
18-500 Final Report: 12/14/2021 Page 1 of 12

Ultimate Chess
Authors: Yoorae Kim, Demi Lee, Anoushka Tiwari: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A system that lets a person play chess
against an AI on a physical chess board without any
software requirements. The system provides a simple
interface to play chess against an AI opponent without
having to use digital apps. The project is intended to
help the elderly and people who may not be comfort-
able with technology enjoy the game. The game is a
fast version of chess, with the AI making moves within
60 seconds. The players move is detected with 98% ac-
curacy. The simplicity of the game is an improvement
over state of the art digital chessboards that require
complex app integration and hard to set up hardware.

Index Terms— Background Subtraction, Canny,
Chess, Computer Vision, Neural Network

1 INTRODUCTION

Chess is one of the most popular games in the world.
Over 600 million people worldwide enjoy the classic game.
The elderly especially enjoy the game. According to some
studies, it even helps prevent Alzheimer’s and mental de-
cline by stimulating the brain. However, the elderly are not
always able to find someone to play with them. They are
also often not as comfortable with technology to be able
to enjoy a game against an Artificial Intelligence (AI) on
a mobile app. Some feel that a mobile app simply doesn’t
provide the full chess experience.

Our smart chess board attempts to make chess more
accessible to the elderly by providing a simple and easy-to-
use way to play chess against an AI opponent. We provide
a custom chess board that comes with a camera, LEDs and
a push button. The user makes their move and presses the
button. The LEDs at the initial and final square light up.
If the user finds the move incorrect, they have 10 seconds
to press the push button and remake their move 2 times.
Then, the AI’s move lights up. Once the user moves the
AI’s piece, the user presses the button the register this.
After this, all LEDs light up indicating the user can make
the next move. The requirements listed in this section are
derived in the design requirements. The users require a
high move detection accuracy (99%) and a low latency (≤
24 seconds). They also require high deviation tolerance,
which means minor changes to a piece’s location should not
be detected as a move if the piece is still within the same
square. This is measured as the maximum deviation which
will not result in a change being detected in a square.

While there exist automatic chess boards in the mar-
ket today, most of them require smartphone connectivity
and need the player to use apps. Our target demographic
is people who do not have access to a smartphone or sim-
ply don’t want to use it. The simplicity of our product is

an advantage over current smart boards. The limitations
our approach is that the smoothness of the game is com-
promised because the user has to press buttons to indicate
that the move is done.

2 DESIGN REQUIREMENTS

The goal of our project is to help people play chess in
their free time. We therefore have to ensure that we have
low latency because people may not have huge chunks of
free time. We settled on a standard fast variant of chess
called Fast chess. A popular type of fast chess gives people
2 minutes to make their move. Since people may be more
patient playing against a person than waiting for a com-
puter to make its move, we halved this time and made our
timing requirement be 1 minute.

We thus have the following overall timing constraint:

tM + tL + tA ≤ 60s (1)

where tM is the time it takes for move detection (s), tL
is the time it takes to determine if the move is legal (s)
and tA is the time it takes to get and display the AI’s next
move from the AI engine (s).

The main areas of the project are Move detection, de-
termining whether a move is legal, coming up with the AI
move and displaying it on the LEDs. The requirements
based on area are described below.

2.1 Move Detection

Detecting the player’s move is a core part of the project.
There are 3 quantitative requirements here: the detection
time, the detection accuracy, and the number of tries it
takes to come up with the correct detection. The detection
time must meet the constraint described in equation (1).

2.1.1 Number of Retries

This requirement is due to the fact that we want to
keep the human in the loop during the move detection to
increase accuracy. When we finish detecting the move us-
ing the CV pipeline, we display the move the CV detected
on the board by lighting up 2 LEDs (one for the initial
position of the piece and one for the final). If this move
is correct, the user does not need to do anything, and the
detected move will go through the rest of the pipeline in 10
seconds. The reason we give the user 10 seconds here is due
to the fact that our target demographic is the elderly, who
often have a slow reaction time. If the move is wrong, the
user has 10 seconds to press a button indicating this, and
then make the move again. This helps mitigate issues with

18-500 Final Report: 12/14/2021 Page 2 of 12

the piece not being within the edges of the square or a bad
image. We want the user to try 3 times before we end the
game. The reason we settled on this is because there are
2 main sources of error: the piece not being placed prop-
erly or issues with image quality. 2 extra tries would help
mitigate these issues.

