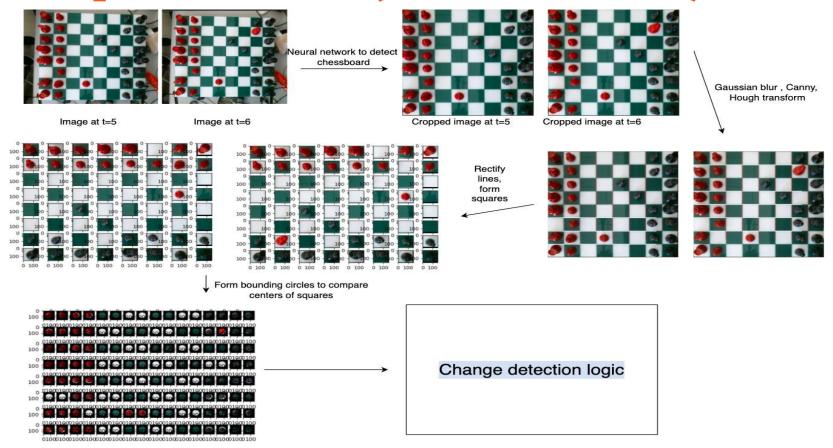
Ultimate Chess

Team B1: Yoorae Kim, Demi Lee, Anoushka Tiwari

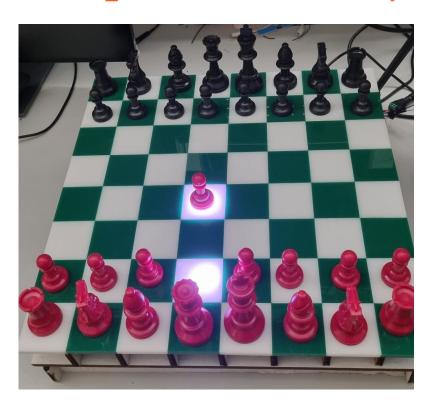
Application Area


- Enjoy physical chess during pandemic
- Help the elderly who aren't comfortable with apps still enjoy chess
- Learn to be better at chess from practicing chess with Al
- Areas Covered:
 - Signals, Software, Circuits

Solution Approach

- Computer Vision
 - Webcam placed on top of the chessboard
 - Detect player's move using OpenCV
- Software
 - Check if player's move is valid or not by implementing chess game logic
 - Use existing chess AI engine to come up with next move
- Hardware
 - Display human player and Al's move using LEDs
 - Player presses push button:
 - After making their move -> Signals camera to take picture of board
 - When wrong LEDs light up for user move -> Max 2 retries CV detection

Complete Solution (Board detection)


Change detection logic

Used 'frame difference' algorithm of background subtraction

- 1. Set a bounding circle mask on each square to reduce the error
- 2. Compute cumulative absdiff value on RGB for each square (higher value means more change in color has occurred)
- 3. Output the coordinates with the computed value greater than threshold.
- 4. Out of two coordinates, determine which piece moved to where from the previous board state list.

Complete Solution (Hardware)

- Individually addressable LED strip
- Button to press when turn is over / incorrect CV detection

Metrics - Computer Vision

Requirement	Expected result	Result	Testing strategy
Move detection time	<24s	Avg 8.5s	Use Python Timeit library
Move detection accuracy	99%	26/27	Measured as the % of player moves correctly detected
Distance of chess piece from center	D <= 1.875 - radius of piece	TBD	

Metrics - Valid Logic

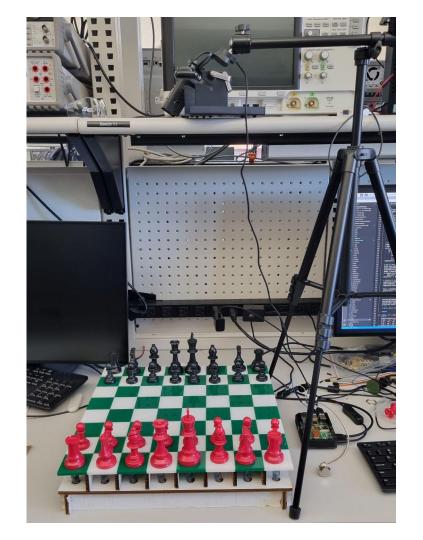
Testing strategy: tested detection of 10 legal moves, 10 illegal moves, and 10 capturing moves per piece type

Piece type	Expected Result	Result	Description
King	100%	100%	
Queen	100%	83%	Error in the diagonal move detection, error fixed and updated
Rook	100%	100%	
Bishop	100%	57%	Error in the diagonal move detection, error fixed and updated
Knight	100%	100%	
Pawn	100%	100%	

Metrics - LEDs

Requirement	Expected Result	Result	Testing Strategy
LED Code Execution Time	< 100ms	30 tests Avg. 28ms Max 31ms	Measured the time necessary to parse the algebraic chess notation into LED index and light up the corresponding LEDs
LED Correctness	100% Correct	30/30 tests passed	Given a coordinate and color, visually confirmed that the correct LEDs light up

Trade-offs


- Red vs White chess pieces
 - Additional cost switching from white pieces
 - Easier to distinguish between white square and red piece
- Turn-based vs Real-time
 - User confirms that they are done making their move
 - Less smooth, but speeds up CV because it doesn't have to figure if the move is done
- Move detection validation
 - User verifies the move was detected correctly by pressing or not pressing a button
 - Ease of use v.s. Accuracy tradeoff

Schedule

Tasks	09/13	09/20	09/27	10/4	10/11	10/18	10/25	11/1	11/8	11/15	11/22	11/29	
Computer Vision													
Research existing algorithms													Yoorae
Chessboard Purchase													Anoushka
Camera Research / Purchase													Demi
Board Detection													Everyone
Move Detection													Anoushka and Yoorae
Design chessboard													
Design chessboard													
LED Research / Purchase													
Laser cut chessboard													
Chessboard / LED Construction													
LED circuit design													
RPI testing													
Push Button Integration													
Camera Setup													
Al Engine													
Research existing engines													
Game Software													
Implement chess game logic													
Integration													
Integration CV / Chessboard													
Al Integration													
End to end testing													
Reports and Presentations													
Proposal presentation						-							
Design presentation													
Midpoint demo		-											
Final report													
Final presentation & demo													

Work Remaining

- Game
 - Test full game
 - Implement retries
- CV
 - Handle Castling
- Final Video / Final Poster
- Final Report

