
1
18-500 Final Report: 12/13/2021

Bikewards View
Final Report

Author: Albany Bloor, Emily Clayton, Jason Xu: Electrical & Computer Engineering, Carnegie Mellon University

Abstract—A system capable of enhancing bicyclist safety via
the use of microwave sensors for blindspot detection. Microwave
sensors are the up and coming technology for blindspot detection
for cars, but we are unaware of any system available for bikes.
Bikewards view will be retrofittable and also include an array of
LEDs both for signaling to surrounding traffic and to display
information to the user. Custom device drivers and signals
processing software will be implemented to handle the
information from the sensors.

Index Terms—Design, Sensor, Microwave, Safety, Bike

I. INTRODUCTION

BikewardsView is a retrofittable handle bar/tail mount

system designed to provide increased safety to bicyclists
everywhere. When on the road it can be difficult to split
attention between the path ahead of you and the traffic behind.
BikewardsView seeks to solve this problem by seamlessly
delivering warning information to the user. The system
employs a microwave sensor running at 24GHz on the tail
light mount to provide blindspot detection capabilities in
tandem with a grouping of lights to signal to surrounding
traffic. The handle bar mount houses both LEDs to provide
information from the blindspot sensors to the bicyclist as well
as a toggle switch to enable the bicyclist to control the rear
signaling LEDs. Compared to simple mirror based systems,
BikewardsView allows the bicyclist to both send and receive
information. This provides opportunity for both the bicyclist
and surrounding traffic to course correct if necessary, lowering
the chances of collision significantly.

We determined that the blindspot detector should be able to
cover any area not easily viewed by the bicyclist with small
head motions while keeping their shoulder stationary. By
running some experiments on the members of our team, we
determined that this meant we needed a field of view
encompassing forty five degrees to either side from directly
back from the bicyclists head. For the system to function
properly to avoid collisions, both the bicyclist and other motor
vehiclist must be given time to react appropriately to any
information provided by Bikewards View. From our
experiences in urban environments or other small roads where
cars and bikes would be colocated. An average speed of a
bicyclist is estimated to be about 20kph and that of a car to be
about 50kph. This gives us a relative speed of 30kph. Some
further testing on our team members was used to determine
that the average time it takes a human to process data is

around 250ms. Combining this with one full second to allow
for any necessary reaction and our assumed relative speed, we
determined that we needed to be able to sense objects at a
minimum of 10.42 meters out. To ensure user trust in the
system, we hope to maintain a no-fail policy for detection
within this range while minimizing false positives to only ten
percent of presented information. To ensure the system is
usable we also want any rear signaling light to be visible and
clear in all weather conditions at the specified range and the
informational LEDs on the handlebar to be understandable in
any lighting condition. Also to enhance user experience, we
want to be able to provide an entire day's operation between
charges, this to us, means one hour of active use to account for
commuting time and eight hours on standby while the user
goes about their day.

II. DESIGN REQUIREMENTS

The above user requirements further inform several
requirements for chosen components. To be able to
continuously provide the user new data as soon as they are
able to process it, we want to keep our latency to under
250ms. The ranging and varying lighting conditions also
meant we wanted a sensor that was not light sensitive. Further
to ensure correct action was taken, it was determined that the
sensor needed at a minimum to be able to distinguish between
objects behind and to the left or right of the bicyclist, meaning
either multiple sensors or one with angular data would need to
be used.

Metric Requirement Results

Minimum Range 10.42 Meters 10.05m

Minimum FOV 90 degrees ~100 degrees

False Positive
Rate

10 percent 37 percent

Latency 250ms 330ms

Accuracy 100 percent 72 percent

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

2
18-500 Final Report: 12/13/2021

Fig. 1.
System Diagram

The main principle of our design is to feed information
about objects behind a biker and outside of their
comfortable field of view to them via a handlebar mounted
LED array. Two microwave sensors are the source of the
data and they are used to determine the general location of
the object relative to the bike: back left, center, or right.
Data from these sensors is processed through a
STM32F401RE processor for signals processing and a
decision tree then determines whether or not our Arduino
will turn on the LEDs to display information to the driver.
The driver will also have the ability to control their tail
lights via a switch on the handle bar to indicate turns. All of
the lights decrease in brightness during the night so as to
not hurt the eyes of drivers or cyclists. At night, the tail
light also turns on to provide extra safety for the cyclist.
The physical mount is custom made, as well as the sensor
processing code for the data from the sensors.