We want the user to retry their move at most 2 times
before we detect it with 99% accuracy. This means that in
total the user gets 3 tries. The reason for this is that there
are 2 main situations in which the CV fails. The first is if
there is a shadow or lighting issue with the board. The sec-
ond is if a piece covers a squares boundary. Because there
are 2 failure points, we provide 2 extra tries for the user to
ensure these are no longer issues.

The way this is tested is the same as detection accuracy
described below.

2.1.2 Detection Accuracy After 3 Moves

The target detection accuracy is 99%. This accuracy
is with the assumption that the user will let us know if
the move we detected is incorrect. We aim for 99% and
not 100% because we are limiting the number of retries the
user has to make for the sake of convenience, so there may
be situations in which we do not get the move right even
with the human in the loop. The reason we require this
high accuracy is because our entire project is dependent on
the detection being highly accurate. If we detect the move
wrong, our illegal move detection will not be meaningful.
The AI move generator will also be provided the wrong
state of the board and generate a nonsensical move. All in
all, the entire user experience rests on an extremely high
detection accuracy.

While 99% may be too high of an accuracy given that
we are relying on canny edge detection which is only 91.56%
accurate, the retry mechanism helps in case there is noise
in the picture. Additionally, the accuracy of all the edges
detected does not matter for our case as we are only use
the edge detection algorithm to determine the grid of the
chessboard. We will apply the Hough transform to the
edges detected to get the horizontal and vertical lines of
the grid. We will essentially ignore all the edges other than
the ones making up the grid. The edges making up the
grid are simple edges, which should further improve the
accuracy. Moreover, we use a neural network [3] to crop
out the chess board to ensure there is no interference from
background elements.

To verify this metric, moves are made for varying pieces,
during varying stages of the game. Because exhaustive test-
ing is not possible due to the number of possible moves in
chess, we cover a diverse set of moves to ensure the com-
puter vision works:

The test plan is to simulate a real game by providing
configurations from the beginning, middle and end of the
game. Then, we simply make moves at most 3 times to get
the right detection. If the detection is still wrong after the
final try, it is counted as an error.

2.1.3 Detection Accuracy after One Move

The idea and testing of this metric is exactly the same
as the previous one, except here we stop if we get the move
wrong on the first try. The reason this is a metric is be-
cause to get a 99% accuracy in 3 tries, the accuracy of each
try is limited by the equation:

1 − ((1 − x) ∗ (1 − x) ∗ (1 − x)) ≥ 0.99 (2)

So,

x ≥ 0.21 (3)

This accuracy is very low because it rests on the as-
sumption that the trials are independent. However, we use
it as a theoretical bound which we easily exceed.

2.1.4 Sensitivity to Deviation

This is a measure of how much a piece can shift within
a square and still not trigger the change detection to detect
a change. It is measured as the maximum deviation that
will go undetected as a change as long as the piece is in the
square. This is required because the user’s hand may nudge
the piece or the user might accidentally touch it. The most
deviation that can occur in one direction that should not
be detected as a change is if the piece is at the very bottom
of the square. In that case, it can be moved to the top of
the square. This is depicted in Figure 1. Each square in
our board is 1.875 inches and the average diameter of the
piece is 0.8 inches. This means that if the deviation in the
vertical direction is y, the maximum deviation that should
go unnoticed is bound by:

0.8 + y ≤ 1.875 (4)

This means that

y ≤ 1.075 (5)

So, we require our deviation tolerance to be greater than
1.075 inches in the case that the piece is at the end of the
square. We only need to check this case because this is the
maximum deviation that is not actually a change. This
was tested using pieces of different radii and moving them
from the bottom to the top of the square and checking if
the value of the change was above the threshold.

2.1.5 Detection Time

This requirement stems from Equation (1) that con-
strains the total time that the CV, illegal move detection
and game playing AI can take. Since the AI takes at most
10 seconds and the illegal move detection at most 2 sec-
onds, it leaves us with 58 seconds for detection time. The
way this is tested is similar to the tests in 2.1.2, except we
time each run through the move detection pipeline. For
each set of up to 3 tries, the maximum time across all tries
is taken as the time of the detection.

