18-500 Final Report - December 13, 2021

Page 1 of 12

FastScale - Video

Super Resolution

James S. Garcia, Joshua Lau, Kunal Barde
Electrical and Computer Engineering, Carnegie Mellon University

Abstract—Recent trends in display hardware are
trending towards larger screens and higher display res-
olutions. Legacy videos are not made for these formats
and thus must be upscaled. While this can be done
in many ways, most tend to perform poorly on speed,
image quality, or form-factor. We set out to create
an embedded real-time, super resolution device using
a Xilinx Ultra96v2 MPSoC and variations on existing
algorithms, with our final design being based off of the
paper FSRCNN. Our design aimed to be convenient
and intuitive for a general, non-technical audience, as
well as offering advantages to video quality compared to
traditional digital signal processing approaches, with-
out sacrificing on speed.

Index Terms—Super Resolution, Upscaling, Stan-
dard Definition, High Definition, Throughput, Latency,
FPGA, Hardware Acceleration, SSIM, DSP, Machine
Learning

1 INTRODUCTION

Modern screens are made to display high definition
videos, presenting a problem for legacy videos recorded or
stored in standard definition. Enlarging these videos has
often been challenging, as it is a classic signal reconstruc-
tion problem. Contemporary super resolution algorithms
tend to rely upon either DSP methods or ML. While DSP
methods can be fast and may qualitatively! appear to im-
prove, it remains that to achieve a quantitatively higher
degree of image reconstruction, machine learning methods
must be deployed. As a rule, these are slower, but can
be run on larger, more power-consumptive processors to
run at speed. The disadvantage with this is the cost and
reduced-usability of these more powerful devices for every-
day consumers, with additional detriment if the device is a
‘unitasker’ product i.e., one which only serves one purpose.

We set out to create an embedded device which caters to
everyday consumers, who may not be especially tech savvy.
Our product would leverage hardware acceleration in order
to balance speed, quantitative image reconstruction, and
form-factor. More specifically, we set out to develop a su-
per resolution algorithm which we would then implement
on an MPSoC so that it could be hardware accelerated by
an FPGA. Our product was designed to outperform stan-
dard fast DSP upscaling methods for transforming stan-
dard definition video frames to high definition. Addition-
ally, our product was designed to play video with negligible
latent delay and native video frame-rate. We also designed

our product to have a small footprint.

2 DESIGN REQUIREMENTS

We strived to meet requirements in two main areas:
quality and timing.

In terms of quality, to quantitatively determine what
constitutes better reconstruction, we decided to use the
structural similarity index measure or SSIM. This metric
measures similarity in images, or in our case video frames,
but unlike metrics like mean-squared error or peak signal
to noise ratio, accounts for human perception in that it ac-
counts for: the fact that humans perceive more error if the
error is concentrated in interdependent pixels, that nearby
pixels are usually interdependent, and that bright or highly
textured parts of an image decrease a human’s ability to
detect errors, i.e. contrast, structure, and luminance. This
is the main reason why we chose SSIM to measure the im-
age quality of our super resolution algorithm. Using SSIM,
we wanted to show that we could do better than the most
common digital signal processing, or DSP, method - bicubic
interpolation.

We aimed to convert from standard definition to high
definition. High definition is usually defined as a 1080 by
1920 display, and since we target digital displays, we chose
1080p as our target resolution. Standard definition for digi-
tal screens is typically defined as any of the following: 144p,
240p, 360p, or 480p. We chose 240p as it was a very com-
mon display resolution around the turn of the century, and
has still persisted until today as a resolution for low band-
width streaming. We further specified that we would use
240p-widescreen as the non-widescreen version of 240p has
a 3:4 aspect ratio, while 1080p, which is widescreen by de-
fault, has an aspect ratio of 9:16. Using 240p-widescreen
as our input resolution fixes the need for any stretching or
black-bar padding, as it has the same? aspect ratio as our
high definition output. From these choices, we constrained
our necessary scaling factor by the relationship described
in (1), thus finding a necessary scaling factor of 4.5.

output resolution

scaling factor = input resolution (1)

In terms of timing, originally we intended our device to
sit between a video stream and an output and hence con-
strained our latent delay to be the maximum amount of
time permissible without causing audio-video desynchroni-
sation: 60ms. Since we changed our intended application

to draw from stored videos, we wanted our latent delay to

1These qualitative measurements tend to be anecdotal or from large scale user feedback surveys.
2Since display is pixel-quantised, this is technically a 9:15.975 aspect ratio.

18-500 Final Report - December 13, 2021

Page 2 of 12

still be negligible, allowing a near instantaneous experience
for the user. Hence, we ended up aimed for a 250ms latent
delay, around the minimum human reaction time.

In terms of throughput, we knew that the illusion of
video is only valid down to 12FPS. Hence, our minimum
throughput would have to be the inverse, or 83ms of delay.
At the same time however, we knew that below 24-30FPS
video footage becomes perceptibly choppy and less smooth.
As video quality is at the core of our project, we chose a
target throughput of 30FPS, as this would be the mini-
mum throughput at which the video would be perceived as
smooth.

3 ARCHITECTURE OVERVIEW

3.1 Software Overview

Our final software model is based off the FSRCNN-s al-
gorithm which is a 5-staged convolutional neural network.
As depicted in figure 1, we take 1080p videos from our
dataset, downscale them through bicubic interpolation, and
feed the frames into the CNN. We then take the upscaled
output, compare that with the frames from our dataset us-
ing SSIM, and backpropagate in order to train our CNN.
As depicted in Figure 3 we can see the first layer is a con-
volution with a 5 by 5 kernel responsible for extracting key
features from the input image. Then, there is a shrinking
step which reduces the number of feature maps to a much
smaller number than output by the first feature extraction
step. After this, we apply a mapping step where the maps
are convolved with 3 by 3 kernels multiple times in order to
extract relevant information through non-linear mapping.
Then the maps are expanded to increase the amount of in-
formation in the system. Finally a deconvolutional layer?
outputs the higher resolution frame whose scale is based on
the stride of the deconvolution.