IV. DESIGN TRADE STUDIES

The two most major components we were initially
concerned with the selection of were the sensor for blind
spot detection and the processor. The sensor likely went
through the most design changes of any part as is laid out
below.

A. Design Specification of the Main Sensor
The selection of the sensor for blindspot detection was

identified as the most critical design decision in our build.
Our initial thought was to implement this system using an
array of low cost ultrasonic sensors, but most models we
could find had a limited maximum range of 10m which did
not satisfy our calculated requirements. The MB1260 XL
MaxSonar EZL0, one of the options we were looking at,

was able to achieve a 10.5 m range, but at a great cost to
FOV [2].

Following a suggestion from one of the team members,
we then looked into the possibility of using a rotating
LIDAR. This initially seemed promising. Most such sensors
we found had high read rates and a seemingly large range.
This was also when we introduced a requirement for
minimum angular resolution for near single point devices.
As the rotating LIDARs did not have a significant FOV for
single measurements, they’re ability to cover our FOV
adequately was dependent on the number of points that
would be reported for any given angular segment. This
requirement was technology driven, however, and
abandoned along with the rotating LIDAR. At the time of
the proposal presentation, we had settled on the Slamtec
A1M8, which had a 12m range [3] and had identified that
maintaining this range in daylight conditions would be a
major challenge. Further research, however, brought to our
attention that even in perfect ambient lighting conditions,
the paint color of the cars we were tracking would greatly
affect our range. In fact, for black painted cars. we found
that reflectivity could fall below five percent [4]. This
severely limited the range of LIDAR equipment we were
using. We thus, initially tried to overcome this issue by
using longer range LIDARs that would still provide some
range with low reflectivity, but at our predicted minimum
reflectivity, no readily available sensor could meet this
requirement.

Jason, thereupon, recommended we look into the usage
of microwave sensors which seemed to us to be a more up
and coming technology. This brought us quickly to the
SEN0306, 24GHz microwave sensor from DFRobot. This
sensor had a 3db beamwidth of 78 degrees horizontally and

3
18-500 Final Report: 12/13/2021

23 degrees vertically along with a reporting rate of 10Hz
and reported range of 20m [1]. Testing of these sensors
(discussed below) would show the true range to only be
between 10m and 11m with a reporting rate closer to 3Hz.
We did, however, due to timing considerations given the
point in the semester at which we had procured and tested
these sensors, chose to continue to use them for blindspot
detection. The beamwidth of the sensors did seem to meet
specification, and so it was determined that we could use
two of them to meet our 90 degree FOV requirement.
Further with two sensors, we were able to implement some
degree of direction finding for objects (back, backleft,
backright) which for the limited amount of information we
want to feed back to the biker is sufficient.

B. Processor Selection
There are fortunately many microprocessors that can

meet our requirements, with a vast variety of memory bank
sizes and I/O port selection. We decided to pick the
STM32F413 model since it has ample processing power
and enough I/O for both the sensors and the LEDs, and a
relatively low power draw that will not affect our power
system significantly. Another major factor in our selection
is that this model is the microcontroller of choice for
18-349 Embedded Systems, which two members of the
team are taking or have taken. This makes it easy to work
with for us.

We chose to get this microcontroller on a development
board, the Nucleo F401RE, to save the time of PCB
development for the microcontroller, and also to get a tried
and tested component to reduce our risk factor in
development.

C. LED, Battery, and Other Component Selection
We looked into multiple methods of displaying

information to the cyclist. We chose light indication over
audio considering that the audio would need to be repeated
at a high volume to ensure that the cyclist would hear and
understand the data. We also determined that we could
convey more information over a shorter period of time
using lights of different colors in different locations. Thus,
we chose to use LEDs.

At first, we thought that having single point LEDs would
be sufficient in displaying information to the cyclist.
However, when thinking about practical use at night and
during the day, LED strips would be less likely to blind the
cyclist while being equally as noticable considering that
they can output over a larger area. We decided to go with
addressable RGB lighting over single color because this
will allow us more flexibility in outputting to the cyclist.