18-500 Final Report: 12/14/2021 Page 3 of 12

Figure 1: A piece at the bottom of the square

2.2 Game playing AI

We will be integrating an existing Chess AI engine to
our project. There are multiple options available, but our
major requirements for Chess AI engine was
1. Available for public use (open source)
2. Fast response time (<10s)
3. Offers varying levels of difficulty (optional)
Our final decision stood on Stockfish engine, which offers
8 varying levels of difficulty, response time ranging from
50ms to 400 ms, and publicly posted on github as an open
source.

2.3 LED

Given coordinate pairs from the game software, the
LEDs corresponding to the coordinates should light up.
Additionally, to correctly address the winner of the game,
the LEDs should be able to light up in at least two dif-
ferent colors. Based on the requirements, we need 64 RGB
individually addressable LEDs for each square of the chess-
board. To verify the correctness of LEDs, we will visually
inspect that the appropriate LEDs light up given a set of
random coordinate pairs.

3 ARCHITECTURE OVERVIEW

Figure 2 shows a block diagram of the architecture. Fig-
ure 3 is a more detailed user interaction diagram of the
same.

The player will play on a physical chessboard that has
an 8x8 LED matrix installed under it. A camera will be
mounted directly above the board. The Stockfish engine is
initialised when the user is ready to begin the game. When
it is the player’s turn, they will make a move by moving
their piece on the chessboard. Once they make their move,
they will press a button mounted on the chessboard. This
will signal the camera to take an image of the board. The

image passes as an input to the CV pipeline implemented
on the Raspberry Pi.

The CV thread determines the user’s move and the
Raspberry Pi lights up the LEDs corresponding to the ini-
tial and final square. In case the CV was not able to detect
the move, the Raspberry Pi lights up all LEDs red to tell
the user to retry the move twice. After lighting up the
moves, the system waits 10 seconds for the user to click a
button if the move was incorrect. If the user does not click
a button, the move is assumed to be correctly detected and
the move detector implemented on the Raspberry Pi passes
control to a legal move detector.

The legal move detector gets the coordinates of the cur-
rent move and the current state of the board. The state is
maintained as an 8 by 8 matrix where each element repre-
sents a chess piece type and the color. For example, WP
is the white pawn. The legal move detector checks if the
move is valid. If not, the Raspberry Pi makes all LEDs
light up in red and the game is over. Otherwise, the state
of the board is updated internally. This is done by simply
making the move that the player made. The new move is
then fed to the Stockfish chess engine which comes up with
the next move. The internal state of the chess board is
again updated. The move is displayed and the user physi-
cally makes the move and clicks the button. The purpose
of this button click after the AI’s move is to ensure that the
change for the next user move is detected with reference to
the board after the AI’s move has been made. Once this
is done, all LED’s light up and the user makes their next
move. The game continues.

There were 2 main changes from the design report to
the overall system: 1. The retry mechanism, which the user
can use to have the system redetect wrong moves. This was
to mitigate CV risks. 2. The user is now required to push
the button after making the AI move. The reason for this
is so that we can use direct change detection between the
picture at t=T-1 and t=T instead of having to do change
detection between t=T-2 and t=T and checking to ensure
the AI move isn’t detected as the user’s move.

18-500 Final Report: 12/14/2021 Page 4 of 12

Figure 2: Block diagram

4 DESIGN TRADE STUDIES

4.1 Stockfish Chess AI Engine

We are integrating already existing chess AI ‘Stockfish’
into our project. Currently there are numerous options
available for chess AI engines, but Stockfish has suited
our needs the best. Our major requirements for the chess
engine were availability to public use, and fast response
time to decrease latency. Our optional requirement was
offering various levels of difficulty to meet the needs of a
wider range of users. Considering these requirements, open
source Stockfish AI with 8 varying levels and response time
ranging from 50 to 400ms was the optimal option for us.

4.2 WS2812B LED Strip

An 8x8 LED matrix display will be constructed and in-
stalled under the chessboard. The 64 LEDS would need to
be individually programmable to correctly display the AI’s
move. To address the winner of the game, the LEDs should
be able to light up in at least two different colors.

We chose to use an LED strip over individual LEDs be-
cause LED strips are generally cheaper. Additionally, it
is less circuit work for us to use the LED strips since the
LEDs come in wired together.

