
18-500 Final Report: 10/15/2021 Page 1 of 7

Ultimate Chess
Authors: Yoorae Kim, Demi Lee, Anoushka Tiwari: Electrical and Computer Engineering, Carnegie Mellon University

Abstract—A system that lets a person play chess
against an AI on a physical chess board without any
software requirements. The system simulates play
against a fast human player that makes moves within
24 seconds.

Index Terms— Background Subtraction, Canny,
Chess, Computer Vision

1 INTRODUCTION

Chess is one of the most popular games in the world.
Over 600 million people worldwide enjoy the classic game.
The elderly population of the world also enjoys chess. Ac-
cording to some studies, it even helps prevent Alzheimer’s
and mental decline by stimulating the brain. Despite all the
benefits Chess has on them, the elderly are not always able
to find someone to play with them. They are also often not
as comfortable with technology to be able to enjoy a game
against an AI on a mobile app. Some feel that a mobile
app simply doesn’t provide the full chess experience.

Our smart chess board attempts to make chess more
accessible to the elderly by providing a simple and easy-to-
use way to play chess against an AI opponent. We provide
a custom chess board that comes with a camera and LEDs.
The camera clicks pictures of the board when the player is
done with their move and we detect the move with 99 per
cent accuracy. The move of the player is displayed within
10s, after which

Then within 24s, we display the AI player’s move on
the board using LEDs that light up the initial and final
position of the piece.

While there exist automatic chess boards in the market
today, most of them require smartphone connectivity and
need the player to use apps. Our target demographic is
people who do not have access to a smartphone or simply
don’t want to use it. The simplicity of our product is an
advantage over current smart boards.

2 DESIGN REQUIREMENTS

The International chess body FIDE has a standard time
limit of 90 minutes for the first 40 moves, followed by 30
minutes for the rest of the game. Since our project is a hu-
man vs AI game instead of a human vs human game, we use
a faster time control. This is because unlike playing against
an actual human player, playing against an AI does not al-
low the person to talk to the opponent while they are mak-
ing their move. This would make the wait times between
moves boring. A shorter time between moves also lets us
accommodate people who want a quick game while still

having time to think while the opponent is playing, as they
would in a real chess game. One popular speed chess tour-
nament is the FIDE World Rapid Championship, where all
moves are played under 15 minutes for each player. We
divide this by the average total number of moves for each
player 38 to get the timing constraint for a single move i.e.
15 min / 38 move = 24s.

We thus have the following overall timing constraint:

tM + tL + tA ≤ 24s (1)

where tM is the time it takes for move detection (s), tL
is the time it takes to determine if the move is legal (s)
and tA is the time it takes to get and display the AI’s next
move from the AI engine (s).

The main areas of the project are Move detection, de-
termining whether a move is legal, coming up with the AI
move and displaying it on the LEDs. The requirements
based on area are as follows:

2.1 Move detection

Detecting the player’s move is a core part of the project.
There are 3 quantitative requirements here: the detection
time, the detection accuracy, and the number of tries it
takes to come up with the correct detection. The detection
time must meet the constraint described in equation (1).

2.1.1 Number of Retries before the CV detects
the move with the required detection accu-
racy

We want the user to retry their move at most 2 times
before we detect it with 99 per cent accuracy.

This requirement is due to the fact that we want to
keep the human in the loop during the move detection to
increase accuracy. When we finish detecting the move us-
ing the CV pipeline, we display the move the CV detected
on the board by lighting up 2 LEDs (one for the initial
position of the piece and one for the final). If this move
is correct, the user does not need to do anything, and the
detected move will go through the rest of the pipeline in 10
seconds. The reason we give the user 10 seconds here is due
to the fact that our target demographic is the elderly, who
often have a slow reaction time. If the move is wrong, the
user has 10 seconds to press a button indicating this, and
then make the move again. This helps mitigate issues with
the piece not being within the edges of the square or a bad
image. We want the user to try 3 times before we end the
game. The reason we settled on this is because there are 2
main sources of error: the piece not being placed properly
or issues with image quality. 2 extra tries would help mit-

18-500 Final Report: 10/15/2021 Page 2 of 7

igate these issues. The test for this happens with the test
for detection accuracy described below.