3.2 Hardware Overview

Our system leverages the Ultra96v2 development board
to act as a media center device. At a high level, user inter-
action with our system is not dissimilar to interacting with
some media centers on other single board computers, such
as a raspberry pi. The difference in our system, and rea-
son we used the Ultra96v2, is that the Ultra96v2 has both
an ARM based CPU and a programmable logic fabric, al-
lowing computationally-intensive parallelisable algorithms
to be hardware accelerated. As we targeted a very com-
putationally intense problem, super resolution, having this
ability was key.

Our system provides an interface for the user to interact
with our hardware accelerated algorithm without having to
be too ‘in-the-weeds’ of the algorithm itself. While the in-
terface is via the terminal, as opposed to a proper GUI,

it still provides some abstraction away from writing and
compiling software one ones own.

While at the beginning, we intended for our system to
be compatible with any screen, we found that we could only
ensure compatibility with DisplayPort enabled screens of
certain resolutions.

Figure 2 details all the user has to interact with. Trape-
zoidal boxes are user 10, with the right-most column being
items which users provide themselves. Everything else is an
in-built part of the system, as we would need to ship the
system with a pre-synthesized hardware kernel for super
resolution, as well as the glue scripts which interact with
sub-programs written for the system.

Further in figure 2, the rounded boxes refer to programs
which we wrote for the Ultra96v2, the square boxes refer to
hardware components and subcomponents of the Ultra96v2
board, and the hexagonal boxes are converters or intercon-
nect.

4 DESIGN TRADE STUDIES

4.1 Upscaling Quality Metric
4.1.1 SSIM vs VMAF

Our training and evaluation metric was done based on
SSIM. During early conception of the project, we evaluated
several other metrics, such as PSNR, MSE, and an open
source metric developed by Netflix - VMAF. Evaluating
the use cases which each metric performed best in, we ar-
rived at a decision between SSIM and VMAF. PSNR and
MSE, both pixel-by-pixel comparisons, fail to adequately
describe the quality of an image as we define it. To explain
it better, multiple forms of degradation performed on an
image can yield the same MSE and PSNR, whereas SSIM
takes into account a combination of three separate factors
- luminance, contrast, and structure. Consider the case
where every pixel is ‘off” by some small delta. If each pixel
is ‘off” in the same direction, PSNR and MSE could rep-
resent this as a large difference, whereas VMAF and SSIM
would take into account more factors and return a lower
error, more closely representing how the human eye would
regard a washed out image to be less ‘bad’ than an image
with ‘static’ noise.

Between SSIM and VMAF, the Netflix metric initially
appeared more applicable to our project as it was a custom
metric that was developed specifically to give a predictive
measure of how people would react to differences in quality.
However, upon testing an implementation of it, we realised
that it ran very slow. The total time to evaluate VMAF
on clips from our dataset of around 10 seconds was close
to a minute on one of our CPUs locally. Moreover, run-
ning on a GPU would help with the transcoding process,
but the calculation of VMAF wouldn’t receive much addi-
tional benefit from using a GPU instead of a CPU. Thus,
we disqualified VMAF as a usable metric for training.

3This is a poor term, but unfortunately is the industry standard. A more correct and descriptive term would be to call it a backwards or

fractionally strided convolutional layer

18-500 Final Report - December 13, 2021 Page 3 of 12

Video Data 240p Video Data 1080p @M

Video Data
(1080p)

Data Logging

v

Figure 1: High Level Overview of the Software Model

Ultra96v2 Development Board
XCZU3EG MPSoC |

> Wi-Fi
ARM Core
[Shell ‘Glue’ Scripts] o i B / .
Accelerator l Video] microSD \ PetaLinux OS
Host Display

y

4 Mini-DisplayPort
AJ - Mini-DisplayPort > Dlsplt:me Monitor
PL Fabric

[Super Resolution Algorithm]

A J

USB 3.0 -

USB Hub

Keyboard

usB
(user files)

Figure 2: High Level Overview of the System on the Ultra96v2

18-500 Final Report - December 13, 2021

Page 4 of 12

We finally settled on SSIM, as, similar to VMAF, it can
be tuned to account better for human vision but, from our
tests, has a much lower computational overhead compared
to VMAF. In our choice of SSIM, we know that unlike
VMAF, it is not a metric which operates directly on videos
or sequences of images but rather single images alone. How-
ever, the paper “Video Quality Assessment Based on Struc-
tural Distortion Measurement” by Wang, Lu, and Bovik[5]
details how to modify SSIM to analyze video data. We will
be using their same formulation for training and validating
our system, which we will go into detail in Section 6.

4.2 Timing and Latency
4.2.1 SRCNN vs FSRCNN

The main difference, in terms of our requirements, be-
tween SRCNN and FSRCNN was the sacrifice in speed and
the subsequent increase in throughput. FSRCNN’s struc-
ture was much deeper compared to SRCNN, but operated
on the low-resolution images at 240p, instead of preprocess-
ing the images using bicubic interpolation before feeding it
into the network like SRCNN operates. As a result, there
was a noticeable decrease in quality, in terms of the SSIM
taking a hit, but the subsequent increase in throughput
outweighed the downsides. Since we were initially meeting
our quality metrics with SRCNN, and failing our timing
metrics with FSRCNN, it made sense to pivot to the lat-
ter, because the quality metrics were still matched with the
new implementation, but came with a significant increase
in throughput.

4.3 Hardware Development Environment

While there are many different environments and lan-
guages for developing for hardware, we mainly considered
three options: SystemVerilog, Vitis, and PYNQ. While
VHDL is a widely used language in industry, none of our
members had any experience with it at all, and so we did
not treat it as an option at all, especially since it was a
low-level RTL language like SystemVerilog.

Between Vitis and PYNQ), both high level synthesis for-
mats, we went with Vitis over PYNQ), because we had more
immediate resources and guidance for Vitis. Furthermore,
as none of our members had experience with PYNQ it
would have had to present very strong benefits over Vi-
tis for us to consider it over that framework. It did not,
and hence we did not select it.