The main factor that determines the cost of LED strips
is how well it handles the loss of color accuracy due to volt-

age drop. 5V WS2812B is the cheapest and most common
type of LED strip. For WS2812B, voltage drop happens
after 2.5m or 150 LEDs. Since we are using a relatively
small number of LEDs, only 64 LEDs for each square, volt-
age drop will not be an issue for our case. Therefore, we
are able to use the most cost effective 5V WS2812B LED
strip for the project.

4.3 Board LED Integration

In our project, AI moves are communicated to the
player by lighting up the appropriate LEDs on the board.
There were two possible ways to achieve this. The first way
was to buy a standard chessboard set and drill small holes
in each of the squares to allow LED lights to go through.
The second way was to create our own custom chessboard
using translucent acrylic sheets allowing the LED lights to
pass through. We chose to go with the second approach be-
cause the drilled holes in the first approach may affect the
performance of computer vision when detecting the squares
and pieces. Moreover, there may be a case where the chess
pieces block the drilled holes causing the players not able
to see which LEDs have lit up.

Using the second approach means that we have to con-
struct our own chessboard. The top of the board is made
of translucent acrylic sheets which are non see-through but
still allow light to pass through. White and green acrylic

18-500 Final Report: 12/14/2021 Page 5 of 12

Figure 3: User interaction diagram

18-500 Final Report: 12/14/2021 Page 6 of 12

Figure 4: Image of the final board (left) and LED matrix (right)

sheets are laser cut to 64 2 by 2 inch squares. The squares
are welded into one piece using acrylic weld-on. An 8x8
LED matrix is installed under the chessboard. LEDs are
separated from each other using grids which are laser cut
from cardboard. Figure 4 shows our completed board and
LED matrix.

4.4 Computer Vision for Move Detection

4.4.1 Piece Detection v.s. Change Detection

There are 2 main approaches to determining the move
the user made. The first is detecting every piece on the
board and figuring out which piece changed position. This
provides both the move information and information about
which piece is at which square directly. The other ap-
proach, i.e. the one we employed, is simply detecting
changes in the board and treating pieces as nothing but
a set of edges. The edges themselves do not give us any
significant information about the piece and we do not try
to identify the piece based off of what it looks like. Instead,
we identify pieces by tracking their positions through time.
Since we know the position of each piece at t=0 (i.e. before
any move is made), we are able to determine the new posi-
tion of a particular piece at t=T simply by combining the
position of the piece at t=T-1 with the move made by the
human and the AI at t=T to determine the new position
of the piece.

There are 3 benefits to this approach:
1. Invariance to the exact shape of the piece: Since we

do not rely on the shape of the piece to determine its posi-
tion, we are able to support different kinds of piece shapes.
This is useful because it lets the user play with their own
chess pieces instead of us having to provide them. This
cuts costs for us because we do not have to provide the
user chess pieces. This also makes the set less expensive if
the user already owns a regular chess set.

2. Only one top view required: Since we do not need

to detect the identity of the piece using its shape, we can
simply mount a camera on the top of the chessboard to
get a top-down view of it. This is less intrusive than, for
example, having to mount 3 or 4 cameras all around the
chessboard to ensure that we have enough views of a piece
to be able to get an unoccluded image that lets us detect
its shape.

3. Less computation: Since we are not using the edge
profile of a piece to figure out which piece it is, we save on
computation that helps us stay within the time constraints
described in equation (1).

4.4.2 Edge Detection Algorithm

The edge detection algorithm is what gives us the edges
of the chessboard, the edges of the squares, and the edges
of the piece inside the square. Here, we want extremely
high accuracy, even if it comes at the cost of time com-
plexity. This is because the results of edge detection feed
into the entire move detection pipeline, so we need as high
an accuracy as we can get here as the mistakes cannot be
made up for later in the pipeline. Therefore, we picked the
Canny edge detector which has the highest accuracy.

A table comparing the edge detectors is shown in Fig-
ure 5 [3]. As seen in the figure, the Canny operator has
the least sensitivity to noise and the least number of false
edges. Since we are dealing with real world images, a low
noise sensitivity is very important to us. Additionally, since
we use edges to discretize the chess board into squares, we
must not have false edges as that would lead to the wrong
grid being formed which will be disastrous for the entire
move detection system.

