
Ultimate Chess
Team B1: Anoushka Tiwari, Demi Lee, Yoorae Kim

Application Area
● Enjoy physical chess during pandemic
● Help the elderly who aren’t comfortable with

apps still enjoy chess
● Learn to be better at chess from practicing

chess with AI
● Areas Covered:

○ Signals, Software, Circuits

Requirements
● Low move latency (< 24 sec)
● High move detection accuracy (> 99%)
● Accurate illegal move detection (100%)

Solution Approach
● Computer Vision

○ Webcam placed on top of the chessboard
○ Detect player’s move using OpenCV

● Software
○ Check if player’s move is valid or not by implementing chess game logic
○ Use existing chess AI engine to come up with next move

● Hardware
○ Display AI’s move using LEDs
○ Player presses push button after making their move

■ Signals camera to take picture of board
■ LCD display keeps track of total time each player takes for their moves

Components
Chess pieces $24.64

Logitech C270 $26.92

Raspberry Pi Capstone Inventory

LED Strips $22.88

5V Power Supply $21.99

Push Button $5.95

LCD Display $10.99

Acrylic/Wooden Sheets $50 (estimate)

Total $160

System Overview
Player makes a
move.

RPI

Logitech
Camera

Process
image input
(OpenCV)

Chess AI
Engine
(Stockfish)

Top view image
of chessboard

Legal user
moves

LED Board

Illegal user
moves

Check
Legal Move

Push Button

LCD Display

Implementation - Image processing

● Detect edges of 64 squares on a chessboard, convert them into coordinates
○ Canny edge detection (OpenCV)

● Detect user move
○ Change detection & background subtraction algorithm (Open CV)

Implementation - LEDs

● 8x8 LED matrix under chessboard
● WS2812B RGB LED Strip

○ Individually programmable LEDs
○ Rpi_ws281x library
○ 5V power supply adapter

(Source: tutorials-raspberrypi.com)

Implementation - Software

● Implement chess game logic to check if
player’s move is valid or invalid

- Only valid position changes

- If there is a check, must try to save the
king

● Generate AI’s move corresponding to user
input (Stockfish chess engine)

Metrics
AREA TESTING STRATEGY METRIC

CV Compare the internal board
representation to the actual
board

99% accuracy

CV + AI move latency Use a timer to measure
average time it takes for the
LEDs to light up after player
moves

< 24 s

Valid chess game Make invalid moves to see if
the software catches it. Make
valid moves to ensure no
false positives

100% accuracy

LEDs Visually confirm that the right
LEDs light up

100% accuracy

Risk Factors and Mitigation approach
● CV not being accurate on difference in chess board

○ Possible causes: inconsistent lighting and user’s hand included in a photo
○ Mitigation approach: include a simple lighting system and a front-end button user can push after

finishing the move

● CV + AI engine creating a latency bottleneck
○ Using an efficient AI engine like Stockfish with medium difficulty setting
○ Downscaling the image before applying CV processing

● Edge detection on chessboard squares
○ Mitigation approach: Use contrasting alternating colors for each block

Schedule

