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Application Area
● Enjoy physical chess during pandemic
● Help the elderly who aren’t comfortable with 

apps still enjoy chess
● Learn to be better at chess from practicing 

chess with AI
● Areas Covered:

○ Signals, Software, Circuits



Requirements
● Low move latency ( < 24 sec)
● High move detection accuracy (> 99%)
● Accurate illegal move detection (100%)



Solution Approach
● Computer Vision

○ Webcam placed on top of the chessboard
○ Detect player’s move using OpenCV

● Software
○ Check if player’s move is valid or not by implementing chess game logic
○ Use existing chess AI engine to come up with next move

● Hardware
○ Display AI’s move using LEDs
○ Player presses push button after making their move

■ Signals camera to take picture of board
■ LCD display keeps track of total time each player takes for their moves



Components
Chess pieces $24.64

Logitech C270 $26.92

Raspberry Pi Capstone Inventory

LED Strips $22.88

5V Power Supply $21.99

Push Button $5.95

LCD Display $10.99

Acrylic/Wooden Sheets $50 (estimate)

Total $160
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Implementation - Image processing

● Detect edges of 64 squares on a chessboard, convert them into coordinates
○ Canny edge detection (OpenCV)

● Detect user move 
○ Change detection & background subtraction algorithm (Open CV)



Implementation - LEDs

● 8x8 LED matrix under chessboard
● WS2812B RGB LED Strip

○ Individually programmable LEDs
○ Rpi_ws281x library
○ 5V power supply adapter

(Source: tutorials-raspberrypi.com)



Implementation - Software 

● Implement chess game logic to check if 
player’s move is valid or invalid

-  Only valid position changes

-  If there is a check, must try to save the 
king

● Generate AI’s move corresponding to user 
input (Stockfish chess engine)



Metrics
AREA TESTING STRATEGY METRIC

CV Compare the internal board 
representation to the actual 
board

99% accuracy

CV + AI move latency Use a timer to measure 
average time it takes for the 
LEDs to light up after player 
moves

< 24 s

Valid chess game Make invalid moves to see if 
the software catches it. Make 
valid moves to ensure no 
false positives

100% accuracy

LEDs Visually confirm that the right 
LEDs light up

100% accuracy



Risk Factors and Mitigation approach  
● CV not being accurate on difference in chess board

○ Possible causes: inconsistent lighting and user’s hand included in a photo
○ Mitigation approach: include a simple lighting system and a front-end button user can push after 

finishing the move 

● CV + AI engine creating a latency bottleneck
○ Using an efficient AI engine like Stockfish with medium difficulty setting
○ Downscaling the image before applying CV processing

● Edge detection on chessboard squares
○ Mitigation approach: Use contrasting alternating colors for each block
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