Finally, between SystemVerilog and Vitis, we ultimately
chose Vitis. This is because we knew we would be imple-
menting a large-scale hardware system and iterating on it
quickly. While RTL languages are good for precise control
over what a system is doing, they do not lend themselves to
fast, over-arching changes. This is where HLS frameworks
like Vitis shine — the notion of hardware at the speed of
software. Our choice of Vitis also allowed much easier inte-
gration between off-board memory and the programmable
logic fabric. As Vitis manages AXI bus integration of user-

defined hardware kernels automatically, we were able to
treat these data transfers as if they were a simple function
call. In Verilog, however, this would have entailed writing
this transfer protocol ourselves, or at the very least man-
aging its use and connection ourselves. Furthermore, for
testing, Vitis allows our tests to be written in C, as well as
providing an HLS environment that estimates the latency
of the kernel based on the inferred hardware implementa-
tion. This made testing much faster and much easier than
if it had been in Verilog.

The only drawback presented by Vitis, was the very
same as its best selling point: that it does many things
that a designer does not. Ultimately we decided that the
benefits provided outweighed our concerns, as we wanted
to ensure our ability to quickly iterate on optimising our
CNN, as opposed to getting bogged down with communi-
cation and data transferring.

4.4 Hardware Acceleration Platform

We considered a few different platforms for implement-
ing our hardware acceleration; broadly we considered FP-
GAs, ASICs, and GPGPUs.

Developing an ASIC in the amount of time provided for
this project would be immensely difficult, as we would have
to tape out some time in the middle of the course, vastly
reducing the amount of time we had to develop our system.
Additionally, ASICs, once created, are no longer able to be
modified. As a result of all of these restrictions, we ruled
out ASIC development as an option.

Between FPGAs and GPGPUs we had an interesting
choice to make. On one hand, GPGPUs are usually bet-
ter at generic graphical operations than FPGAs. On the
other hand however, we were never intending to imple-
ment a generic graphical operation, rather we intended
to implement a very specific graphical operation, down to
the weights of our convolutions. Unlike a GPGPU, which
would need to be general purpose enough to perform any
convolution asked of it, we only wanted to perform convo-
lutions with our specific kernels.

In this case, an ASIC in fact would have been the best
option given far more time to implement our system, how-
ever, due to the restriction to a single semester, we ended
up using an FPGA as a configurable ASIC.

As for our choice in FPGA, we compared the Ultra96v2,
the Zynq UltraScale+ MPSoC ZCU104, and the Terasic
DEO-CV FPGA. Video output on the DEO-CV would be
difficult as well as file and memory transfer as it is just an
FPGA and not an MPSoC. The only advantage it provided
was familiarity, as we had all used it before in previous
classes. Between the Ultra96v2 and the ZCU104, we would
have prefered using the ZCU104, as it had more compute,
specifically having more DSP blocks (1,728 vs 360) and a
dedicated video codec unit. Unfortunately, we had to rule
this out as it alone would have exceeded our provided bud-
get by over three times, costing $1,554. Thus, we went
with the Ultra96v2, which as an added bonus we had sup-
port and familiarity with through a course that one of our

18-500 Final Report - December 13, 2021

Page 5 of 12

64 32
SRCNN (9-1-5) Feature Feature
9x9 Maps Ix1 Maps 5x5
SRCNN BiCUbic_ Comv(f,.n,,1) Conv(f,,n,,m) ('r)m'(‘,f;‘l,n:) . R
interpolation i \ R,
Original i\ \
low-resolution | \\.\“: !

Patch extraction and
representation

High-resolution
. image

Non-linear

. Reconstruction
Mapping

= Conv(5,d,1) ’(“onv(l,s,d

)!7

’(‘onv

i =
(3, \"\')’7!’_"(},,"11‘&1.\] ’.’)e('wn(').l..v) \
ofe e \

~ _Feature extraction Shrinking Mapping Expanding Deconvolution
FSRCNN (d,s,m) 5x5 d 1x1 s 3x3 s 1x1 d 9x9
Feature Feature Feature Feature
Maps Maps Maps Maps
m times

Figure 3: High Level Overview of the Software Model

members was taking concurrently with capstone.

5 SYSTEM DESCRIPTION
5.1 Software Model

The CNN for our upscaling portion was trained on a
GPU on Google Colab, and also locally, on an Nvidia RTX
3070, and utilized the high computation speed during train-
ing in order to hit our super resolution target in terms of
quality. The software model used the module PyTorch on
Python, and utilized the speed of the GPU through cuDNN
and CUDA. Originally, as detailed in the design report, the
model was based off a paper[2] called SRCNN. Referring to
the diagram below, the model first pre-processed the image
by upscaling it to its final resolution through bicubic inter-
polation, and then passed the image through a 3-layered
CNN. The three layers each corresponded to these func-
tions: (1) a patch extraction block (2) a non-linear mapping
block (3) and reconstruction from these higher resolution
patches. In terms of the reasoning, the second layer adds
non-linearity to the model, which is desired since it allows a
more information-rich mapping between the input and out-
put. In comparison to FSRCNN, our original model was
much more shallow, but it processed a lot more data, since
it was operating on the 1080p frames.

On the other hand, FSRCNN operates on the low-
resolution, 240p frames. It has a deeper network, but it
is offset by the massive decrease in the amount of data be-
ing processed. Referring to the diagram, you can see that
there is no pre-processing being done on the image before
the upscaling process is conducted. Instead, a deconvolu-
tion layer is added at the end, in order for the CNN to
output an image at the correct, upscaled resolution.

To go in-depth about the differences and the hyperpa-
rameters chosen originally for our SRCNN implementation,
we originally tested our model with a (9-1-5) structure,
meaning we had a filter size of 9x9, 1x1 and 5x5 respec-
tively for the three layers, with the correct padding added.
We also had 128 filters for the first layer, as well as 32 for
the second layer. This first attempt gave us a reasonable
baseline comparison to work off of, since those were similar
to the hyperparameters used in the paper. After swapping
to a (9-5-5) structure and training for the same number of
iterations, there was a clear increase in the video quality.
In contrast to the numbers on the paper, the new struc-
ture was only around 3x slower, whereas the paper claimed
a much higher number[2]. Overall, the increase in quality
was high enough to justify the decrease in throughput.