We originally planned to control the LEDs from the
STM32 processor directly, however we decided that a much
simpler solution would be to program an Arduino to listen
to processor commands and communicate with LEDs using
their Arduino drivers. For this configuration, the LEDs are
attached to the Arduino through their serial ports, and a 6

pin GPIO bus is used by the processor to send codes
indicating LED modes to the Arduino.

For the power system, we calculated that the system
would consume at most 4A with all lights on and the system
running. Additionally, the Arduino and STM32 are going to
be run off of a 5V input. The microwave sensor requires a
4-8V input, which the STM32 will supply through its 5V
output. From our design requirements, we require that the
system run for 1 hour actively. Thus, we needed at least a
20Wh battery. We decided to go with two of the Blomiky
NiMH batteries. They are rechargeable and output at most
2.2A, meeting our power requirements. The batteries have
most capacity that we will actually require, considering that
it is unlikely that all of the lights of the system will be fully
on for an hour, but this will allow a more reasonable use
time for the user, as well as being convenient for testing.

V. SYSTEM DESCRIPTION

A. Hardware Systems and Control of LEDs
An Arduino serves as the central controller for all LEDs.

On this device, we define LED modes and the STM32
sends an interrupt to the Arduino, the 6 pin GPIO bus
originating from the processor determines which mode has
been requested. We then use the library provided to us by
the LED vendors to set all lights accordingly (FastLED).

The current LEDs we plan on using for the handlebar
display are the BTF-LIGHTING WS2812B RGB
5050SMD. This is an individually addressable light strip
that will allow us to segment the display into different
warning systems and also use one of the end LEDs to
indicate system status (on or off) to the rider [5]. A tripole
switch will be used to allow the rider to indicate and a
toggle switch will allow them to turn the system off when
not in use and to remove the battery for charging. The
battery is a Blomiky 5V, 2200mAh which should last
comfortably for an entire day of use if the system is
switched off when not in actively being used [6].

B. Signals Processing

Our signals processing code is hosted on the STM32F4 in
C language to be compatible with Jason’s driver designs.
The signals processing code encompasses both taking raw
sensor data and boiling it down to a more understandable
format, and also encompases the decision matrix for what to
show the biker. The processing code first determines object
distances and speed for each sensor, combines these two
values into a “danger” value presented in hertz which may
be read as one over the estimated time until impact with the
bike if the same relative speed was kept from the current
distance. These danger values are then reviewed to
determine if any are sufficiently similar to correspond to an
object that should be shown in the center portion of the
display.

The 126 point, linearly mapped distance array from the

4
18-500 Final Report: 12/13/2021

sensor is first fed into a function that determines the five
closest target distances based on spikes in this array. It was
noted in reviewing early testing data that all spikes we saw
in the array data from the sensor were single index spikes,
rather than the bulbous, plateauing spikes we expected from
the manufacturer’s documentation. The distance calculating
code for our project is largely based off of the sample code
for multi-target detection provided by the manufacturer in
their documentation [1]. According to the manufacturer, the
magnitude of these array spikes could range from 1 to 44
(unitless) [1], which did match our observations. We further
observed that closer objects generally generated larger
magnitude spikes, and that on occasion further objects
caused short spikes early in the data while demonstrating a
larger spike at the correctly mapped index. To stop this from
creating false positives we ignore any spikes in the input
array data that have an index value less than 45
(corresponding to about 4m) and a spike magnitude of less
than 5. The distance determination code fills an array of
length five with integer values of the indexes where spikes
were seen. If less than five objects were detected, later array
values will be negative one.

The code then passes this new distance array, along with
the previous distance array, into a function to determine
danger values, still at the single sensor level. The code first
looks at the first distance value of the new distances array
and compares it with the first value of the old array to
determine if the values show distances so far apart that it
would be unlikely for a vehicle to have moved through the
linearly mapped distance in between samples. This being
the case, the first value of the new array is assumed to be an
object the bicyclist is passing, and the second is paired with
the first value of the old array for determining speeds.
Similarly the last two values are looked at to determine if an
object would have fallen off the back of the old array, thus
not being seen in the new array. The distance values for the
old and new array thus being matched, the old array index
value is subtracted from the new array value to determine at
most five object velocities paired with the five distance
values from the new distances array.

