Real Time Video Upscaling

Joshua Lau, James Garcia, Kunal Barde (B0)

Use Case/Application Area

Problem:

- People want to watch <u>old home</u> <u>videos</u> and <u>movies</u>
- Don't want to plan for upscaling videos ahead of time
- Don't want/know how to do it online or on a computer

Solution:

<u>Plug-and-play</u>, <u>real-time</u>, video super-resolution device - Enhancing <u>240p</u> videos to <u>1080p</u>.

Solution Approach

- Trained upscaling algorithm
 - Trained on a variety of videos (Dataset from CDVL)
 - Based off paper of similar scope (SRCNN)
- Final product must be quick enough to be real-time
 - No A/V desynchronization
 - No buffering/lag
- User-friendly
 - Plug-and-play
 - Output high quality video in 1080p
 - Portable enough to move hardware around without much hassle

Quantitative Requirements

Requirement	Metric	Why?
Scaling Factor	4.5x	From 240p widescreen to 1080p full HD
Super Resolution Quality	SSIM>0.66	Beat average bicubic interpolation SSIM score to justify using CNN
Latency	<60ms	A/V synchronisation (via EBU R37) On-demand playability
Throughput	<33.4ms/frame (≥30FPS)	Maintaining FPS without buffering or lag

Model Justification

- CNN vs. DSP (bicubic) vs. DSP (filters)
 - Bicubic is fast but throws away useful data
 - DSP filters require designer fine tuning
 - CNN only requires tuning of few hyperparameters + training
 - CNN have been shown with higher performance
- SSIM vs. VMAF
 - Further benchmarking on VMAF revealed excessive runtimes at-scale
 - SSIM is fast and standard across research papers

Bicubic / 24.04 dB

SRCNN / 27.95 dB

System Specification (Software Model)

- Python
 - Numpy, PyTorch, Pandas
- Model based on paper (SRCNN)
 - Upscales each individual frame
- Dataset
 - <u>cdvl.org</u>
 - Variety of videos, e.g.
 - Highly magnified nature shot
 - Drone shot of stadium crowd
 - 30 ten-second videos, ~35GB
 - High variability to prevent overfitting

VQEG HDTV Test, vqeghd1

VQEG HDTV Test, vqeghd3

System Specification (Hardware Device)

Hardware Choice	Why / why not?				
CPU	High Latency, Low Throughput				
GPU	Insufficient Modes of Computation				
ASIC	Too Static, Long Development Time				
FPGA	Allows Acceleration				
Ultra96	Native <u>1080p, 60FPS</u> DisplayPort output Dedicated <u>ARM core</u> to act as host for FPGA Onboard <u>USB and WiFi capability</u> for data I/O				

Implementation Plan (Software Model)

- Upscale image from lower to higher resolution using bicubic interpolation, which is part of the preprocessing of the frames of the video. (off the shelf algorithm)
- After the interpolation is applied to the image, we plan on feeding this through 3 convolution layers responsible for the super-resolution.
- First convolutional layer -> Patch extraction and representation
- Second convolution layer -> Non-linear mapping
- Last layer -> Reconstructing into high resolution image
- Use MSE (Mean Squared Error) as loss function for training

Implementation Plan (Hardware Device)

- Write CNN in Vivado HLS
- CNN will be accelerated by FPGA and HLS meta-language
- Weights hard-coded from pre-trained CNN

Generate ourselves

Metrics and Validation

Metric	Method	Value
Latency	Implement benchmark with ARM core for single image	<60ms
Throughput	Implement benchmark with ARM core for long runs	<33.3ms/frame >30FPS
Super Resolution Quality	Score output image with SSIM	SSIM>0.90

Risk Management

fulness	CNN does not fit on FPGA	CNN not trained in time	
mpactfulness	Does not meet throughput, leading to lag and buffering	Dataset insufficient	
m	Can't display HD due to bandwidth limitation	Does not meet latency	Artifacting

Likelihood

Project Management

	Project Proposal		Design Presentation					Interim Der	no		Final Presentation	m
	VV4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W14	
TASK TITLE	9/20	9/27	10/4	10/11	10/18	10/25	11/1	11/7	11/15	11/22	11/29	
Hardware												
Acquire Ultra96	JSG											
Acquire Peripherals	JSG											1
Research I/O	JSG	JSG	JSG + KB	2								
Implement I/O			KB + JSG									
Test I/O			JSG + KB									
Get Comms between ARM Core and FPGA		JSG										
Write Math Functions for CNN in Vivado HLS	S			JSG	JSG	JSG		-				1
Validate HW				KB	KB	KB	KB					
Port SW model onto FPGA							JSG + KB					
Validating FPGA model against SV model								ALL				
Software	1				0							
Research DSP vs CNN models	ALL											
Acquire AWS Credits		KB										
Setup AWS		KB	KB + JL									
Acquire Dataset	dl.											
Familiarize VMAF Documentation	JL	4.										
Research specific CNN models		KB + JL	KB + JL									
Benchmark VMAF		JSG + JL										
Research SSIM	KB											
Benchmark SSIM		KB + JL										
Benchmark CNN Models		JL + JSG	JL									
Develop Python Code for Training	1		JL + KB	JL	JL							
Train Model				JL	JL							
Test/Evaluate Model				JL.	JL							
Log/Export Weights					JL							
Misc												
Slack/Slop	1.1						1.5		ALL	ALL		
Milestones												
Proposal Presentation	JSG											
Design Presentation			KB									
Design Review Report			ALL	ALL								1
Interim Demo							ALL	ALL				
Final Presentation											JL	

James Joshua Kunal