2.1.2 Detection accuracy

The target detection accuracy is 99 per cent. This accu-
racy is with the assumption that the user will let us know if
the move we detected is incorrect. We aim for 99 per cent
and not 100 per cent because we are limiting the number
of retries the user has to make for the sake, so there may
be situations in which we do not get the move right even
with the human in the loop. The reason we require this
high accuracy is because our entire project is dependent on
the detection being highly accurate. If we detect the move
wrong, our illegal move detection will not be meaningful.
The AI move generator will also be provided the wrong
state of the board and generate a nonsensical move. All in
all, the entire user experience rests on an extremely high
detection accuracy.

While 99 per cent may be too high of an accuracy given
that we are relying on canny edge detection which is only
91.56 per cent accurate, the retry mechanism should help
in case there is noise in the picture. Additionally, the accu-
racy of all the edges detected does not matter for our case
as we are only use the edge detection algorithm to deter-
mine the grid of the chessboard. We will apply the Hough
transform to the edges detected to get the horizontal and
vertical lines of the grid. We will essentially ignore all the
edges other than the ones making up the grid. The edges
making up the grid are simple edges, which should further
improve the accuracy.

To verify this metric, we have to ensure that we achieve
99 per cent accuracy within 3 tries. The test plan is to
simulate a real game by providing configurations from the
beginning, middle and end of the game. Then, we simply
make moves at most 3 times to get the right detection. If
the detection is still wrong after the final try, it is counted
as an error.

2.1.3 Distance of center of piece from center of
square

This requirement is essentially a measure of how close
the center of the piece could be to the edge of the square
it is placed in for it to still be detected correctly. This is a
measure of how robust our CV is and is required because
we cannot expect the player to perfectly place the piece
on the center of the square every time. The requirement
here is that as long as the piece is fully inside the square it
should be detected correctly in that square 99 per cent of
the time. This means that

d ≤ l − r (2)

where d is the distance of the center of the piece from
the center of the square, l is the length of the side of each
square on the board, and r is the radius of the piece. For
our case, l = 15/8 inches, so we get:

d ≤ 1.875− r (3)

where d is the distance of the center of the piece from
the center of the square in inches and r is the radius of the
piece in inches.

2.1.4 Detection time

This requirement stems from Equation (1) that con-
strains the total time that the CV, illegal move detection
and game playing AI can take. Since the AI takes at most
10 seconds and the illegal move detection at most 2 sec-
onds, it leaves us with 12 seconds for detection time. The
way this is tested is similar to the tests in 2.1.2, except we
time each run through the move detection pipeline. For
each set of up to 3 tries, the maximum time across all tries
is taken as the time of the detection.

2.2 Game playing AI

We will be integrating an already existing Chess AI en-
gine to our project. There are multiple options available,
but our major requirements for Chess AI engine was
1. Available for public use (open source)
2. Fast response time (<10s)
3. Offers varying levels of difficulty (optional)
Our final decision stood on Stockfish engine, which offers
8 varying levels of difficulty, response time ranging from
50ms to 400 ms, and publicly posted on github as an open
source.

2.3 LED

Given coordinate pairs from the game software, the
LEDs corresponding to the coordinates should light up.
Additionally, to address the ambiguity of castling, the
LEDs should be able to light up in two different colors.
Based on the requirements, we need 64 RGB individually
addressable LEDs for each square of the chessboard. To
verify the correctness of LEDs, we will visually inspect that
the appropriate LEDs light up given a set of random coor-
dinate pairs.

3 ARCHITECTURE OVERVIEW

Figure 1 shows a block diagram of the architecture. Fig-
ure 2 is a more detailed interaction diagram of the same.

The player will play on a physical chessboard that has
an 8x8 LED matrix installed under it. A camera will be
mounted directly above the board. The Stockfish engine is
initialised when the user is ready to begin the game.

When it is the player’s turn, they will make a move
by moving their piece on the chessboard. Once they make
their move, they will press a button mounted on the chess-
board. This will signal the camera to take an image of the
board. The image passes as an input to the CV pipeline
implemented on the Raspberry Pi.

18-500 Final Report: 10/15/2021 Page 3 of 7

The CV thread determines the user’s move and the
Raspberry Pi lights up the LEDs corresponding to the ini-
tial and final square. In case the CV was not able to detect
the move, the raspberry Pi lights up all LEDs red to tell the
user to retry the move twice. After lighting up the moves,
the system waits 10 seconds for the user to click a button if
the move was incorrect. If the user does not click a button,
the move is assumed to be correctly detected and the move
detector implemented on the Raspberry Pi passes control
to a legal move detector. The legal move detector gets the
coordinates of the current move and the current state of
the board. The state is maintained as an 8 by 8 matrix
where each element ∈ [-6, 6]. 0 indicates the presence of
no piece in the square. 1 and -1 indicate the presence of a
black or white pawn. 2 and -2 indicate the presence of a
black or white rook. Similarly, we have representations for
Knight, Bishop, Queen and King.