These velocity/distance pairs are then examined and
danger values returned in the following manner. If the new
distance value corresponds to a sensor data array index of
less than 50 (~4.5m), a danger value of 40 (comfortably into
the red zone for the LEDs is assigned), otherwise should
either of the values be negative, a danger value of -1 (LEDs
off) is assigned. Finally for dually positive velocity/distance
pairs the danger value is determined to be the velocity times
three (to account for the sampling rate) over the distance.

These danger values are returned in an array of length
five from each sensor. These arrays are sorted to ensure the
highest danger values are earliest in the arrays. The two
arrays from each sensor are compared and the earliest
sufficiently similar pair of danger values from the two
arrays is taken to be the danger value for the center segment
of the LEDs. If no sufficiently similar pair can be found the
danger value for the center segment is set to -1. The danger

values for the left and right segments of the LED display
strip are the highest values in the array that were not sorted
to the center sections. A danger value greater than 2
corresponds to red on the LED display, and a danger value
greater than -0.25 corresponds to yellow on the LED
display. Any value lower than this will turn off the LEDs.
The chosen LED colors are the final returned product of the
code. They are returned via a six bit value, the upper two
bits corresponding to the left segment, the middle two bits
to the center segment, and the lower two bits to the right
segment of the LEDs. To turn the LEDs off these bits are set
to 00, to turn the LEDs to yellow they are set to 01, and to
turn the LEDs to red they are set to 11.

The signals processing code was custom made for our
project and only relies on the following basic C language
libraries. <stdlib.h> was used for basic functions such as
absolute value of integers. <stdio.h> was used primarily for
print statements during debugging. <math.h> was used to
find the absolute value of floating point numbers. The three
libraries are all included in the C standard library.

C. Embedded Software Architecture
The embedded software on the STM32 microprocessor

ties together the various subsystems in our design by
reading inputs from the pair of microwave sensors, hosting
the signal processing algorithms, and outputting commands
to the LED driver. It is also able to show the latency within
the signal processing loop and the subroutines in it through
debugging tools.

The software consists of a single loop that starts upon
available sensor data on UART. It then updates the danger
heuristic according to the new and previous data stored on
the processor, and sets a new LED code reflecting the
update. The software then generates a GPIO interrupt, and
then updates every GPIO port with the corresponding bit
value.

Debugging output is done by coalescing raw sensor data,
updated LED code and sensor identifiers into a buffer,
which is sent through the USB debugger. This data is then
de-compressed and displayed by a Python program using
PySerial to read USB input.

VI. TEST AND VALIDATION

We have determined that in addition to several
quantitative tests to assure that everything is up to spec,
some human testing will be required to ensure that the
interface works well and is understandable in all feasible
scenarios.

A. Sensor Testing & Analysis
Using the STM32 or Arduino, we can read the serial

output of the microwave sensors. We used this to store and
analyze the exact data we were getting back from the
sensors. The sensors, along with headers and footers, return
a two byte distance value in centimeters along with an array

5
18-500 Final Report: 12/13/2021

of length 126 that is linearly mapped to distance that
displays multiple detected objects as spikes in the array
values [1]. We first performed testing on one sensor at a
time, getting roughly the same results from each. We started
by moving backwards from a vehicle to see when the spike
in array value fell off the end of the array. In doing so we
noted the average range of the sensors to be about 10m
directly back from the center. It was also noted in
performing these simple initial tests that an accurate two
byte distance value was returned for another meter after
information disappeared from the linearly mapped array. It
was also important to note that with our look angle and
height off of the ground, we were not getting any spikes
caused by the road surface.

We then moved on to record the array spike location and
distance values for the sensors at 1m intervals from 1m to
9m. The results for which can be seen in figure 2.

The data we got from this experiment was close to being
linear as expected, and we fitted a linear approximation to
this data to have a better understanding of the sensor’s
range. Using this fitted line, at the maximum array index of
125 we get an approximated range of 9.96m. It was also
interesting to note that the y-intercept of the fitted line was
non-zero. We attribute this y-intercept of -1 in part to sensor
error and in part to us measuring distance from the license
plate, the furthest forward point on the vehicle. Our testing
setup for single sensor testing may be seen in the below
image 1.

