18-500 Final Report - May 14, 2021

Page 1 of 6

FastScale: Hardware-Accelerated
Upscaling

Authors: James S. Garcia, Kunal Barde, Joshua Lau: Electrical and Computer Engineering, Carnegie Mellon
University

Abstract—Upscaling is a process that increases the
quality of a video or image to a higher resolution for-
mat, whilst still displaying correctly. This problem
has been explored by various researchers and com-
panies, and there are many existing software-based
solutions. We are implementing a hardware-based,
real-time video upscaling tool, that correctly upscales
low-resolution videos to higher resolutions, up to 1080p.
We aim to provide a plug-and-play solution that is
both convenient and intuitive to everyone, which will
cut down any time and effort wasted on traditional
approaches, such as having to upload onto a device and
running super-resolution on the videos. Our upscaling
algorithm is based off a paper exploring single-image
super-resolution using a CNN. [1]

Index Terms—CNN (Convolutional Neural Net-
work), FPGA, HD (High Definition), SD (Standard
Definition), (key words or phrases in alphabetical or-
der, use your own words, delete the ones listed as an
example)

1 INTRODUCTION

In the modern age, consumers have come to expect high
resolution, low-latency, on-demand video options. While
higher definition video formats and displays have become
more widespread, legacy content still uses lower resolution
formats more typical of the time in which they were cre-
ated.

Solving this issue has presented consumers with a three-
way choice where no choice is optimal. They could watch
the video at lower resolution, but this would be subop-
timal because of the modern high-resolution expectation.
They could upscale their video through a third-party web-
application, but this raises privacy concerns; how would
one know what the site will do with one’s data. Lastly,
they could upscale their video by spinning up their own
super-resolution model on their own computer, but for the
vast majority of people, this is an extremely high technical
barrier to entry.

To solve this issue, we are building a standalone, plug-
and-play device that can take a low resolution video and
upscale it to a higher resolution in real time. More specif-
ically, our device takes Standard Definition (SD) video in-
put with dimensions of 426x240 (the same dimensions as
NTSC widescreen or 240p widescreen) and upscales it to
High Definition (HD) video with dimensions of 1920x 1080
(Full HD). Our video streams will operate at 30 frames per

second (FPS), as that is an industry standard for movies,
television, and other streamed content which make up our
scope. Additionally, the native video output of the Ultra96
board is 60FPS, and so the conversion from 30FPS is triv-
ial. Hence, our device maintains a throughput of 33.3ms
per image so there is no need for video buffering. Our de-
vice adheres to the EBU Technical Recommendation R37 —
2007 for the synchronisation of audio and video on audio-
video streams for consumer entertainment, so, the latency
of the device is no more than 60ms, ensuring that the audio
and video outputs remain synchronised.

There currently exist software which do real-time video
upscaling, however, the degree or factor of upscaling is less
than what our device is capable of. Other real-time video
upscaling algorithms are sufficient for scaling factors of two,
and adequate for factors of 3, however begin to produce ar-
tifacts and unfaithful reconstructions of the original image
at higher scaling factors. Our device operates with a scal-
ing factor of 4.5, eclipsing the reliable working domain of
the most popular current real-time video upscaling algo-
rithm(s).

Our approach is also hardware accelerated. This gives
us the advantage of a lower latency and higher through-
put. Furthermore, with our hardware acceleration being
implemented on an FPGA, this allows for our device to be
reconfigurable; if a new model is found to upscale videos
more accurately, the user would not need to purchase a new
device, but the upgrade would be downloadable. Further
still, an FPGA gives us more flexibility to experiment with
improvements not possible on certain ASICs which may,
on the surface, present themselves as equally applicable. A
GPU, for instance, may perform well for matrix computa-
tion, but would be less applicable if implementing a systolic
array based method of computation. GPU’s also have the
drawback of their relatively high power consumption, as
compared with that of FPGAs.

2 DESIGN REQUIREMENTS

Our product must be able to upscale a SD 240p
widescreen video by a factor of 4.5. This is the scaling
factor between SD and HD, and so our device should be
able to perform this transformation; otherwise, we would
not restore the video into the correct dimension. While
upscaling alone is a fairly trivial task, we also must attain
an average SSIM of greater than 0.6, as this provides a de-
cent quality when we checked by eye, and also is on-par
with what current literature on image upscaling for videos

18-500 Final Report - May 14, 2021

Page 2 of 6

is able to attain. We will determine the average SSIM of an
upscaled video by taking the mean of all SSIM’s for each
video frame.