18-500 Final Report: 12/14/2021 Page 7 of 12

Figure 5: Comparison of edge detectors [2]

4.5 Speed vs Accuracy using a Neural
Network

A pre-trained neural network ([2]) is used to crop
out the chessboard from an image clicked using the web-
cam.This adds an average latency of 38 seconds. However,
it also improves the accuracy from 65% to 94%. The rea-
son for this is that without cropping out the chessboard, the
Hough transform cannot successfully differentiate the lines
in the image from the lines being present in the surround-
ings. Moreover, because the neural network straightens the
image, we do not need the user to ensure that the board is
completely straight before we run our move detection. We
prioritized accuracy in this trade-off because the accuracy
of move detection is very important for our project.

4.6 Turn Based v.s. Continuous Game

This was a smoothness v.s. accuracy and time trade-
off. The player is required to click a button to tell the
system that they are done with making their move. This
is in contrast to the camera capturing a continuous video
stream and the CV checking to see whether or not the user
is finished with their move. While the latter approach is
smoother for the user, it creates limits both our accuracy
and speed. The reason for this is that the CV now has to
detect whether or not the move has been completed. This
adds an average time of 55 seconds to the move. Moreover,
it reduced the accuracy by 12.5% if we use standard hand
detection methods to ensure the users hand is not in the
image when we start detecting the move.

4.7 Retries vs No Retries (Smoothness vs
Accuracy)

This was a smoothness v.s. accuracy and time trade-
off. The player is required to click a button to tell the
system that they are done with making their move. This
is in contrast to the camera capturing a continuous video
stream and the CV checking to see whether or not the user

is finished with their move. While the latter approach is
smoother for the user, it creates limits both our accuracy
and speed. The reason for this is that the CV now has to
detect whether or not the move has been completed. This
adds an average time of 55 seconds to the move. Moreover,
it reduced the accuracy by 12.5% if we use standard hand
detection methods to ensure the users hand is not in the
image when we start detecting the move.

5 SYSTEM DESCRIPTION

5.1 Move Detection

Move detection is the system that takes as input the
webcam image and ultimately outputs the coordinates of
the detected move.

5.1.1 Square Formation

Figure 8 shows how we get from the webcam image to
the squares at t=T and t=T-1 that can be passed to the
change detection algorithm. First, the images are cropped
using a pre-trained neural network that focuses on the
chessboard. Then, the images are blurred to remove high
frequency noise. Canny edge detection, a method of detect-
ing edges while suppressing noise, is applied. The Canny
edge detection was used because of its low sensitivity to
noise compared to other methods as seen in figure 8. Using
a standard gradient based approach detected the correct
lines only 62% of the time as compared to Canny which
does it over 98% of the time in our situation. The problem
with a gradient based approach comes from the fact that
the gradient in our board is often not clear due to shadows
or lighting differences. A Hough transform returns the hor-
izontal and vertical lines in the edges. These lines are then
rectified to ensure that they are equidistant and any noisy
lines are removed. This is done by computing the median
distance between the lines and filtering out lines that are
more than 1 standard deviation away from either the line

18-500 Final Report: 12/14/2021 Page 8 of 12

Figure 6: Square formation

before it or the line after it. Then, the intersecting squares
are cropped. After this, the squares for the previous and
current image are sent to the change detection algorithm.
An example image is shown in figure 6.

5.1.2 Change Detection

After each square on the board was cropped, frame dif-
ference algorithm of background subtraction was used to
detect the move that user had made. The foreground frame
is set as a collection of squares of a most recent board state
at time = T, and a board state before user has made a
move at time = T - 1 was set as a background frame. Our
change detection algorithm first sets a bounding circle on
each cropped square to reduce the error from any external
source, such as inconsistent reflection on the board or light-
ing. The bounding circle further reduces the error rate by
concentrating the pixels to a piece location. After a bound-
ing circle is set for each square, we then cumulatively add a
difference value for each pixel per cropped square. The dif-
ference value is computed by absolute difference of R value
from the RGB code of a pixel. We only used ’red’ value to
compute a difference value because we used red pieces for
user’s piece set. Since we are trying to derive a change in lo-
cation of a red piece, extracting R value from RGB instead
of using the entire RGB data set increased our accuracy
rate. Finally, we derive a coordinate of a square where the
change has been made by setting a threshold. Two squares
where a change has been made is going to have a difference
value over a threshold, and any other squares will have a
difference value under a threshold. We then use the derived
coordinates to update our board state based on the user’s
move.