However, after finding out that our timing was unattain-
able on the Ultra96, we swapped to using FSRCNN[1].
Since we didn’t have much time left, we opted to imme-
diately use the hyperparameters listed on the FSRCNN
paper, and to start optimizing on them on hardware be-
fore training the model fully. Referring to the diagram, we
started with FSRCNN(56, 12, 4), and used the filter sizes
and strides listed on the paper. We then swapped to FS-
RCNN(35, 5, 1), which was a smaller version of FSRCNN
with less parameters, but with slightly decreased quality
overall. Overall, the trade-off in quality led to a several
order of magnitude increase in throughput, so it was justi-
fied.

5.2 Hardware Super Resolution

We implemented hardware super resolution for the Ul-
tra96v2’s programmable logic using Xilinx’s Vitis Unified
Software Platform, specifically Vitis and Vitis HLS. We

18-500 Final Report - December 13, 2021

Page 6 of 12

used Vitis HLS to have faster iteration cycles for hard-
ware optimisation, and Vitis for compiling to the board
and packaging the hardware kernels for the Ultra96.

We followed hardware acceleration advice regarding
tiling operations and rearranging for better memory access
patterns from papers[6, 4] documenting FPGA acceleration
of CNNs. While these optimisations gave some increases
in performance, they did not allow us to achieve the full
performance we required, settling around 200 seconds per
frame. Our next steps were to examine breaking some of
the best practices given in the papers.

5.2.1 Non-Uniform Tile Sizes

In [6], the authors recommend against using non-
uniform tile sizes for optimising convolution loops in hard-
ware. They say this because by having uniform tile sizes,
hardware designers will converge on an optimised model
faster; the code will be more readable, comprehensible, and
maintainable; and the improvement is only on around a 7%
to 10% difference.

Implementing this, we found it to be even less fruitful
than what they described. This was because in order to
speed up one layer by increasing its tile sizes, we had to de-
grade others, as we were limited by our hardware’s limited
number of logic elements, specifically BRAMs and LUTs.

5.2.2 Fixed Weights

Another optimisation that we attempted was using
fixed weights. In our reference papers, the designs included
AXI bus interfaces for the input data, output data, and
weight data. We knew what weights we would be using
beforehand, and thus could forego allowing generalities like
allowing arbitrary weights to the system.

This actually provided us great speedup, however, for
both the SRCNN and FSRCNN models we were not able
to use it. This is because this optimisation pushed BRAM,
DSP block, and FF utilisation. As our board has a rel-
atively low number of DSP blocks, only 360, this quickly
became a limiting factor for this optimisation.

5.2.3 Model Size

As we were unable to reach our target throughput
and latency for our initial model, SRCNN, we looked
at model size in terms of number of GOPS as a met-
ric to reduce. Looking at this we decided to implement
FSRCNN which had 1.38GOPS as opposed to SRCNN’s
118.58GOPS. While we saw a large amount of improve-
ment, we still were not able to meet our target throughput
and latency with this optimisation. Furthermore the afore-
mentioned optimisation, using fixed weights, still posed
a problem in that it spiked utilisation, restricting us to
smaller, less optimal designs.

5.2.4 Kernel Count

Our last observation was that our fixed-weight optimisa-
tion was increasing utilisation due to the number of kernels.
While SRCNN and FSRCNN had vastly different numbers
of operations, as detailed above, they have similar num-
bers of kernels: 2144 for SRCNN and 2032 for FSRCNN.
We thus implemented yet another model FSRCNNs, a vari-
ation on FSRCNN. This model had fewer still operations
than FSRCNN, only 0.48GOPS, but more importantly had
much fewer kernels: only 445. With this change in imple-
mentation, we were able to leverage the fixed-weights opti-
misation to achieve latency of 250ms, just barely meeting
our adjusted latency requirement. As for our throughput
however, as it was latency-bound as described in section
6.3, we were still unable to satisfy this specification.

5.3 Video Display

Video display was handled by the ARM core, as opposed
to the PL fabric. As PetaLinux provides out-of-the-box
support for OpenCV and the Ultra96v2 supports native
mini-DisplayPort output at 1080p this portion was fairly
straight forward to implement on the proper hardware.

Finding and using the proper hardware for this was
not trivial however. While the Ultra96v2 supports mini-
DisplayPort out, and claims to support active conversion to
HDMI, this is not necessarily always the case. Due to unde-
fined behaviour in the 2020.1 version of Petalinux regarding
output display, certain displays, display resolutions, and
display conversions were not supported. We found that the
only display resolutions supported were 1080p and 720p,
meaning the connected monitor had to support one of these,
if not, display would fail to work.

To diagnose this further, we investigated running with
PYNQ to get video display up on a HDMI based projec-
tor. While no video output was generated even in this
configuration, we were able to get more useful information
from dmesg in this OS. It reported the step of generating
output was not causing an error but the connection that
we had was causing the issue. Thus we were able to de-
termine that the discrepancy must be happening either in
conversion from mini-DisplayPort to HDMI or on the dis-
play itself.

To further solve this we switched to using the lab moni-
tors and mini-DisplayPort to DisplayPort converters. This
worked, but reduced the efficacy of our system. After all,
the most visible case for super resolution is when the image
is blown up on a large screen, as is done with a projector.
A monitor reduced our ability to visually see differences as
provided by our super resolution algorithm.

Once working, we were able to visually see slowdowns
in outputting video to display from the Ultra96v2. This is
almost certainly because the computation was done on the
ARM core, as opposed to any specialised video process-
ing unit. While we did not have the time to benchmark
how many frames per second videos were degraded to, by a
visual inspection video playback was around 10-20FPS, as

18-500 Final Report - December 13, 2021

Page 7 of 12

Q) Buffered data ...'—r'_
|;]Egt__[@§§l_l_r§:£ aps :'““"I Output feature maps
= =N
i i Tiy? ®L'- .“I"i —L
""L{_ Tix ; .—---:-, \ Tof
Tif N ;—-—-—-—l-’ | RS
ernel maps G |Tky
FNT X 7

Figure 4: Graphical depiction of loop tiling operations for better hardware computation

frame stuttering was very noticeable, but it still maintained
the illusion of motion, presenting itself as a video.