The legal move detector checks if the move is valid. If
not, the Raspberry Pi makes all LEDs light up red and the
game is over. If it is, the state of the board is updated
internally. This is done by simply making the move that
the player made. The new move is then fed to the Stock-
fish chess engine which comes up with the next move. The
internal state of the chess board is again updated. The
move is then displayed to the user using the LEDs. The
total time taken for determining the users move and deter-
mining the next move of the AI is 24s. The retries and 10
second wait time are not counted in these 24s.

4 DESIGN TRADE STUDIES

4.1 Stockfish Chess AI Engine

We are integrating already existing chess AI ‘Stockfish’
into our project. Currently there are numerous options
available for chess AI engines, but Stockfish has suited
our needs the best. Our major requirements for the chess
engine were availability to public use, and fast response
time to decrease latency. Our optional requirement was
offering various levels of difficulty to meet the needs of a
wider range of users. Considering these requirements, open
source Stockfish AI with 8 varying levels and response time
ranging from 50 to 400ms was the optimal option for us.

4.2 WS2812B LED Strip

An 8x8 LED matrix display will be constructed and in-
stalled under the chessboard. The 64 LEDS would need to
be individually programmable to correctly display the AI’s
move. To overcome the ambiguity of castling, the LEDs
should be able to light up in at least two colors.

We chose to use an LED strip over individual LEDs be-
cause LED strips are generally cheaper. Additionally, it
is less circuit work for us to use the LED strips since the
LEDs come in wired together.

The main factor that determines the cost of LED strips
is how well it handles the loss of color accuracy due to volt-

age drop. 5V WS2812B is the cheapest most common type
of LED strip. For WS2812B, voltage drop happens after
2.5m or 150 LEDs. Since we are using a relatively small
number of LEDs, only 64 LEDs for each square, voltage
drop will not be an issue for our case. Therefore, we are
able to use the most cost effective 5V WS2812B LED strip
for the project.

4.3 Board LED Integration

In our project, AI moves are communicated to the
player by lighting up the appropriate LEDs on the board.
There were two possible ways to achieve this. The first way
was to buy a standard chessboard set and drill small holes
in each of the squares to allow LED lights to go through.
The second way was to create our own custom chessboard
using translucent acrylic sheets allowing the LED lights to
pass through. We chose to go with the second approach be-
cause the drilled holes in the first approach may affect the
performance of computer vision when detecting the squares
and pieces. Moreover, there may be a case where the chess
pieces block the drilled holes causing the players not able
to see which LEDs have lit up.

Using the second approach means that we have to con-
struct our own chessboard. The top of the board is made
using translucent acrylic sheets that is non see-through but
allow light to pass through. 64 squares are laser cut using
white and green acrylic sheets. The squares are welded
into one piece using acrylic weld-on. An 8x8 LED matrix
is installed under the chessboard. LEDs are separated from
each other using grids which are laser cut from plywood.

4.4 Computer Vision for move detection

4.4.1 Piece detection v.s. change detection

There are 2 main approaches to determining the move
the user made. The first is detecting every piece on the
board and figuring out which piece changed position. This
provides both the move information and information about
which piece is at which square directly. The other ap-
proach, i.e. the one we employed, is simply detecting
changes in the board and treating pieces as nothing but
a set of edges. The edges themselves do not give us any
significant information about the piece and we do not try
to identify the piece based off of what it looks like. Instead,
we identify pieces by tracking their positions through time.
Since we know the position of each piece at t=0 (i.e. before
any move is made), we are able to determine the new posi-
tion of a particular piece at t=T simply by combining the
position of the piece at t=T-1 with the move made by the
human and the AI at t=T to determine the new position
of the piece.

There are 3 benefits to this approach:
1. Invariance to the exact shape of the piece: Since we

do not rely on the shape of the piece to determine its posi-
tion, we are able to support different kinds of piece shapes.
This is useful because it lets the user play with their own

18-500 Final Report: 10/15/2021 Page 4 of 7

Figure 1: Block Diagram

chess pieces instead of us having to provide them. This
cuts costs for us because we do not have to provide the
user chess pieces. This also makes the set less expensive if
the user already owns a regular chess set.