5.2 LED with Raspberry Pi

The WS2812B RGB LED strip is controlled by the
Raspberry Pi using the rpi ws281x library, which is also
known as Neopixel library. In addition, a 5V power supply
is required. The single data line of the LED strip is con-
nected to the GPIO pin on the Raspberry Pi. The ground
of the power supply is connected to both the ground wire
from the strip and the ground pin on the Raspberry Pi.
The 5V output of the power supply is connected to the 5V
voltage wire from the strip but not to the voltage pin on
the Pi. The schematic connection between the LED strip,
power supply, and RPi is shown in Figure 7 [1].

6 TEST & VALIDATION

6.1 Results for Accuracy and Latency of
Move Detection Specification

There are 2 requirements for accuracy of move detec-
tion: accuracy without retries and accuracy with retries.
The testing process was the same for both of them, ex-
cept that in the with retry case the move was considered
accurately detected if any one of the 3 tries got it correct.

For each test, we detect both the board detection and
the move detection accuracy. The board detection accu-
racy is the accuracy of partitioning the board into squares.
The move detection accuracy is the full accuracy, from the
beginning with the original picture to the end where Our
testing process involved mass tests and in game tests.

Our testing process involved mass tests and in game
tests.

18-500 Final Report: 12/14/2021 Page 9 of 12

Figure 7: LED schematic [1]

6.1.1 Mass Testing

In mass testing, we changed positions of multiple pieces
in one turn. This is not a legal chess move, but it allowed
us to check the accuracy of several change detections with
one click of the camera instead of clicking pictures for every
move. This made testing more efficient. The Our results
for mass testing are as in table 1. BD represents board
detection accuracy and MD represents move detection ac-
curacy. NR represents no retry and R represents retries
are allowed. Since we are only detecting red piece moves,
only red pieces are tested. In the first test, all red pieces
are moved forward by 1 step. So, each iteration of the test
contains 16 moves and we perform 3 iterations. We get a
100% accuracy across the row here. In the second test, we
test capturing of a small piece by a big piece. Blue pieces
except the king are replaced with a bigger red piece. Only
one piece of each piece type is replaced, and this is varied
between iterations. The king cannot be replaced because it
is bigger than all pieces. So, 5 moves are made in each it-
eration. In one of the iterations, the board detection failed
and so our board detection and move detection accuracies
are both low. However, retries bring the board detection
to 100% and the move detection to 93%. In the third test,
we test capturing of a piece by the same piece type. We
86% accuracy for move detection without retries, but this
goes up to 100% with retries.

In all, the board detection accuracy is accurate both
with and without retries. However, retries make the move
detection accuracy go from 90% to 98% which is very close
to our requirements of 99%. The latency is 47.45 seconds
which meets our requirement of being under 60 seconds.

6.1.2 Piece-wise Tests In-game

These tests were performed during the game for each
piece. The game states were chosen uniformly between
initial states (first 1-20 moves), middle states (first 20-30
moves) and final states (30-40 moves) by playing 2 AIs
against each other and finding sample game states for each
stage of the game. The reason for this is to ensure CV

doesn’t fail due to game setting or density of the board.
The accuracy for the Bishop is the most problematic, and
that is because it is thinner that the other pieces and has
a more pointed tip. This limits the accuracy of our detec-
tion for the Bishop because we are working with top view
images.

6.2 Results for Sensitivity of Move Detec-
tion Specification

The sensitivity tests were performed 5 times for each
piece. We did not require more tests because the values
were stable for each piece. In each test, we mass tested
all pieces. Each piece was moved from the bottom of the
square to the top of the square, and it was checked whether
the change value was above the threshold or not. If it
wasn’t, this was counted as a success. The maximum de-
viation at which we failed at each piece was recorded. The
results are in table 3. This requirement is a limitation for
us. The most deviation we were able to achieve was 0.

We were only able to support deviations up to 0.91 in,
instead of the requirement of 1.075 in. This shows that our
Computer Vision is more sensitive than we would like. We
were able to achieve 0.91 inches for Queen, but our lowest
was Bishop at 0.43 in.