Our product must also convert in real time. This means
that we must have low latency and high throughput. For
throughput, we will be able to process at least thirty frames
every second, in order to be able to keep up with standard
30FPS video. For latency, we should be able to complete
processing with latent delay of less than 60ms. This la-
tent delay was chosen due to the EBU Recommendation
R37-200, a recommendation on “The relative timing of the
sound and vision components of a television signal”.

Our product must also provide a certain degree of ease
of use. We want for users to be able to use the product with
minimal preexisting technical knowledge or frustration.

3 ARCHITECTURE OVERVIEW

Our system architecture is split into two components:
a software architecture, describing the derivation and cre-
ation of our model and its parameters; and a hardware
architecture, which implements our software model using
the derived parameters and displays the upscaled video.

3.1 Software Architecture

Our final software model is fundamentally based off a
cascading of DSP & deep learning methods. The frames of
the video will feed in one by one into a bicubic interpola-
tion layer which will perform the necessary operations to
upscale the image to an acceptable resolution. From here,
the upscaled image will be forwarded to layers of a CNN
which will be responsible for performing super-resolution
on the output of the bicubic interpolation layer. The bicu-
bic interpolation is done by approximating a smooth curve
in between a cluster of points on the rbg valued function
grid. This is deemed a non-learning method & is a formal
DSP method to take a set of pixels and duplicate aver-
aged pixels across the cluster. This will be implemented
via the numpy & scipy libraries in Python. We will then
benchmark the bicubic interpolation implementation and
from here determine the optimal depth for the CNN to
perform super-resolution on the resultant image. The CNN
will work in the following manner: (1) a patch extraction
block (2) a non-linear mapping block (3) and then output
reconstruction from these higher resolution patches. The
first layer convolves the input image with a 9x9 kernel with
padding and expands the the three-channel image into 64
feature maps. The second layer applies a 1x1 kernel to
condense to 32 feature maps. The third layer will apply a
5x5 kernel to generate the output image. Both the first and
second convolution layers are forwarded through ReLLU. Ul-
timately, we will run this through a series of tests involving
images downscaled to 240p which will be run through our
algorithm to get up to 1080p.

3.2 Hardware Architecture

Our final hardware architecture consists of data flowing
from an attached USB through the FPGA via the ARM
core host. The data makes one final hop back to the ARM
core before being sent out the DisplayPort terminal. The
DisplayPort terminal is then connected to a monitor or
screen for viewing.

From the point of view of a user, they would plug in
their USB containing low-resolution videos. Then they
would select which video to play by using the button on
the Ultra96 board. Once their selection is made, the host
program, living on the ARM core, will begin reading in
the video file and sending it to the FPGA. The FPGA will
process the video frames by upscaling and correcting them.
The output is then sent back to the host program, which
is then finally sent out to the DisplayPort, attached to an
external screen, for viewing. For testing and benchmarking
our metrics, we will save the video output back to the USB
as opposed to displaying it.

The main controller for this will be the host program,
which we will write ourselves in Vitis HLS. The FPGA will
handle accelerating the ML model which we specify in our
software architecture. The parameters will be fixed so no
training or variation will be required during the use of the
hardware.

The content in 3.2 in gray is off the shelf. The content in
orange is content which we create, but is heavily based off
of preexisting content. The content in teal is content which
we generate. The content in yellow is off the shelf but re-
quiring our own installation, as opposed to a ready-to-go
component. The content in blue is that which we make our-
selves. Square boxes represent hardware, rounded square
boxes represent software, and ovals represent data.