2. Only one top view required: Since we do not need
to detect the identity of the piece using its shape, we can
simply mount a camera on the top of the chessboard to
get a top-down view of it. This is less intrusive than, for
example, having to mount 3 or 4 cameras all around the
chessboard to ensure that we have enough views of a piece
to be able to get an unoccluded image that lets us detect
its shape.

3. Less computation: Since we are not using the edge
profile of a piece to figure out which piece it is, we save on
computation that helps us stay within the time constraints
described in equation (1).

4.4.2 Edge detection algorithms

The edge detection algorithm is what gives us the edges
of the chessboard, the edges of the squares, and the edges
of the piece inside the square. Here, we want extremely
high accuracy, even if it comes at the cost of time com-
plexity. This is because the results of edge detection feed
into the entire move detection pipeline, so we need as high
an accuracy as we can get here as the mistakes cannot be
made up for later in the pipeline. Therefore, we picked the
Canny edge detector which has the highest accuracy.

A table comparing the edge detectors is shown in Fig-
ure 3 [1]. As seen in the figure, the Canny operator has
the least sensitivity to noise and the least number of false
edges. Since we are dealing with real world images, a low
noise sensitivity is very important to us. Additionally, since
we use edges to discretize the chess board into squares, we
must not have false edges as that would lead to the wrong
grid being formed which will be disastrous for the entire
move detection system.

5 SYSTEM DESCRIPTION

5.1 Move Detection

5.1.1 Edge detection algorithms

The flowchart for edge detection is shown in Figure 4.
First, the image is blurred to make edge detection more
accurate and remove noise. Then, we use Canny edge de-
tection to get the edges of the image. After that, we apply
the Hough transform to get the edges of the grid. Once we
have the chess board discretized, we begin the process to
determine the user’s move. We do this by iterating through
each of the squares on the board and comparing the state
of the square at current time t to that at time t-1. We do
this by subtracting the image at time t from that at t-1.
There are 2 possible cases for moves:

1. The player moved a piece from one square to another
unoccupied square. This means that we must be able to
find a square that did not have edges present inside it at
time t-1 and does at time t. We must also be able to find a
square that had edges present inside it at time t-1 and does
not at time t. This would indicate a move from the square
that does not have edges at time t to the square that has
edge at time t.

2. The player moved a piece from one square to another
square that was previously occupied by the opponent. In
this case, there will be at least one square where the edge
profile changed between time t-1 and time t (i.e. the square
at which the piece being moved initially was). To determine
the position this piece moved to, first the strategy of trying
to figure out if the edge profile of another square changed is
used. However, this strategy may not return a square in the
situation where the piece captured is the same piece type
as the opponent’s piece that was already there (for e.g. if a
pawn captures a pawn) as the edges would be very similar
in both cases. In this case, we depend on color changes
between time t-1 and time t. Since the piece captured was
a different color than the capturing piece, we simply deter-
mine which square had a change in color inside it between

18-500 Final Report: 10/15/2021 Page 5 of 7

Figure 2: Sequence Diagram

18-500 Final Report: 10/15/2021 Page 6 of 7

Figure 3: Comparison of edge detectors

time t-1 and time t.

5.2 LED with Raspberry Pi

The WS2812B RGB LED strip is controlled by the
Raspberry Pi using the rpi ws281x library, which is also
known as Neopixel library. In addition, a 5V power supply
is required. The single data line of the LED strip is con-
nected to the GPIO pin on the Raspberry Pi. The ground
of the power supply is connected to both the ground wire
from the strip and the ground pin on the Raspberry Pi.
The 5V output of the power supply is connected to the 5V
voltage wire from the strip but not to the voltage pin on
the Pi.

6 PROJECT MANAGEMENT

6.1 Schedule

The major requirement of our project is to be able to
detect user’s moves through CV image processing. Thus,
after finishing the construction of the physical chess board,
the first several weeks of the schedule is dedicated to con-
structing our CV algorithm and testing it. As soon as we
conclude that our CV algorithm correctly detects moves,
we will begin integrating Stockfish engine and valid / in-
valid move logic into our project. Once we are done with
the final integration, we will focus on testing our project’s
functionality, and its responses to possible edge cases. Our
detailed schedule is in Figure 5 at the end of the document.