5.4 Glue Logic

As the completion our system was delayed for various
reasons as detailed below in sections 7 and 10, it was not
in scope for our timeline to implement a good UI/UX. In-
stead we implemented a terminal-based UI that glued our
different programs together via shell scripts.

This, as a solution, is not elegant. It directly contra-
dicts our initial proposition to provide the general public a
more usable system. This solution however, provides one
redeeming quality: while produced on a razor thin timeline,
it is both reliable and functional.

Thus this section, while having no intention of being
part of our design from its conception was added in as a
shim to have something that, at the very least, worked and
could be shipped at the end of our project.

5.5 Peripherals

As the design intent of our system was aimed at the
general public, we made sure that our system was modular.
Thankfully the Ultra96v2 supports most input methods, so
testing it with a standard keyboard (a Dell KB216) and two
standard mice (a Dell MS116 and Logitech M-R0012) we
found no problems. Due to the limited number of ports on
the Ultra96v2, these had to be run through a USB hub for
the final system, but this presented no issue in functionality
either.

While the Ultra96v2 was robust in accepting various in-
puts, it was less robust in accepting various display meth-
ods. We tested a Sony MP-CD1 mobile projector, as
well as other various HDMI monitors. As the Ultra96v2
outputs mini-DisplayPort, we used an mini-DisplayPort
to HDMI converter. First attempts using a passive con-
verter were not fruitful, and so we referenced documenta-
tion and support pages by Xilinx. We found that the Ul-
tra96v2 supported mini-DisplayPort to HDMI conversion
only via active converters because of the way in which the

device drives the display on a hardware level. So we then
switched to the CableCreation CD0095, one of Xilinx’s rec-
ommended mini-DisplayPort to HDMI converters. Testing
with this and the HDMI monitors still led to no success.
After this, we did more investigation, and found some user
reports of the Ultra96v2 not supporting video output in
various configurations depending on conversion, OS, OS
version, the exact monitor to which it was connected, and
so on. We finally settled on using the displays which were in
the lab with a mini-DisplayPort to DisplayPort converter.
While this display configuration finally worked, it definitely
slowed down our testing abilities by restricting where we
could test display, as well as contributing to a delay in get-
ting this part of the system up and running. Furthermore,
this presents itself as a detriment to the general user. If
a user does not have a DisplayPort enabled display, they
would not be able to use our device.

6 TEST & VALIDATION

6.1 SSIM

First, we define the method in which we calculate SSIM
as a video metric, as from the paper. We define SSTM},
to be the SSIM index value of the x-th color component of
the j-th sampling window in the i-th video frame. Then
let W, be the weight of the x-th color component, the val-
ues of which are taken from the paper by Wang, Lu, and
Bovik. Now, evaluating the video adapted version of the
SSIM index, we have the following:

>

ze{Y,Cb,Cr}

SSIM;; = W, SSIM; (2)

where we evaluate over the Y, Cb, and Cr color chan-
nels,

R
Zj:l wijSSIMij
= 7.
ngl Wij

where R is the number of sampling windows per video
frame,

Qi 3)

18-500 Final Report - December 13, 2021

Page 8 of 12

Yoy Wi
F
Zi:l Wi

where F' is the number of video frames, and W, is the
weight of the i-th video frame. Then @ is the quality of
the video and @; was the quality of a single frame of video,
specifically the i-th frame.

In our case, for all j € R, and ¢ € F, we maintained
that W; = 1, as well as w;; = 1. In other words, we went
with the more straightforward approach, which involved
calculating the SSIM between two of the same frames on
the upscaled video and the reference video, whilst using
equal weights for all individual pixels, and then taking the
average SSIM out of the all the frames, whilst using equal
weights for all individual frames. The reason for this was
two-fold: Having non-trivial weights would be more com-
putationally complex, whilst having more general weights
would generalize it to more different types of videos, which
is exactly what our dataset and use case was.

The results of SSIM on our dataset are included in table
1.

An important thing to note is although there was some
inconsistency between the algorithms, e.g. SRCNN-EX
sometimes performed slightly worse compared to FSRCNN|
overall, all implementations outperformed bicubic almost
on every single video in our dataset.

Q= (4)

6.2 Latency

To evaluate latency, we used the accelerator host pro-
gram to benchmark the duration of the execution of the
hardware kernel on a single frame. To measure the time
elapsed, we used the std::chrono library, giving us res-
olution in miliseconds. In 5 we have the latency of bicu-
bic interpolation run on an AMD Ryzen 5 3600, a typical
consumer grade CPU. The super resolution algorithms are
measured as implemented on the Ultra96v2. Anything un-
der 250ms is what we considered ‘real-time,” with respect
to latency.

Latency of Upscaling a Single Frame

1000000
100000
10000

1000 2989

time (ms)

100 250

10

Bicubic SRCNN-ex FSRCNN FSRCNNs

Upcaling Algorithm

Figure 5: Single frame latency of different upscaling algo-
rithms, plotted on a logarithmic scale.

As seen in 5, the amount of time to upscale an im-
age with bicubic interpolation is almost negligible — the

bar barely registers on the plot. As for the other algo-
rithms, we can see steady improvements with the reduc-
tion in size of the model, though not linearly compared to
number of operations per second, which points to overhead
cost involved in the system. As in table 2, we were able to
achieve operation throughput in the MOPS/s range, with
less OPS/s for FSRCNN than SRCNN-ex. This is because
of the amount of time to implement the model; while FSR-
CNN is smaller and has far less operations, it is still fairly
large and our timeline provided us with much less time to
optimise it than SRCNN-ex. The FSRCNNs model has
a higher operation throughput than the other two, which
seems counter-intuitive, as it was the model which we had
the least number of weeks to optimise for hardware. While
this was the case, we spent the same amount of time op-
timising FSRCNNs as FSRCNN, as well as leveraging the
optimisations in FSRCNN, as the models are similar, much
moreso than FSRCNN compared to SRCNN-ex.

One point to note, however, is that estimating target
latency with the average number of Giga-operations per
second that Xilinx engineers are able to achieve for opti-
misation examples provided in Vitis documentation, some
of our models should ave been able to meet our specifica-
tions for latency and throughput, even with latency-bound
throughput; namely the FSRCNN and FSRCNNs models.