4 DESIGN TRADE STUDIES

4.1 Video Similarity Metric

As noted earlier, our training and evaluation metric will
be SSIM. We were deciding between SSIM, PSNR, MSE;,
and an open source metric developed by Netflix - VMAF.
Evaluating the use-cases which each metric performed best
in, we arrived at a decision between SSIM and VMAF.
PSNR and MSE were too broad of error metrics which
could give a higher error than what a person would ac-
tually perceive. Consider the case where every pixel is ‘off’
by some small delta. If each pixel is ‘off’ in the same di-
rection, PSNR and MSE would find that this is a large
error while VMAF and SSIM would give back a lower er-
ror, more closely representing how the human eye would
regard a washed out image to be less ‘bad’ than an image
with ‘static’ noise.

Between SSIM and VMAF, the Netflix metric initially
appeared more applicable to our project as it was a custom
metric that was developed specifically to give a predictive
measure of how people would react to differences in qual-
ity. While we did first plan to use VMAF, upon testing an

18-500 Final Report - May 14, 2021

Page 3 of 6

Ultra96

ARM Care

Control

Buttons

R

FPGA

Q=7Q®

USB PORT

= A

DisplayPort

S.D.
Videos

USB Drive

v
v

Monitor
Display

Figure 1: hardware block diagram

implementation of it, we realised that it ran very slow. The
total time to evaluate VMAF on a 20s clip was on the order
of a minute, thus disqualifying VMAF as a usable metric
for training.

We finally settled on SSIM, as, similar to VMAF, it
can be tuned to account for human vision but, from our
tests, has a much lower computational overhead compared
to VMAF. In our choice of SSIM, we know that unlike
VMAF, it is not a metric which operates directly on videos
or sequences of images but rather single images alone. How-
ever, the paper “Video Quality Assessment Based on Struc-
tural Distortion Measurement” by Wang, Lu, and Bovik
details how to modify SSIM to analyze video data. We will
be using their same formulation for training and validating
our system.

First we define SSIM; to be the SSIM index value of
the z-th color component of the j-th sampling window in
the i-th video frame. Then let W, be the weight of the x-
th color component, the values of which are taken from the
paper by Wang, Lu, and Bovik. Now, evaluating the video
adapted version of the SSIM index, we have the following:

SSIM;; =

> WLSSIM (1)

ze{Y,Cb,Cr}

where we evaluate over the Y, Cb, and Cr color chan-
nels,

Zf:sl 'LU”SSIMZJ
Rs
Zj:l Wij

where R is the number of sampling windows per video
frame,

Qi = (2)

0- i Wi
i
where F' is the number of video frames, and W; is the
weight of the i-th video frame. Then @ is the quality of
the video and @; was the quality of a single frame of video,
specifically the i-th frame.

The values of Ry, F' and the W,;’s may be tuned for spe-
cific applications. We, however, anticipate following similar
parameters as described in the referenced paper in order to
tune) towards human viewing experience.

We recognise that this is a trade-off in that VMAF has
been shown to be a much better metric for identifying the
quality of video, but in return takes much longer to evalu-
ate. Thus, we are limited by the capabilities of our compute
to preform such an intensive checking function, and instead
must use an arguably less accurate metric. Since SSIM is
still good, albiet less human-accurate than VMAF, we now
aim to have a score of over .6 in VMAF as this would place
our device on a bit under the score for typical 2x video up-
scaling, on-par with 3x upscaling, and slightly ahead of 4x
video upscaling. Given the context that SSIM usually de-
creases as the scaling factor increases, we are intentionally
undershooting some of the higher SSIM indices achieved
with low scaling factors, as we are scaling to a multiple of
4.5.

3)

4.2 Ultra96 Development Board

We chose to base our project off of the Ultra96 devel-
opment board. Since we anticipated the need for hardware
acceleration, we knew that we could not implement our

18-500 Final Report - May 14, 2021

Page 4 of 6

project on a CPU, so the three main remaining options we
considered were a (GP)GPU, an ASIC, or an FPGA. We
immediately disqualified an ASIC as the field in which we
are creating a product is rapidly evolving, and an ASIC
would have a far too long product development cycle, as
well as an inability to be modified or improved in a mean-
ingful way after tape out. Additionally, within the scope
of this class, the development of an ASIC, especially one
of this scale, would not be an achievable deliverable. Be-
tween a GPU and an FPGA, the choice was closer; both
options would be good and, to an extent, similarly appli-
cable. We settled on an FPGA due to the reasoning that,
if this project were to go into production, an FPGA would
be superior to a GPU, in the wild. This is because for a
rapidly evolving field, reconfigurability is a great asset, and
even a necessity when the system architecture may demand
a change beyond what GPUs are able to support. A fact
that we also slightly take into account was that our group
was more familiar with FPGAs than GPUs. It should also
be noted that, while GPUs on average take more power
than FPGAs, we did not consider this as a design factor,
as we assume that the product will be plugged into the
wall, meaning that so long as power consumption is not
exceptionally high, it would not become a limiting factor.