Image 1: Single sensor testing
A similar setup was used for initial dual sensor testing

and for system testing. Any testing of the blindspot system
was done in a controlled environment in a turnaround in a
park. Initial dual sensor testing was performed to ensure
that no issues arose having both sensors running
simultaneously and to generate some data to use when
refining the code prior to integration.

B. System Accuracy and Range Testing
Both sensors were also tested simultaneously during full

system testing. First the sensors were approached from a
distance until a signal was shown on the handlebar display
from the center and from thirty degrees to either side of the
centerline of the mount. It was found that at thirty degrees
an object was first reported between 9.3 and 9.6 meters. At
the center, however, we did not see the object reported on
the handle bar display until we were only 6.5 meters out.
We believe this may be due to the lobes of the sensors’ field
of view being centered six degrees to either side of the
center creating a small pinchoff, though the drop-off was
larger than expected and we would have expected a larger
drop-off to the sides than at the center. We also tested the
field of view of the system by walking in arc two meters in
radius away from a point between the two sensors and
noted that objects were first reported on the handlebar about
50 degrees to either side of the centerline, exceeding our
requirements.

6
18-500 Final Report: 12/13/2021

We then moved on to test accuracy and false positive
rates. In order to test accuracy ten pseudo-random target
locations were selected and are mapped out in figure 3. At
each of these target locations, ten snapshots of the display
were recorded at times selected by a team member who
could not see the display to minimize the bias of our
measurements. Accuracy and false positive rates are
recorded in table 1. The display was determined to be
accurate for a particular sample if it displayed the correct
display value as described in table 1 when sampled. The
lowest accuracy values were seen around the center of the
field of view at distances greater than 7m out. Any objects
with an adjacent offset of less than 2.8 meters from the
sensor mount displayed 100% accuracy, and a roll-off
occurred as the targets moved further away from the sensor.
The sensor was marked as displaying a false positive any
time that a segment of the display that should not have been
lit was on or when red was displayed for a target distance

that should have been yellow. T5 for example only ever
displayed information on the left segment of LEDs,
however, three of the ten samples for this target showed red
displays rather than yellow and were thus marked as
inaccurate false positives. Averaging the accuracy of the
display across these ten targets we found the system to have
an accuracy of 72% and a false positive rate of 37%.
Similar errors to those that occurred at target T5 accounted
for a fair portion of the discrepancy from our requirements.
The inclusion of T6 in our data as it fell within required
range, but not measured range, also brought down our
accuracy.Initially we had plans to perform real world testing
of the system, but these were abandoned out of safety
concerns.

C. Hardware & LED Testing
Safety is the primary purpose of the system, and the

outputs need to be quickly and easily understood, so we
decided to use red and yellow as our distance indicators.
After getting feedback from people within the class and 8
people outside the class, as well as our own experiences
riding the bike, we decided that these colors were suitable.

For the power system, we monitored the battery output
every half hour to ensure that they maintained their voltage.
After about 1.5 hours, the batteries began to degrade to the
point where their voltage could no longer power the
Arduino and the LEDs would not respond due to the lack of
data input. Also, after measuring and averaging the current
draw from the batteries over that time, the average current
draw was around 4A, supporting that our system can run for
about 1.5 hours while on.

After using the LEDs while testing our system, we
discovered that they were extremely weak at the solder
points, to the point that they would separate from the
circuitry spontaneously within 3-5 days of soldering them.
In order to combat this, we used hot glue to add some strain
relief at the weak points. The clear hot glue strain relief
allowed the lights to shine through, and the LEDs have not
broken for 2 weeks as of now.

D. Signals Code Testing
Prior to integration, the signal processing code was tested

both for correctness and timing. The code was tested by
manually replacing the input sensor arrays to the code with
data from initial sensor testing. In terms of timing,
including print statements for debugging, the signals code
ran in under a millisecond and was deemed to have
negligible effect on the timing of the system as a whole.
The code returned expected values for each dataset fed into
it. It should be noted that the testing data was from a
relatively clean data set and some spikes were added in later
to testing to simulate objects falling off the back or entering
from the front. Some refinements were performed in the
short time between integration and our final demonstration
to account for longer time between sensor data sets and to
implement changes in system approach as discussed in the

7
18-500 Final Report: 12/13/2021

architecture portion of this report.