6.3 Throughput

Our accelerator host program, running on the ARM
core of the Ultra96v2, ultimately contributed to a limita-
tion in our throughput. While throughput and latency are
inherently different metrics, our implementation of frame
processing was iterative and sequential, thus resulting in
our throughput being a direct function of our latency. More
specifically our host program limited our throughput to be
bound by our latency, arriving at a constant throughput of
the reciprocal of our latency. As our system’s throughput
was bound by its latency, throughput we can talk about
throughput-bound latency, as this is what ended up being
the relevant throughput metric for out system.

This meant that in order to meet our specification for
throughput, we would need to achieve a latency of no
greater than 33ms. Further for the bare minimum of video-
grade throughput we would need no greater than 83ms! As
the fastest we were able to reliably achieve was 250ms, we
did not meet this metric, and were an order of magnitude
off, at best.

Referring back to table 2, we can see again that the ideal
time metrics would have allowed us to reach even latency-
bounded throughput, however due to constraints on design
time, as well as familiarity with the design environment led
us to ultimately not meet this ideal bound.

18-500 Final Report - December 13, 2021

Page 9 of 12

Table 1: Super Resolution Quality (SSIM)

Video Number SRCNN-Ex FSRCNN FSRCNN-s Bicubic
1 0.725 0.711 0.705 0.693
2 0.698 0.701 0.677 0.675
3 0.639 0.672 0.672 0.623
4 0.741 0.705 0.699 0.694
5 0.953 0.935 0.918 0.908
6 0.733 0.657 0.655 0.652
7 0.783 0.795 0.771 0.772
8 0.851 0.769 0.758 0.749
9 0.751 0.689 0.685 0.671
11 0.685 0.652 0.667 0.650
12 0.727 0.717 0.715 0.706
13 0.721 0.665 0.651 0.643
14 0.759 0.759 0.727 0.725
Mean 0.751 0.724 0.715 0.705
Variance 6.18x107% 5.92x10™3 5.07x1073 5.56x1073

Table 2: Super Resolution Timing on Ultra96v2

Algorithm Time (ms) GOPS GOPS/s Ideal Time (ms)
SRCNN-ex 115401 118.58 0.103 593
FSRCNN 2989 1.38 0.046 7
FSRCNNs 250 0.48 0.190 3

7 PROJECT MANAGEMENT
7.1 Schedule

Our schedule for the project had to undergo a significant
change, most notably due to the change in our implemen-
tation during the project. We essentially had to go through
two cycles of model development, both on the software and
hardware (Ultra96) portions, from training an entirely new
CNN with a different structure, as well as having to redo a
lot of previous optimizations on our hardware in order to
reach timings on our Ultra96 implementation. Since a lot of
the previous infrastructure for training and benchmarking
was already in place, as well as having a lot more famil-
iarity when it came to working on the model as a whole,
we managed to create a functioning implementation on the
Ultra96 board for our second model in about a third of the
time it took for our first model. For the finer details of
what we set out to do versus what we accomplished, the
Gantt chart below illustrates the project as a whole.

7.2 Team Member Responsibilities

As stated in the previous design report, Kunal & James
planned on handling the hardware implementation of the
image upscaling algorithm. Joshua worked on the soft-
ware model, and we planned on having input from other
members, in terms of the design. We all had planned on
contributing to the algorithm development aspect of the
project. During the development of the project, we ended
up having very distinct parts, with Joshua fully taking over

the software model, including setting up cloud computing,
developing model and training, benchmarking all imple-
mentations etc. James essentially took over the entire Ul-
tra96 implementation, covering all parts including hard-
ware optimization and acceleration, benchmarking, verifi-
cation, I/O etc. At the beginning, Kunal was assigned
the task of developing, testing and integrating I/O. He was
also supposed to be in charge of benchmarking our final im-
plementation, as well as developing Ul for a user-friendly
experience. However, little to no progress was made on all
fronts, and the project never developed to the point where
Ul could even be considered. James also ended up rewriting
a lot of the I/O code provided by Kunal.

7.3 Budget

Our project was fairly low-budget. While the Ultra96v2
development board cost $249, one of our members, James,
was taking the class Reconfigurable Logic which provides
the board on loan to its students. Because of this, we were
able to use the board at no cost to our group. The board pe-
ripherals such as the monitor, USB hub, mouse, keyboard,
etc., were designed to be modular. As such, they were able
to be provided by our team’s members or borrowed from
labs. Note then, that this is why in the bill of materials
these parts are listed generically, without a specific model
number nor manufacturer; this is not an omission, rather a
demonstration of our system’s modular nature. For Google
Colab, we paid out of pocket due to an immediate need for
our code to be run, and because of the low cost of it overall.

18-500 Final Report - December 13, 2021

Page 10 of 12

Table 3: Bill of materials

Description Model # Manufacturer Quantity Cost @ Total
Ultra96v2 Board AES-ULTRA96-V2-G Avnet 1 $249 $0
Google Colab * Google 1 $10 $0
AWS * Amazon 1 $50 $50

$50

Amazon Web Services usage is further detailed in the next
subsection.

7.4 AWS Credit Usage

We initially planned on using AWS for the entirety of
our project, to host our training code and to utilize the
high-performance, cost-effective GPU instances that they
provide. We chose to use the Amazon EC2 P3 instance
type, with a single GPU instance (p3.2xlarge), due to it be-
ing high-performance and cost-effective. With the NVIDIA
V100 GPU, we chose this specific instance type due its ef-
fectiveness for deep learning training, which helped with
training our software model very well. On paper, it suited
the development of our software model extremely well.
However, we ended up only running our code on a smaller
instance with the first $50 provided, and later transitioned
to running our code on two systems: Google Colab, as well
as locally on an Nvidia RTX 3070 GPU. This was mostly
due to an internal issue on our part, and in the short time
we utilized AWS, we found it very convenient and reliable.
We give our thanks to Amazon for providing us with AWS
credits to aid in our project at Carnegie Mellon University.

