Real Time Video Upscaling

Joshua Lau, James Garcia, Kunal Barde (B0)

Problem Statement and Solution

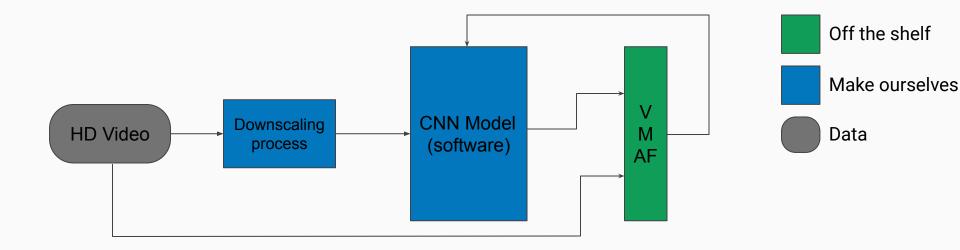
- High definition video streaming often dependent on high bandwidth internet connections
 - 5Mbps or more
- Users with poor internet connections are forced to deal with low definition video streams to avoid lag or buffering
 - Lowest definition streams only consume 1.5Mbps << 5Mbps
- Upscaling a low definition video stream on the user's end sidesteps the issue of a high bandwidth requirement for high quality video

Requirements

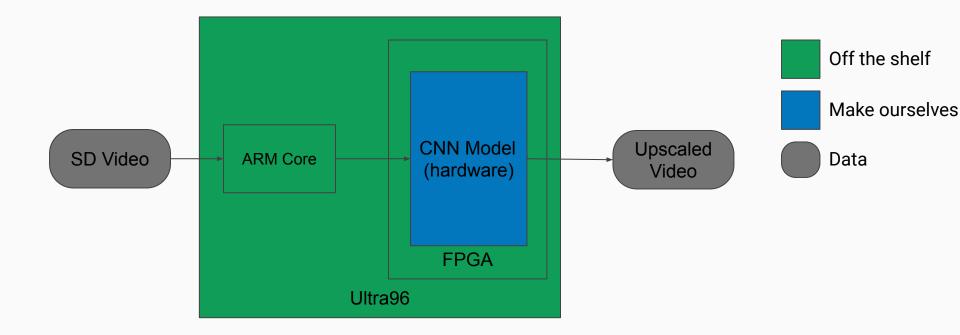
- Be <u>able</u> to reconstruct a low-resolution video to a high-resolution video
 - Low-Definition Television Widescreen (426×240) to Full HD Widescreen (1920 x 1080)
 - Scaling factor of 4.5
- Be able to <u>faithfully</u> reconstruct the video
 - Netflix developed a metric for video quality: VMAF
 - scores range from 0 to 100
 - Our reconstruction will have a score of at least 80
 - 80 roughly corresponds to a "good" rating

Requirements (cont'd)

- Be able to maintain the native frame rate of the video
 - Using videos with framerate of 24fps (standard for video streaming and movies)
 - Must maintain a throughput of no more than 41.7ms computation per video frame
- Be able to reconstruct the video in real-time
 - Do not want sound-after-picture as an issue
 - Hence, must maintain a latent delay of no more than 60ms
 - Adheres to the EBU Technical Recommendation R37 2007


Technical Challenges

- Training our network in software to faithfully reconstruct high resolution videos
- Sending video from the Ultra96's ARM core to the FPGA
- Maintaining throughput for video output from the FPGA
- Writing low-latency synthesizable Verilog to port our software model to the FPGA
- Finding an optimal pipeline architecture for our model
- Collecting user reviews for video reconstruction


Solution Approach

- Software model of CNN to upscale videos
 - Using native high resolution videos which we downsample
 - Segments of video are used as batches to train the CNN
 - Using a negative VMAF score as a loss function
- Port software model onto FPGA to hardware accelerate it
 - Benchmark FPGA for throughput and latency
- Onboard ARM core sends low resolution videos to the FPGA
- FPGA applies forward pass of the CNN to output a reconstructed video

Solution Approach - Training Graphic

Solution Approach - Reconstruction Graphic

Testing, Verification, and Metrics

- Downscale natively high-quality videos
 - Upscale downscaled version back to native quality using CNN
 - Compare original vs upscaled video using VMAF (Video Multimethod Assessment Fusion)
 - Form of full-reference method/model currently used by Netflix
- Combine objective with subjective test results
 - Use peer-reviewed/human feedback
 - Due to small dataset -> use as verification/sanity check, and not training
 - Use this as a heuristic to benchmark performance of VMAF

Testing, Verification, and Metrics (cont'd)

- Benchmark the forward pass of the CNN on the FPGA for speed
 - Making sure to make the distinction between throughput and latency
 - How many cycles does it take?
 - How many ms of computation do we use per frame?
 - What is our latent delay?

Tasks and Division of Labour

Tasks	Joshua	Kunal	James
Algorithm development	X	Х	X
Software model	X		
Ramping on the Ultra96		X	X
Hardware arithmetic			x
Hardware architecture		X	
Porting & Integration	X	X	X

Schedule

	Project Proposal		Design Presentation					Interim Den	10		Final Presentation
TASK TITLE	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13 W14	W14
IASK IIILE	9/20	9/27	10/4	10/11	10/18	10/25	11/1	11/7	11/15	11/22	11/29
Hardware											
Acquire Ultra96	JSG										
Acquire Peripherals	JSG										
Research I/O	JSG + KB	JSG + KB									
Implement I/O		JSG + KB	JSG + KB								
Test I/O		100-100 Provent	JSG + KB								
Get Comms between ARM Core and FPGA				JS6							
Write Math Functions for CNN in SV				JSG	JSG	JSG					
Implement a Pipeline for CNN Arithmetic			0	KB	KB	KB					
Validate HW				JSG + KB	JSG + KB	JSG + KB	JSG + KB				
Port SW model onto FPGA							JSG + KB				
Validating FPGA model against SV model								ALL			
Software											
Research Model	ALL										
Setup AWS/Cloud	KB										
Acquire Dataset	KB										
Familiarize VMAF Documentation	JL	JL									
Develop Python Code for Training		JL + KB	JL	JL							
Train Model on Dataset		former and the second	1	JL	JL	3					
Misc											
Slack/Slop									ALL	ALL	
Milestones	_										
Proposal Presentation	JSG										
Design Presentation			KB								
Design Review Report			ALL	ALL							
Interim Demo							ALL	ALL			
Final Presentation											JL

<mark>James -</mark> Joshua Kunal