6.3 Results for LED Accuracy and La-
tency

In order to achieve our latency requirement, we needed
to ensure that the time it takes to change the state of the
LEDs is minimal compared to the overall latency. There-
fore, we set the LED code execution time to be less than
100ms. The timing of the LED code execution consists
of the time necessary to parse the algebraic chess nota-
tion into the LED index and lighting up the corresponding
LEDs. The average execution time over 30 tests was around
28ms, which as expected is insignificant to the overall la-
tency. We also expected 100% correctness of LED behavior.
We performed 30 visual tests. These tests were done by vi-

18-500 Final Report: 12/14/2021 Page 10 of 12

Table 1: Mass testing

Test type BD(NR) MD(NR) BD(R) MD(R) T(NR) sec
Move all forward 3/3 48/48 3/3 48/48 46
Replace blue (except king) with bigger red 2/3 8/15 3/3 14/15 44.5
Replace blue (except pawn) with smaller red 3/3 15/15 3/3 15/15 51.3
Replace blue with same red 3/3 13/15 3/3 15/15 42
Total 11/12 84/93 12/12 92/93

Table 2: Piece wise in-game tests

Piece type BD(NR) MD(NR) BD(R) MD(R)
King 6/6 6/6 6/6 6/6
Queen 6/6 5/6 6/6 6/6
Bishop 6/6 4/6 6/6 5/6
Knight 6/6 6/6 6/6 6/6
Rook 6/6 6/6 6/6 6/6
Pawn 5/6 5/6 6/6 5/6

sually confirming that the correct LEDs light up given a
move with standard chess notation and color. 30 out of 30
tests passed, so the LEDs behave as expected.

7 PROJECT MANAGEMENT

7.1 Schedule

The major requirement of our project is to be able to
detect user’s moves through CV image processing. Thus,
after finishing the construction of the physical chess board,
the first several weeks of the schedule was dedicated to con-
structing our CV algorithm and testing it. As soon as we
concluded that our CV algorithm correctly detects moves,
we began integrating Stockfish engine and valid / invalid
move logic into our project. While working on final inte-
gration, we also focused on testing our project’s function-
ality and its responses to possible edge cases. Our detailed
schedule is in Figure 9 at the end of the document.

7.2 Team Member Responsibilities

Demi worked on constructing the physical board and
hardware assembly including communication between the
board and the Raspberry Pi and camera, LED matrix con-
struction, and the integration of user input push button.
Yoorae worked on implementing the chess valid logic to
check for valid/invalid user moves and also integrated the
chess AI with the game. Anoushka mainly worked on CV
image processing. Once the valid chess logic was done,
Yoorae and Anoushka worked together on background sub-
traction algorithms for player move detection. Once the
board was constructed and LEDs were tested, Demi worked
on the overall integration between the three main portions
of the system: board, CV, AI.

7.3 Budget

Our group spent a total of $184.36 for building our
project. The details of purchased components and their
cost is attached in table 4 below.

7.4 Risk Management

Most of our risks this semester were related to Com-
puter Vision. This is because there are a lot of real world
factors that impact its accuracy: movement of the board,
glare etc. We scheduled a lot of time for CV and were
prepared for several iterations. We began testing CV per-
formance early before we got our web cam using images
from our phones. We also ordered our web cam and stand
early so we could change it if it didn’t work. We did have
to change one of our stands because it wasn’t stable. To
further mitigate the risk from CV, we decided to use a neu-
ral network to crop the chess board out before we begin the
process of square partitioning. While this did improve our
accuracy, we didn’t have a lot of resources to help with
this so setting it up and using it took a significant amount
of time. We used open source resources to combat this.
Initially, our CV wasn’t good enough even after cropping
and change detection was very inaccurate. We had planned
for this in our design report, and immediately got pieces of
Red and Blue color instead of the standard black and white
pieces. This fixed the problem we were having because the
pieces were no longer the same color as the squares. To
further mitigate risks, we introduced a new design element:
the push button. This allowed the user to tell the system
if the move was incorrectly detected so the system could
re-detect the move.