C. LED Control Testing
Before integrating the system together, we tested the

LED outputs by inputting static numbers, mimicking what
we would receive from the STM32, and checking the output
on the LEDs against the expected output. The outputs were
corrected, but because after integrating the system, we ran
into timing problems with the interrupts from the STM32.
In order to update the handlebar LEDs as quickly as
possible, we handled these signals first, with the turn
signals and the brightness inputs from the light sensor
second. The light sensor was also tuned by recording the
input on the Arduino during dusk when cars would turn on
their lights and setting this value to the threshold for turning
on the taillight and decreasing the brightness of the
handlebars.

D. Software Testing
Testing of the software’s correctness is done by running

the sensor tests in section A with the microwave sensors
connected to the STM32. This enabled us to quickly find
bugs in the code to solve. Latency testing was done using
global variables embedded in the code to store elapsed time
between each loop iteration and between every major
subroutine, such as polling a sensor or running the signal
processing code.

Through latency testing, we realized that the latency of
our code without the communication portion was less than
1ms, which means that communication latency contributes
to almost all of the delay within a loop. This enabled us to
simplify the code by running just a single loop, instead of
our proposed RTOS and interrupt based code.

We also found that the sensor reading takes up to 200ms
to complete, with both sensors taking up to 300ms. This is
unfortunately a problem that makes the true latency of the
code marginally slower than the 250ms we wanted, and not
within our capabilities to fix. To mitigate this, we removed
some granularity of the closeness indicator LEDs, so that
the user’s info can still be up to date.

VII. PROJECT MANAGEMENT

A. Schedule
Our schedule saw several setbacks throughout the

semester that were mainly compensated for by built in slack
time. Extended time spent on sensor selection meant that
portions of the project directly interfacing with the sensors
and component testing couldn’t be performed until the early
November timeframe. Since sensor testing was performed
so late, we lacked the practical ability to look into other
options after discovering the issues with our components.
This delay further pushed the start of our system integration
back a week. Though integration of the signals processing
code onto the STM was fairly easy given constant
communication about the desired interface, other portions
of the integration, particularly the communication between

the Arduino and STM required significant reworks.
All-in-all, a fully functional version of the product was not
ready until the Friday before the final demonstration,
leaving little time for refinement.

B. Team Member Responsibilities
Albany Bloor is responsible for the implementation and

design of the signals processing code. She was also in
charge of sensor testing analysis and accuracy and range
analysis for the system as a whole. She further performed
some component soldering.

Jason Xu is responsible for setting up the software
architecture, enabling interfacing with sensors and LEDs,
and adapting the signals processing code for use on the
embedded processor. He is also responsible for providing
Arduino sketches and Python programs that are used by the
team for testing, and managing the version control and
GitHub repository.

Emily Clayton is in charge of all the selection and wiring

8
18-500 Final Report: 12/13/2021

of all hardware components expecting the sensor as well as
the physical assembly. She is in charge of power and
resource management and will also be the principal team
member for testing of the sensor and other hardware
components prior to the integration of custom code. She is
in charge of driving the LEDs from the Arduino.

C. Budget
Please see the spreadsheet on page eight. All parts

ordered to date amount to about $440.

D. Risk Management
During development, we had some risks that we

ultimately managed to resolve. The most major problem we
faced concerned the sensors, which (as we mentioned in the
previous sections) did not meet the advertised specs on
either range or latency. Thankfully, the true range and
latency were workable for us, considering that our
processing speed was much faster than expected and the
true range of the sensor was within our minimum desired
range.

Another issue we faced was that serial communication
between STM32 and Arduino did not work, despite us
trying multiple methods of serial communication, including
I2C and SPI, and using different implementations, including
using the given Hardware Abstraction Library, and setting
the necessary registers and interrupt handlers normally.
Since this step is crucial, we decided to design a
GPIO-based communication method with one wire for each
bit, with 6 wires in total for the 6-bit LED code, and one
wire to trigger an Arduino interrupt. This method, although
not as clean wiring-wise, proved incredibly reliable and
simple.