6.2 Team Member Responsibilities

The areas of major concentration are physical board
construction and hardware assembly for Demi, CV image
processing for Anoushka, and integration of Chess AI and
logic for Yoorae. So far, Demi has laser cut sample square
pieces that we will be using for the construction of the fi-
nal physical chess board. Anoushka had experimented with

different edge detection algorithms for sample images of
chess boards, and Yoorae wrote the logic for valid / invalid
moves. Anoushka and Yoorae are now working on back-
ground subtraction algorithms to detect changes of a board
state while Demi focuses on hardware assembly including
communication of RaspberryPi and camera, circuiting user
input button, and timing display on LCD board.

6.3 Budget

The details of purchased components and their cost is
attached in the table below. So far, we have ordered ev-
ery component listed in the document and all of them have
arrived. We will be using all of the components listed for
the project. It is possible to make additional purchases on
acrylic board and wooden sheets for the final construction
of the physical chess board, but our total cost would be
well managed under budget limit considering the possible
additional purchases.

6.4 Risk Management

Most of the risks that might arise in our project are re-
lated with image detection. CV might not accurately detect
edges of the squares on the chess board. A possible mitiga-
tion strategy would be to redesign our physical board with
more contrasting alternating colors of squares. There is a
chance that CV might not accurately represent the board
state after the user has made a move. The cause of this risk
might be inconsistent lighting, or interruption in a photo
such as the user’s hand. To mitigate this risk factor, we
included a push button that the user can alert the camera
to capture the board so that the photo will be taken in a
more consistent state. There is a chance that CV image
processing and AI’s move generation might cause a latency
bottleneck. Again, we are aiming for a response time that
is short enough for a user to enjoy the game. To mitigate
this risk factor, we are using an efficient chess engine with
a fast response time. We are also down-scaling 720p HP

18-500 Final Report: 10/15/2021 Page 7 of 7

Table 1: Bill of materials

Description Model # Manufacturer Quantity Cost @ Total
Chess board and pieces set N/A Chess Armory 1 $28.99 $28.99
Logitech C270 Webcam C270 Logitech 1 $26.92 $26.92
Raspberry Pi 4 (Capstone Inventory) B LABISTS 1 $0 $0
LED Strip WS2812B BTF-LIGHTING 1 $22.88 $22.88
5V 10A Power Adapter N/A ALITOVE 1 $23.99 $23.99
Cast Acrylic Sheet White N/A McMaster 1 $31.91 $31.91
Cast Acrylic Sheet Green N/A McMaster 1 $31.91 $31.91
Weld-on 4 N/A WELD-ON 1 $17.85 $17.85

$184.36

photos from our logitech camera before image processing
to reduce response time from CV.

7 ETHICAL ISSUE AND USE
CASE

The current COVID-19 pandemic has excluded the el-
derly and others who are uncomfortable with modern tech-
nology from society, since social interactions based on
physical contact have immensely decreased. Even before
COVID-19, exclusion of older adults from fastly develop-
ing technology has been an ethical issue. Our project aims
to provide leisure to anyone who is experiencing such ex-
clusion from modern society by developing a system that
allows users to play a chess game without any physical con-
tact with another individual and any software-based inter-
action.

8 RELATED WORK

Our project was initially inspired by the smart chess
board ‘Square off’ when formulating ideas of the project.
‘Square off’ is an automated chess board that users can
make a move on a physical chess board, and AI will re-
spond with an automated move of pieces through circuited
magnets inside the board. To reduce the complexity of
the hardware model, we pivoted to the idea of updating
user’s moves by image processing from a top view cam-
era and displaying AI’s move on LEDs of the board. The
group ‘Chess Teacher’ from last semester’s ECE Design
Experience course had a similar project with us. They
detect user’s moves through image processing of images
taken from a top view camera, and display the AI’s moves
through their front end UI. The biggest difference between
our project and ‘Chess Teacher’ will be the display of AI’s
moves. Our major goal is to get rid of any software com-
ponents from user experience to remove exclusions from
any users, such as elderly, who are having difficulties with
software components. The users of ultimate chess will not
be required any interaction with front-end UIs, and every
communication in the game will be fully physically visible.

References

[1] S.K. Katiyar. “Comparitive analysis of common edge
detection techniques in the context of object extrac-
tion”. In: IEEE TGRS Vol.50 no.11 (2012), pp. 77–
78.

18-500 Final Report: 10/15/2021 Page 8 of 7

F
ig

u
re

4
:

C
V

F
lo

w
C

h
a
rt

18-500 Final Report: 10/15/2021 Page 9 of 7

F
ig

u
re

5
:

S
ch

ed
u

le