Once we decided on using an FPGA, we considered a
few options, mainly between the boards which we had used
previously in classes, as well as the Ultra96 board. Since
the Ultra96 has a vast amount of community support, na-
tive mini-DisplayPort output, USB inputs, as well as an
ARM core that is capable of running petalinux, we chose
this board as a natural fit to work with our project. The
physical footprint of the board is also more compact than
the boards used for other hardware classes during under-
grad, making the form factor of the Ultra96 more conducive
to our device’s ease-of-use. The acquisition of the board
was simplified by the fact that one of our team’s members
is currently in a course which uses the board, and so has
access to one, thus meaning the board does not adversely
affect our budget.

5 SYSTEM DESCRIPTION

5.1 Hardware System

As our hardware design is based around a single board
with a great deal of flexibility, our project does not exhibit
subsystems in the way that others might. As stated be-
fore, our hardware system is centred around the Ultra96
development board. This board has a ZU3SEG-1 Zync de-
vice as its processor, as well as 154K programmable logic
cells and 2GB LPDDR4 memory. The footprint is small
as mentioned before — 3.35” x 2.1”7 x 1.3”, on par with
the footprint of other more recognisable embedded devices,
such as the arduino or raspberry pi.

5.2 Software System

The first subsystem that will be fully implemented is the
software model. This subsystem encompasses the bicubic
interpolator & the layered CNN as described earlier. This
subsystem will be ported onto the fpga and is the brain of
the video upscaling algorithm.

6 TEST & VALIDATION

6.1 Video Similarity Metric

In selecting the metric by which we will measure the
faithfulness of our image reconstruction, we ran a test on
VMAF to benchmark how long it takes to run. In our tests,
it took around 3 seconds per second of video to run. That
is to say, the amount of time it took to evaluate a pair of
videos was triple the amount of time that the video itself
was. This revelation was not expected to us. Since we de-
termined from this that this amount of computational load
was too great for our use-case as we had intended to use
VMAF as a test and loss function for training our CNN, we
had to change our stated video similarity metric function
from the initial proposal. Thus, we made a trade off and
used a SSIM index for testing and loss instead. This was a
trade off because SSIM, while nevertheless a good metric,
is not as focused on nor detailed with the use-case of the
human experience of video as VMAF is.

In verifying that our system is correct, we will check
two stages. First, we will run the software model against
our SSIM metric and will require that it has greater than
0.66 SSIM. We chose this baseline because, according to
a team based in Facebook AI Research [2], running bicu-
bic interpolation on a frame-by-frame basis will result in
an average SSIM value of that amount for the resulting,
upscaled video. After the software model is validated, we
will do the same with the hardware model. Since nothing
should change between the hardware and software models,
the check should pass easier in hardware than in software,
since all of the work to get sufficient quality will have al-
ready been done.

More specifically, our SSIM metric will take in the HD
‘ground-truth’ image and compare it against the super res-
olution reconstruction.

6.2 Testing for Software Model

For the software portion of our project, we will be run-
ning our tests on a GPU, specifically, on the NVIDIA V100
GPUs that are available on AWS for our use. We plan to
use half of our video dataset for training, and half of our
video dataset for testing and validation. To test the model,
we will firstly take the high-resolution videos, downscale
them with a free, off-the-shelf, downscaling tool online [4]

18-500 Final Report - May 14, 2021

Page 5 of 6

6.3 Results for Design Specification B

7 PROJECT MANAGEMENT
7.1 Schedule

We are planning on distributing the work across the
weeks remaining in the course. We are first planning on
implementing a rudimentary neural network on the Ultra96
board first which will confirm our I/O and FPGA imple-
mentations work correctly. On the hardware side, we imple-
mented our I/O and will make sure the FPGA implemen-
tations work correctly is an essential part in streamlining
the progress of this project. The software model work and
the hardware related work can be done in parallel. Once we
have a software model working & the hardware mechanisms
working as well we can port the two and benchmark our
implementation. The placing of the neural network on the
fpga will be a crucial aspect in the deliverables surrounding
this project. Once we’ve verified a rudimentary neural net-
work can be successfully placed on the board we can move
forward with writing the bicubic portion and then verify
that workflow is functional and then complete our project
through adequate benchmarks. Refer to the Gantt Chart
attached at the end of the document.