7.5 Risk Management

Despite us having a risk diagram for our design review
report, as well as evaluating each risk and coming up with
ways to mitigate them, the largest problem that we encoun-
tered was our throughput on the Ultra96 implementation
not meeting our ideal case. Since our initial schedule had
placed full confidence in our initial choice of algorithm to
work, we had not taken enough precaution to mitigate the
chance that it wouldn’t work. Our initial risk mitigation in-
volved leaving 2 weeks of slack time for ourselves at the end
of the semester, but as we had a pivotal transition in the
middle of the project, those 2 weeks quickly disappeared,
and our workload close to doubled or tripled during the last
couple of weeks. Essentially, the risk of our design had been
underestimated greatly, leading to an inconsistent amount
of workload during the semester. To increase throughput,
we had to sacrifice on quality, but we were careful to ensure
that our quality never lost against bicubic, since that was
our baseline, and would defeat the purpose of our project.

Another risk that we took into account and mitigated
was the fact that our software model could have been de-
layed. Since the hardware implementation couldn’t begin
without significant information about the hyperparameters
and structure of the software model, we did research on fall-

back, off-the-shelf models which had the model structure
and weights available, and could be substituted in case our
software model completely failed to work. Thankfully, our
software model worked in the end, and although a delay in
starting our software model shifted back our schedule, we
managed to recover from that risk.

Finally, a major risk we had taken too lightly at the
beginning was the effect of workload from other classes
throughout the semester, as well as our members having an
unequal amount of work planned out - some members had
a lot of work near the beginning, and some members had a
lot of work near the end. Whilst we had major milestones
of the Capstone class panned out, we had less considera-
tion of other classes incorporated into our schedule. This
not only ended up affecting our schedule, it also meant
that communication was reduced, as our sleep schedules
and availabilities didn’t always align. We were completely
aware of this flaw by the design review, as well as the risk
of burnout from each member, so we set out to equalize the
amount of work being distributed between members on a
week-by-week basis, using our weekly reports as an indica-
tor to allocate tasks to other members who initially were
not scheduled to do those tasks.

8 ETHICAL ISSUES

Since this product lowers the bar for entry for using su-
per resolution, it runs the risk of making super resolution
more readily available to bad actors to use it for malicious
purposes. One possibility is that bad actors who want to
spy on others could purchase and use lower quality cameras
and upscale the footage using this device. Having lowered
the bar for entry, this means that this could be come a
more proliferated problem.

The accuracy and correctness of the super resolution
could also play a key role with regards to the end user. For
example, someone might use our upscaling tool to increase
the quality of some low-quality security camera footage,
with the intention of identifying a criminal from a crime
scene, or a license plate from a car etc. Although this is
not within our use case and we could actively discourage
people from using it in such scenarios, there is still a chance
that upscaled videos could be used in scenarios such as in-
accurate evidence, leading to the identification of the wrong
person or the wrong license plate, for example.

As the function of super resolution is to extract infor-
mation from blurry frames, videos which have been blurred
to anonymize them run the risk of this transformation be-

18-500 Final Report - December 13, 2021

Page 11 of 12

ing undone to some extent and the anonymization being
undone. This is especially relevant for legal proceedings
in which footage of defendants is often blurred to preserve
their safety and privacy. Related to this is the possibility
that low-quality security camera footage is upscaled and
used as evidence to implicate an individual in a crime.
Since the fine details of the frame are created by the algo-
rithm, the defining features of a person may cause a false
match to occur. If used as evidence, this could lead to a
wrongful conviction.

Another way in which our product could be used by
a bad actor to deanonymize video footage is with porno-
graphic or lewd content. These types of videos are often
blurred to protect the identity or decency of the individuals
depicted, but if it is able to be undone, this presents a risk
to the individuals involved.

The risk of deanonymization is easily avoided by using
black-bar anonymization as opposed to blurring anonyiza-
tion. On the other hand, if determined to anonymize via
blurring, by being sure to blur strongly enough, the details
of the footage can be kept anonymous. However, as for the
other risks, there is nothing outside of new or existing laws,
or user licence agreements which could be done to prevent
them.

9 RELATED WORK

Since video upscaling is a hot topic, there are many
related papers, ideas and solutions out there that demon-
strate upscaling using various machine learning techniques,
on various forms of hardware. One paper that is most
closely related to our project is [3], which also uses an
FPGA to perform super resolution. There are other super
resolution algorithms as well, but we did not implement
these in our project. For instance there are those using
GANS, or relying more heavily on advanced DSP methods.

10 SUMMARY

Our system was not able to meet our design specifica-
tions. By the end of the semester we realised through our
system testing that, given the Ultra96v2 as our hardware
acceleration device, we had to choose either a decrease in
performance or a decrease in algorithmic complexity. Our
ability to get performance out of the Ultra96v2 was lim-
ited by our familiarity with both the board itself and our
familiarity with Vitis, the environment which we used to
program it. Beyond this, our system was also limited by
the size of the board itself.

The easiest way to allow our system to meet our speci-
fication would be to get more powerful hardware.

10.1 Future Work

Since our system had not been completed to our initial
requirements, there is a lot of potential for further improve-
ments to our project. Since the requirement we couldn’t

fulfill was timing, that meant any future work to improve
the system would be to address the throughput, specifically,
increasing it to the point where it could run in real-time.
Despite our rapid and massive increase in throughput over
the last few weeks of the project, replicating such a dif-
ference would have been considerably hard and possibly
unrealistic, given the fact that any further optimizations
would have given diminishing returns.

To address this, one thing we could do is instead of us-
ing Vitis, we could rework the architecture on the Ultra96,
and rewrite our implementation on a much lower level, such
as through Verilog. This would allow to get the fine-level
of optimization needed to improve the throughput of our
design further, with major milestones being 12FPS, 24FPS
and 30FPS respectively. A throughput of 12FPS would
have been the minimum for people to perceive a collection
of images as a video, 24FPS would have been the industry
standard and the frame rate movies are shot at, and 30FPS
would have been our initial requirement, and the frame rate
of the videos in our dataset.