18-500 Final Report: 12/14/2021 Page 11 of 12

Table 3: Sensitivity tests

Piece type Max deviation (in)
King 0.86 in
Queen 0.91 in
Bishop 0.43 in
Knight 0.67 in
Rook 0.86 in
Pawn 0.83 in

Table 4: Bill of materials

Description Model # Manufacturer Quantity Cost @ Total
Chess board and pieces set N/A Chess Armory 1 $28.99 $28.99
Logitech C270 Webcam C270 Logitech 1 $26.92 $26.92
Raspberry Pi 4 (Capstone Inventory) B LABISTS 1 $0 $0
LED Strip WS2812B BTF-LIGHTING 1 $22.88 $22.88
5V 10A Power Adapter N/A ALITOVE 1 $23.99 $23.99
Cast Acrylic Sheet White N/A McMaster 1 $31.91 $31.91
Cast Acrylic Sheet Green N/A McMaster 1 $31.91 $31.91
Weld-on 4 N/A WELD-ON 1 $17.85 $17.85

$184.36

8 ETHICAL ISSUE AND USE
CASE

The current COVID-19 pandemic has excluded the el-
derly and others who are uncomfortable with modern tech-
nology from society, since social interactions based on
physical contact have immensely decreased. Even before
COVID-19, exclusion of older adults from fastly develop-
ing technology has been an ethical issue. Our project aims
to provide leisure to anyone who is experiencing such ex-
clusion from modern society by developing a system that
allows users to play a chess game without any physical con-
tact with another individual and any software-based inter-
action.

9 RELATED WORK

Our project was initially inspired by the smart chess
board ‘Square off’ when formulating ideas of the project.
‘Square off’ is an automated chess board that users can
make a move on a physical chess board, and AI will re-
spond with an automated move of pieces through circuited
magnets inside the board. To reduce the complexity of
the hardware model, we pivoted to the idea of updating
user’s moves by image processing from a top view cam-
era and displaying AI’s move on LEDs of the board. The
group ‘Chess Teacher’ from last semester’s ECE Design
Experience course had a similar project with us. They
detect user’s moves through image processing of images
taken from a top view camera, and display the AI’s moves
through their front end UI. The biggest difference between
our project and ‘Chess Teacher’ will be the display of AI’s
moves. Our major goal is to get rid of any software com-

ponents from user experience to remove exclusions from
any users, such as elderly, who are having difficulties with
software components. The users of ultimate chess will not
be required any interaction with front-end UIs, and every
communication in the game will be fully physically visible.

10 SUMMARY

So far, our team managed to achieve our MVP with rel-
atively small delays from our original schedule. Our CV’s
change detection maintained viable accuracy rate, and user
can still finish a game of chess even through there is an error
from CV through a ’retry’ option. There biggest limitation
of our project still exists; the latency for processing user’s
move is high. It takes about 45 seconds to process a sin-
gle move, and the wait time is pretty long from a user’s
perspective to play a smooth game. If we had time to fur-
ther improve our project, our group would have focused on
decreasing our latency.

10.1 Future Work

The biggest limitation of our project is a CV latency
bottleneck. It takes about 45 seconds to process each move
that user makes, and it creates an uncomfortable delay from
a user’s perspective. If we were given more time on the
project, we would focus on decreasing the latency as much
as possible. The first possible approach is getting rid of
neural network to process cropping of the board. Board
needs to be cropped to accurately process our edge de-
tection. One way to get rid of neural network from our
process would be to reconstruct our board and camera set
up so that the camera will always shoot from a consistent

18-500 Final Report: 12/14/2021 Page 12 of 12

distance with consistent angle. Then, we would be able to
manually crop the board without neural network by hard
coding the coordinates of four edges of the board.

References

[1] Connect and control WS2812 RGB led strips via
Raspberry Pi. 2021. url: https : / / tutorials -

raspberrypi.com/connect- control- raspberry-

pi-ws2812-rgb-led-strips.

[2] Maciej A. Czyzewski, Artur Laskowski, and Szymon
Wasik. Chessboard and chess piece recognition with the
support of neural networks. 2020. arXiv: 1708.03898
[cs.CV].

[3] S.K. Katiyar. “Comparitive analysis of common edge
detection techniques in the context of object extrac-
tion”. In: IEEE TGRS Vol.50 no.11 (2012), pp. 77–
78.

18-500 Final Report: 12/14/2021 Page 13 of 12

F
ig

u
re

8
:

C
V

fl
ow

ch
a
rt

18-500 Final Report: 12/14/2021 Page 14 of 12

F
ig

u
re

9
:

S
ch

ed
u

le

