
Ultimate Chess
Team B1: Yoorae Kim, Demi Lee, Anoushka Tiwari



Application Area
● Enjoy physical chess during pandemic
● Help the elderly who aren’t comfortable with 

apps still enjoy chess
● Learn to be better at chess from practicing 

chess with AI
● Areas Covered:

○ Signals, Software, Circuits



Solution Approach
● Computer Vision

○ Webcam placed on top of the chessboard
○ Detect player’s move using OpenCV

● Software
○ Check if player’s move is valid or not by implementing chess game logic
○ Use existing chess AI engine to come up with next move

● Hardware
○ Display human player and AI’s move using LEDs
○ Player presses push button:

■ After making their move -> Signals camera to take picture of board
■ When wrong LEDs light up for user move -> Max 2 retries CV detection



Complete Solution (Board detection)



Change detection logic

Used ‘frame difference’ algorithm of 
background subtraction

1. Set a bounding circle mask on each square to reduce 
the error 

2. Compute cumulative absdiff value on RGB for each 
square (higher value means more change in color has 
occurred)

3. Output the coordinates with the computed value greater 
than threshold. 

4. Out of two coordinates, determine which piece moved 
to where from the previous board state list. 



Complete Solution (Hardware)

● Individually addressable LED strip
● Button to press when turn is over / 

incorrect CV detection



Metrics - Computer Vision
Requirement Expected result Result Testing strategy

Move detection time <24s Avg 8.5s Use Python Timeit 
library

Move detection 
accuracy

99% 26/27 Measured as the % 
of player moves 
correctly detected

Distance of chess 
piece from center

D <= 1.875 - radius 
of piece

TBD



Metrics - Valid Logic

Piece type Expected Result Result Description

King 100% 100%

Queen 100% 83% Error in the diagonal move detection, 
error fixed and updated

Rook 100% 100%

Bishop 100% 57% Error in the diagonal move detection, 
error fixed and updated

Knight 100% 100%

Pawn 100% 100%

Testing strategy: tested detection of 10 legal moves, 10 illegal moves, and 10 
capturing moves per piece type 



Metrics - LEDs
Requirement Expected Result Result Testing Strategy

LED Code 
Execution 
Time

< 100ms 30 tests
Avg. 28ms
Max 31ms

Measured the time necessary to parse 
the algebraic chess notation into LED 
index and light up the corresponding 
LEDs

LED 
Correctness

100% Correct 30/30 tests 
passed

Given a coordinate and color, visually 
confirmed that the correct LEDs light up



Trade-offs
● Red vs White chess pieces

○ Additional cost switching from white pieces
○ Easier to distinguish between white square and red piece

● Turn-based vs Real-time
○ User confirms that they are done making their move 
○ Less smooth, but speeds up CV because it doesn’t have to figure if the move is done 

● Move detection validation
○ User verifies the move was detected correctly by pressing or not pressing a button 
○ Ease of use v.s. Accuracy tradeoff



Schedule
https://docs.google.com/spreadsheets/d/1dQq2ZJCwQzXZ_v9tzBinVSX-HoysjGgfk
F-xCCBq5n0/edit#gid=0

https://docs.google.com/spreadsheets/d/1dQq2ZJCwQzXZ_v9tzBinVSX-HoysjGgfkF-xCCBq5n0/edit#gid=0
https://docs.google.com/spreadsheets/d/1dQq2ZJCwQzXZ_v9tzBinVSX-HoysjGgfkF-xCCBq5n0/edit#gid=0


Work Remaining
● Game

○ Test full game

○ Implement retries

● CV

○ Handle Castling

● Final Video / Final Poster

● Final Report