7.2 Team Member Responsibilities

As in the Design Report, include primary and secondary
responsibilities of each team member. Responsibilities may
be overlapping. They may have changed since the Design
report, in which case you should document who actually did
the work and, perhaps, discuss why the change occurred.

Kunal & James are taking charge of the hardware im-
plementation of the image upscaling algorithm. Joshua will
be working on the software model along with the help from
the other team members. We all will be part of the algoru

This subsection should be no more than half a column.

7.3 Budget

You can use an entire page for the table of parts and
budget at the end of the report, or possibly inline as in
Table 1. Include the description, model number, manu-
facturer, quantity and cost of each component purchased.
(“Amazon” and “Digikey” are probably not the manufac-
turers of the parts you purchased.)

It should be clear exactly what parts are required to
recreate your project, so include parts that were purchased
with your budget, parts that were borrowed from the Cap-
stone course, parts that were scrounged, etc. Mark what
you bought but did not use as your project may have
changed direction since the start of the semester. Mark
what you did not plan for in your design report, but you

realized you need to get to complete your project. This
section may end up being one or two sentences referring to
the page where the budget spreadsheet is located in your
final report.

7.4 AWS Credit Usage

We chose to use AWS for the convenience and reliabil-
ity of the service, and because it suited the development
of our software model extremely well. We chose to use
the Amazon EC2 P3 instance type, with a single GPU in-
stance (p3.2xlarge), due to it being high-performance and
cost-effective. With the NVIDIA V100 GPU, we chose this
specific instance type due its effectiveness for deep learning
training, which helped with training our software model
very well. So far, we’ve only used around $50 credit to run
our code, but we anticipate that we will use more in the
future when we further develop our project. We give our
thanks to Amazon for giving us AWS credits to aid in our
project at Carnegie Mellon University.

7.5 Risk Management

This full column should describe how you handled your
project risk from the standpoints of design, schedule, and
resources (budget and personnel) and identify how you
mitigated against the risk that cropped up through the
semester (e.g., fallback designs, risk reduction measures).

Focus on the primary risk elements, and use about a
full column so that there is no more than one page for the
entire Project Management section 7.

8 ETHICAL ISSUES

Although we’ve changed our use case from security
footage and video streams to old videos and recordings,
it still remains a fact that our video super-resolution tool
could be used for those aforementioned cases. In those
particular scenarios, the accuracy and correctness of the
super-resolution could play a key, ethical role with regards
to the end user. For example, someone might use our up-
scaling tool to increase the quality of some low-quality se-
curity camera footage, with the intention of identifying a
criminal from a crime scene, or a license plate from a car
etc. In the case where our algorithm fails to even produce
a recognizable nor useful image, this might not actually
pose an ethical problem, but there is a chance that the
upscaled video could be used as inaccurate evidence, lead-
ing to the identification of the wrong person or the wrong
license plate, for example.

Situations such as these can either have very minor con-
sequences or very dire ones, depending on what context
the end user decides to use the upscaling tool in. It could
just lead to someone’s features looking more distorted than
usual, or it could falsely implicate someone as a criminal.
Although this might seem like an edge case with a low
chance of happening, as our use case is different from this,

18-500 Final Report - May 14, 2021

Page 6 of 6

Table 1: Bill of materials

Description Model # Manufacturer Quantity Cost @ Total
Ultra96 Development Board V2 Xilinx 1 $0! $3.98
$14.00

we must consider the accuracy and the recommended use
of our technology, and add disclaimers if necessary to dis-
courage people from making, potentially, false assumptions
with our technology.