VIII. ETHICAL ISSUES

In order to avoid major ethical issues it is important for
us to not overstate the accuracy of our system. Creating a
false reliance on an imperfect system could result in
catastrophic consequences down the road. Though our
system does provide an extra layer of security for any biker,
even its most basic functions must be supplemented with
best practices by the biker. Though we have an indication
on the handlebar as to whether or not the blindspot
detection portion of our system is on and working, no such
failsafe exists for our taillight or indicators. Furthermore,
the ability to signal to traffic with these indicators does not
excuse a biker from ensuring they have adequate space and
time to perform a turn and remain visible to the surrounding
traffic. Similarly, though the taillight helps keep a biker
visible at night and in poor conditions, it would present a
problem should the user come to rely solely on it to the
abandonment of reflectors and bright clothing.

Our greatest ethical concern, of course, comes not with
an overreliance on these subsystems, but with an
overreliance on our blindspot detection system. Though the
system has great enough accuracy to bolster the confidence
of the biker and give a slight increase in security, it is by no

means infallible. The biker must continue to remain vigilant
and aware at all times. Should the biker become reliant on
our system, and should the system fail to warn them of an
impending collision, it could result in injury and even
possible loss of life.

IX. RELATED WORK

18-349 Semester Project - RTOS with scheduler running
priority inheritance protocol, supporting up to 16 threads
and 32 mutexes, and serial communication through UART
and I2C

X. SUMMARY

Using 2 microwave sensors, Bikewards View notifies the
cyclist of objects approaching behind them. It indicates the
general direction and distance of objects on handlebar
mounted LEDs, decreasing the amount that they have to
look behind themselves. The cyclist can utilize turn signals
to decrease the amount that they have to take their hands off
of the handlebars. The system operates off of 4 rechargeable
batteries.

This system isn’t meant to entirely replace looking
behind oneself when biking, especially considering we only
achieved 72% accuracy. Rather, the system is meant to
make the cyclist feel more aware of what is around them,
even when they aren’t looking behind them. While testing
and using Bikewards View, we found that it was a good
supplement to have while riding.

GLOSSARY OF ACRONYMS.

LED - Light Emitting Diode
I/O - Input and Output
RTOS - Real-time Operating System
I2C - Inter-Integrated Circuit
(serial communication protocol)
UART - Universal Asynchronous Receiver-Transmitter
(serial communication protocol)
LIDAR - Light Detection and Ranging
GPIO - General Purpose Input/Output

REFERENCES

[1] DFROBOT.,https://wiki.dfrobot.com/24GHz_Microwave_Radar_Sen
sor_SKU:%20SEN0306#target_0

[2] MaxBotix,
https://www.maxbotix.com/ultrasonic_sensors/mb1260.html

[3] Slamtec, https://www.slamtec.com/en/Lidar/A1
[4] Ford Motor Company,

https://detroitcc.org/wp-content/uploads/2018/07/IR-Reflectivity-of-P
aint-Autonomy-and-CO2-Seubert.pdf

[5] Amazon.com,
https://www.amazon.com/BTF-LIGHTING-Flexible-Individually-Ad
dressable-Non-waterproof/dp/B01CDTE6Y6?th=1

[6] Amazon.com,
https://www.amazon.com/Blomiky-Battery-Projects-Equipments-Port
able/dp/B08J4H39JV

https://www.maxbotix.com/ultrasonic_sensors/mb1260.html
https://www.slamtec.com/en/Lidar/A1
https://detroitcc.org/wp-content/uploads/2018/07/IR-Reflectivity-of-Paint-Autonomy-and-CO2-Seubert.pdf
https://detroitcc.org/wp-content/uploads/2018/07/IR-Reflectivity-of-Paint-Autonomy-and-CO2-Seubert.pdf
https://www.amazon.com/BTF-LIGHTING-Flexible-Individually-Addressable-Non-waterproof/dp/B01CDTE6Y6?th=1
https://www.amazon.com/BTF-LIGHTING-Flexible-Individually-Addressable-Non-waterproof/dp/B01CDTE6Y6?th=1

9
18-500 Final Report: 12/13/2021

BUDGET:

