

7.1 Schedule

Our schedule can be viewed in Figure 7. In general,
we plan to spend the first half of the semester building the
glove, and the second half of the semester training, testing
and refining the ML model.

7.2 Team Member Responsibilities

Sophia is leading the hardware and construction part
of the project. She is responsible for building the physical
glove, making repairs and researching how to improve the
design to create a robust, yet comfortable product. Her sec-
ondary responsibility includes gathering subjects for train-
ing/testing the ML models and helping conduct and com-
pare experiments of competing design choices.

Rachel is primarily responsible for data collection, serial
streaming of data, and normalizing the data as to reduce
the noise from the data read in from the sensors. Her sec-
ondary responsibility also includes gathering subjects to
collect training and testing data as well as analyzing the
performances and costs/benefits of each ML model we are
considering.

Stephanie is in charge of training and tuning the ma-
chine learning models. She also has a secondary responsi-
bility of gathering subjects to collect training/testing data
and helping determine how much data we want to read in
and at what rate to get the best results (in terms of accu-
racy) without compromising the latency of our product.

7.3 Budget

The budget for our project is $600. So far we have
only used $167.48 of it. A breakdown of our components
purchased can be found in Table 3.

7.4 Risk Management

The primary risks to the success of our project involved
the accuracy of our sensors. The sensors are how we detect
the motion and pose of the hand. If those are not accurate,
then the rest of the pipeline will not be accurate.

To mitigate the risk of faulty sensors, we bought mul-
tiples of the flex sensors, IMU and Arduino Nano. If any
of these components get damaged during construction or
testing, they can easily be replaced.

Further, after looking at the flex sensor specification
sheets more in depth, the manufacturers recommend read-
ing the voltage after passing it through an op-amp which
acts as an impedance buffer. If our readings prove too un-
stable, this is a path we are prepared to take.

Lastly, we are normalizing the data the computer re-
ceives.

Another risk we anticipate is the PCB taking too long
to get manufactured and delivered. In order to start testing
as soon as possible, we have built the circuit out on perf
board of about the same size as the design PCB. Once the
PCB arrives, the glove circuitry can become cleaner with
fewer wires.

8 ETHICAL ISSUES

Sign language interpreting gloves have been built in the
past without input from ASL signers. It’s important that
ASL gloves accurately represent the language. For exam-
ple, facial expressions are an important part of ASL, how-
ever that aspect of the language is inherently disregarded
with a solution like a sign recognizing glove. We are well
aware of this fault in our design and plan to consult actual
ASL users during our development to collect and if time
permits, integrate their feedback.

18-500 Design Review Report - Oct 11, 2021 Page 8 of 9

Table 3: Bill of materials

Description Model # Manufacturer Quantity Cost @ Total
Microcontroller Arduino Nano Arduino 1 $14.98 $14.98
Flex Sensors 182 Adafruit 8 $12.95 $103.6
Pack of 12 Gloves n/a Donfri 1 $11.99 $11.99
A-Male to Mini-B USB Cable n/a AmazonBasics 1 $7.01 $7.01
9 DoF IMU ICM20948 Adafruit 2 $14.95 $29.9

$167.48

Note: Shipping costs are not included in the calculations.

Another ethical issue we faced when first figuring out
our implementation details was privacy. As aforemen-
tioned, computer vision is a viable option for detecting and
identifying ASL gestures. However, using a camera as part
of our system could have privacy implications since any-
thing that is captured in the scene could be a privacy vio-
lation. Since we decided to take a sensor approach instead,
this issue is no longer relevant.

9 RELATED WORK

Gesture-recognizing gloves are not uncommon nowa-
days. During our research into implementation details, we
have found quite a few similar projects. Here are a few that
we feel closely resonated with our project.

Sign Language Glove[4] This project was built by
two students from Cornell University. Similar to our ob-
jective, they wanted the glove to recognize ASL letters.
Their finished product uses sensors to collect data, mainly
flex sensors, an IMU, and contact sensors. They set up
an off-glove circuitry on a breadboard to communicate be-
tween the sensors and the computer, which will train and
test the data. The classifier models were then trained on
data specific to each user.

The flaws within this design are quite obvious. The first
and foremost being the glove is trained for specific users,
and new users will have to train a set of data on it be-
fore they can use it. This greatly degrades user experience
and can be confusing to new users if this were a commer-
cial product, as users would likely expect a pre-configured
product. The second drawback is the off-glove circuitry
which adds complexity to the physical component and is
inconvenient to set up and carry around. This also may
impede movement while gesturing.

We are attempting to improve upon this project by find-
ing a larger set of data to train on to generalize to a broad
audience. We are also constructing a printed circuit board
to aggregate our hardware components to help reduce the
dimensions of our finished glove.

Sign Language Teaching Glove This project was
done by students from University of Illinois Urbana-
Champaign. This glove uses sensor-based detection, no-
tably flex sensors for each finger, and gyroscopes and ac-
celerometers at the end of each finger for angular motion
and tilt sensing. Bluetooth transmitter was used to com-

municate sensor data to computer, which reduces the wires
needed. Noise filter is applied to the data, which are then
passed thru a perceptron algorithm for classification. Since
extra sensors add more dimensionality to data that may in-
crease accuracy, we considered this alternative. However,
we found that the gyroscopes and accelerometers on the
market are rather large and may be uncomfortable for the
users and rejected this idea. We find it interesting that
they chose to use the perceptron classifier despite having
a rather low accuracy of 75%. We have decided to ex-
plore several different machine learning algorithms to find
a model that’s best fit for our type of data.

10 SUMMARY

So far, it seems we are on track to meet our design
specifications. Our glove is lighter than 200g and our pre-
liminary accuracy tests show we are about 96% accurate.
However, we are still unsure how our glove will perform
with different hand sizes and we will need to test the la-
tency of letter recognition.

10.1 Future Work

We may continue our current work beyond this semester
as this has been an interesting project so far. One area we
can certainly improve on is the communications between
the Arduino Nano and the computer. As of now, the glove
uses a wired component for communications, which may
not be ideal for users. We intend to change it into a wire-
less Bluetooth connection so that the users do not have to
connect the glove to the computer to operate it.

Another area is certainly expanding the number of signs
to recognize. This may prove to be a hard task as the phys-
ical components may need to be redesigned to include more
sensors to detect a wider range of signs and to account for
more complexity in signs.

10.2 Lessons Learned

The general advice that we have is to start on tasks
early and follow through the schedule. If there is any slack
in the schedule, we suggest still try to work on tasks that
are scheduled for the future. If possible, we highly sug-
gest dividing tasks between team members based on their
expertise.

18-500 Design Review Report - Oct 11, 2021 Page 9 of 9

Another general advice to start early on contacting peo-
ple for data collection. While we have planned enough time
for data collection, we realized that it is something we could
have started before the glove is built and doing it early
could have saved us some time in the long run.

As for the technical side, our advice is to decide how
the streams of data will be read in and if the user needs to
signify pauses between signs using buttons or a pause sign.
User experience and level of efforts needed will differ based
on approach taken and that is something that needs to be
balanced out in a time-constrained project.

We also suggest researching about different types of sen-
sors. We had different type of sensors to use and different
ideas of placement in mind. We believe that our current
design will give the best accuracy for ASL letters while not
sacrificing craftsmanship. However, there could be more
optimal placements for other types of sign recognition and
that is something worth of spending time to research about
for future teams.

Glossary of Acronyms

• ASL – American Sign Language

• IMU – Inertial Measurement Unit

• ML - Machine Learning

• KNN - K Nearest Neighbors

• SVM - Support Vector Machine

References

[1] “Average Typing Speed Infographic — Ratatype.”
Ratatype — Online Typing Tutor and Typing Lessons,
https://www.ratatype.com/learn/average-typing-
speed/. Accessed 13 Oct. 2021.

[2] Deber, Jonathan, et al. “How Much Faster Is Fast
Enough?: User Perception of Latency & Latency Im-
provements in Direct and Indirect Touch.” Proceedings
of the 33rd Annual ACM Conference on Human Factors
in Computing Systems, 2015, pp. 1827–1836.

[3] Bellugi, Ursula Fischer, Susan. (1972). A comparison of
sign language and spoken language. Cognition. 1. 173-
200. 10.1016/0010-0277(72)90018-2.

[4] Villalba, Monica Lin, Roberto. “ECE 4760 Sign Lan-
guage Glove.” Electrical and Computer Engineering,
https://people.ece.cornell.edu/land/courses/ece4760/
FinalProjects/f2014/rdv28 mjl256/webpage/. Ac-
cessed 13 Oct. 2021.

18-500 Design Review Report - Oct 11, 2021 Page 10 of 9

F
ig

u
re

7
:

G
a
n
tt

C
h

a
rt