9 RELATED WORK

The paper [3] is relate to our use case in that it is from
where we chose our video quality metric. We draw heavy
inspiration from the model described in [1]. This paper is
also similar in that it is performing super resolution with
a CNN, but is different in that it is doing the computation
on a CPU and is only doing single images at a time.

What other projects or products are similar to what
you were finally able to put together?

You can use up to a full column in the two column for-
mat for this. Use no more than one page for both Related
Work and Summary.

9.1 Future Work

It would be interesting to train a model based on
VMAF. As stated earlier, the runtime of VMAF is too
long to use as a loss function, however, hardware accel-
erating the VMAF metric could allow for it to be used as
a loss function, and for a video upscaling algorithm to be
trained more directly on how the human eye judges video.
Due to the scope of this course and the project we chose
this wouldn’t be feasible, but it is definitely something of
note that would be worth investigating further after the
end of the course.

Glossary of Acronyms
e ASIC - Application-Specific Integrated Circuit
o AWS - Amazon Web Service
e CNN - Convolutional Neural Net
e CPU - Central Processing Unit
e DSP - Digital Signal Processing
e FPGA - Field Programmable Gate Array
e FPS - Frames Per Second

e (GP)GPU - (General Purpouse) Graphical Process-
ing Unit

e HD - High Definition

e MSE - Mean Squared Error
e PSNR - Peak Signal to Noise Ratio
SD — Standard Definition

SR — Super Resolution
e SSIM - Structural Similarity
VMATF - Video Multimethod Assessment Fusion

References

[1] Chao Dong et al. “Image Super-Resolution Using Deep
Convolutional Networks”. In: arXiv (July 2015).

[2] VID4 - 4X wupscaling benchmark (video super-
resolution). URL: https ://paperswithcode . com/
sota / video - super - resolution - on - vid4 - 4x -
upscaling?fbclid=IwAROdpagVn7NalfIXJuQSc4Bx-
iearHC7BkRW47gA6VkrYcAVoJLI1zi5NDw.

[3] Zhou Wang, Ligang Lu, and Alan C. Bovik. “Video
Quality Assessment Based on Structural Distortion
Measurement”. In: SIGNAL PROCESSING: IMAGE
COMMUNICATION 19.2 (Feb. 2004), pp. 121-132.

Your references should be a very carefully crafted
list, cited in the appropriate ways. Don’t merely list a
Wikipedia page or a bunch of GitHub URLs. Note that
any code you used in your project does need to be cited.

You can insert blank pages after the references to add
full page figures or tables for

e Architecture and system description figures — if so,
make sure you refer to them in section 3 or 5 as ap-
propriate.

e Milestone and Schedule chart — if so, make sure you
refer to it from section 7.1.

e Budget and Parts list — if so make sure you refer to
it from section 7.3.

You are allowed no more than 3 optional pages to en-
sure any large system diagrams, and your milestones and
budget are readable at the end of your document.

Page 7 of 6

18-500 Final Report - May 14, 2021

=)
r
o8r

JIey) JJuRy) 7 9INSIq

uoleIuasald [EUld

o

oL WS

yoday manay ubisag

|

uopejuasalg ubisag

uoljeuasald [esodoid

sauolsa|y

do|spoeS

25N

lepo aleneagsal

[2popy wielL

Buiea) 10y 2pon uoylig dojernag

SIEPON NND JEWyIUsg

WISS Jewyau=g

WISS Yueasay

JYINA JELYaUSg

s[@pow NS Junads yaleasay

UBEUSWNZO WA SZURYIIE

jaseje aunbay

Shay dnjes

sUpRID SAY anboy

S[EPOW NND sh 50 Uiesssy

2IEMYOS

[2pow AS jsulebe [apow v d4 Bugepies
WO CJuD [BpoW M5 Hod

AH =1EpiEs

STTH OPEAA UL D J0F SUCIUNS YIE SHIMA
FOdd pue 2100 WYY US3mag SWwoed 129
onisaL

/) Juzwadu

O/l yueasay

s|esayduzg annboy

gEEIIN 2nbyy

SIEMpIEH

BT/

[#4]0]

SHLE

Lk HEHE

ST

gHOl

FHDE

oL

2%

0z

ATLILASVL

FHM EhM T e OHM M B M kI SM M