Another thing that is relevant to our possible future
work would be to explore using more powerful hardware.
Although we didn’t explore using a more powerful FPGA
due to budget constraints and also our use case being tar-
geted towards a more general audience, a more costly board
would allow us to explore other scaling factors on higher
resolutions, such as from 1080p to 4k or even 8k resolu-
tions. This could possibly have greater relevance in the
future, as higher resolution displays become more widely
adapted. This would also require rethinking the choice of
algorithm, which would involve carefully considering how
increase of several orders of magnitude of data would be ad-
dressed, and how the quality could still be retained whilst
keeping real-time expectations.

10.2 Lessons Learned

One of the biggest lessons we learned was our schedul-
ing process. Specifically, our initial schedule did not leave
enough time for us to iterate, and we were too opti-
mistic when allocating time for the optimization on the
U96 board. A much better approach would have been to
utilize some form of hardware-software co-interaction, and
have much tighter iteration cycles in order to discover and
change or shift our project early on. This would have al-
lowed us to discover the unrealistic timings for our first
implementation much earlier, and allowed us time to pivot
and swap to a different implementation without tripling
our workload in the last month. In short, a more consis-
tent use of time would have allowed for a much smoother
integration process between our hardware and software sec-
tions, which could have been achieved with a tighter and
well-documented schedule.

Glossary of Acronyms

e ASIC - Application Specific Integrated Circuit

18-500 Final Report - December 13, 2021

Page 12 of 12

BRAM - Block RAM (Random Access Memory)
CNN - Convolutional Neural Network

CPU - Central Processing Unit

DSP - Digital Signal Processing

FF - Flip Flops

FPGA - Field Programmable Gate Array

FPS - Frames Per Second

FSRCNN - Fast Super Resolution Convolutional Neu-
ral Network

FSRCNNs - Fast Super Resolution Convolutional
Neural Network (small)

GAN - Generative Adverserial Network

GPGPU - General Purpose Graphical Processing
Unit

GPU - Graphical Processing Unit
HD - High Definition

HLS - High Level Synthesis

IO - Input / Output

HLS - High Level Synthesis

LUT - Look Up Table

ML - Machine Learning

MPSoC - Multi-Processor System on Chip
MSE - Mean Squared Error

OPS - Operations

PL - Programmable Logic

PSNR - Peak Signal to Noise Ratio
RTL - Register Transfer Language
SD - Standard Definition

SRCNN - Super Resolution Convolutional Neural
Network

SRCNN-ex - Super Resolution Convolutional Neural
Network (extended)

SSIM - Structural Similarity Index Measure
UI - User Interface
UX - User Experience

VMAF - Video Multimethod Assessment Fusion

References

[1]

Chao Dong, Chen Change Loy, and Xiaoou Tang. Ac-
celerating the Super-Resolution Convolutional Neural
Network. 2016. arXiv: 1608.00367 [cs.CV].

Chao Dong et al. Image Super-Resolution Using Deep
Convolutional Networks. 2015. arXiv: 1501 . 00092
[cs.CV].

Zhuolun He et al. “FPGA-Based Real-Time Super-
Resolution System for Ultra High Definition Videos”.
In: 2018 IEEE 26th Annual International Symposium
on Field-Programmable Custom Computing Machines
(FCCM). 2018, pp. 181-188. poI: 10.1109/FCCM .
2018.00036.

Yufei Ma et al. “Optimizing the Convolution Opera-
tion to Accelerate Deep Neural Networks on FPGA”.
In: IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 26 (2018), pp. 1354-1367.

Zhou Wang, Ligang Lu, and Alan C. Bovik. “Video
quality assessment based on structural distortion mea-
surement”. In: Signal Processing: Image Communica-
tion 19.2 (2004), pp. 121-132. 18SN: 0923-5965. DOI:
https://doi.org/10.1016/5S0923-5965(03) 00076~
6. URL: https://www.sciencedirect.com/science/
article/pii/S0923596503000766.

Chen Zhang et al. “Optimizing FPGA-Based Acceler-
ator Design for Deep Convolutional Neural Networks”.
In: Proceedings of the 2015 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Ar-
rays. FPGA ’15. Monterey, California, USA: Associa-
tion for Computing Machinery, 2015, 161-170. ISBN:
9781450333153. DOI: 10 . 1145 / 2684746 . 2689060.
URL: https://doi.org/10.1145/2684746.2689060.

18-500 Final Report - December 13, 2021 Page 13 of 12

w4 W5 W6 w7 we w9 W10 w11 w12 w13 wi4 W15
9/20 927 10/4 101 10118 10/25 1n nr 115 1122 11/29 12/6

TASK TITLE

Hardware

Get Hardware
Acquire Ultra96

Acquire Peripherals

Ramp on Ultra96
Research I/0

Initial Host/Fabric communications
Write (initial) SRCNN model in HW
Write convolution kernel in Vitis HLS
Write general CNN in Vitis HLS
Fit full-sized model on the board in Vitis
Optimise tile sizes JSG JSG JSG JSG
Speed up w/ HLS pragmas JSG JSG JSG JSG
Accomodate Switch to New Model
Rewrite CNN
Specialize CNN
Final Model Attempt
Setup xfopencv in Vitis

Benchmark functions

Implement FSRCNNs JSG

Validate HW implementation JSG

Benchmark HW implementation JSG
Validate HW Algorithm

Port SW model onto FPGA

Validating FPGA model against SW model

Time Benchmarking

User Experience
ul
Command Line Ul
Display to screen KB KB KB KB KB KB KB KB KB
Test screen display
Read video from storage device KB KB KB KB KB KB KB KB KB
Test video reading
Research CAD Design for FPGA Holder JSG JL
Create Holder for FPGA

Software

Model Research
Research DSP vs CNN models
Research specific CNN models
Benchmark CNN Models

Metric Research

Research VMAF
k VMAF
Research SSIM
k SSIM
Setup training infrastructure
Acquire AWS Credits
Setup AWS
Acquire Dataset
Setup ColLab
Model Training
Develop Python Code for Training

Run Training
Test/Evaluate Model JL JL JL
Finalize model hyperparameters
Further optimizing weights JL JL
Milestones

Proposal Presentation

Design Presentation

Design Review Report

Interim Demo
A ‘

Final Presentation | | I

Figure 6: Gantt Chart — Initials signify task owner; colour signifies progress on the task, with green, yellow and red
being completed, partially completed, and no progress, respectively

