
Real Time Video Upscaling
Joshua Lau, James Garcia, Kunal Barde (B0)



Use Case/Application Area

Problem: 

- People want to watch old home 
videos and movies

- Don’t want to plan for upscaling 
videos ahead of time

- Don’t want/know how to do it 
online or on a computer

Solution: 

Plug-and-play, real-time, video 
super-resolution device - Enhancing 
240p videos to 1080p.



Solution Approach
● Trained upscaling algorithm

○ Trained on a variety of videos (Dataset from CDVL)
○ Based off paper of similar scope (SRCNN)

● Final product must be quick enough to be real-time
○ No A/V desynchronization
○ No buffering/lag

● User-friendly
○ Plug-and-play
○ Output high quality video in 1080p
○ Portable enough to move hardware around without much hassle



Quantitative Requirements
Requirement Metric Why?

Scaling Factor 4.5x From 240p widescreen to 
1080p full HD

Super Resolution Quality SSIM>0.66 Beat average bicubic 
interpolation SSIM score 
to justify using CNN

Latency <60ms A/V synchronisation 
(via EBU R37)
On-demand playability

Throughput <33.4ms/frame (≥30FPS) Maintaining FPS without 
buffering or lag



Model Justification
- CNN vs. DSP (bicubic) vs. DSP (filters)

- Bicubic is fast but throws away useful data
- DSP filters require designer fine tuning
- CNN only requires tuning of few 

hyperparameters + training
- CNN have been shown with higher performance

- SSIM vs. VMAF
- Further benchmarking on VMAF revealed 

excessive runtimes at-scale 
- SSIM is fast and standard across research 

papers



System Specification (Software Model)
● Python

○ Numpy, PyTorch, Pandas
● Model based on paper (SRCNN)

○ Upscales each individual frame
● Dataset

○ cdvl.org
○ Variety of videos, e.g.

■ Highly magnified nature shot
■ Drone shot of stadium crowd

○ 30 ten-second videos, ~35GB
○ High variability to prevent overfitting

https://www.cdvl.org/


System Specification (Hardware Device)

Hardware Choice Why / why not?

CPU High Latency, Low Throughput

GPU Insufficient Modes of Computation

ASIC Too Static, Long Development Time

FPGA Allows Acceleration

Ultra96
Native 1080p, 60FPS DisplayPort output
Dedicated ARM core to act as host for FPGA
Onboard USB and WiFi capability for data I/O



Implementation Plan (Software Model)
- Upscale image from lower to higher resolution using bicubic interpolation, which 

is part of the preprocessing of the frames of the video. (off the shelf algorithm)
- After the interpolation is applied to the image, we plan on feeding this through 3 

convolution layers responsible for the super-resolution. 
- First convolutional layer -> Patch extraction and representation
- Second convolution layer -> Non-linear mapping
- Last layer -> Reconstructing into high resolution image
- Use MSE (Mean Squared Error) as loss function for training



Implementation Plan (Hardware Device)

Assembled

Downloaded

Program

● Write CNN in Vivado HLS
● CNN will be accelerated by 

FPGA and HLS meta-language
● Weights hard-coded from 

pre-trained CNN

Off the shelf

Make ourselves

Generate ourselves

Hardware

Data



Metrics and Validation
Metric Method Value

Latency Implement benchmark 
with ARM core for 
single image

<60ms

Throughput Implement benchmark 
with ARM core for long 
runs

<33.3ms/frame
>30FPS

Super Resolution 
Quality

Score output image 
with SSIM

SSIM>0.90



Risk Management
Im

pa
ct

fu
ln

es
s 

Likelihood 

CNN does not fit on 
FPGA

CNN not trained in 
time

Does not meet 
throughput, leading to 
lag and buffering

Dataset insufficient

Can’t display HD due 
to bandwidth limitation

Does not meet latency Artifacting



Project Management



Ultra96

USB PORT DisplayPort

G
P
I
O

Control 
Buttons

USB Drive

S.D. 
Videos

Monitor 
Display

ARM Core

Host Program

FPGA

CNN

H.D. 
Videos


