18-500 Final Project Report: 12/14/2021

TracKat

Authors: MeeDm Bossard, Tarush Govil, Lucas Moiseyev

Electrical and Computer Engineering, Carnegie Mellon University

Abstract—TracKat is a novel pet tracking and health diagnostic
system. The project utilizes a modular system of custom-made
Bluetooth Low Energy (BLE) sensor tags to monitor pet house cat
eating habits and transmit the collected data to a central hub device
running a local web application. The web app stores and dynamically
plots food and water intake over time, thus enabling pet owners to
track the information. If the system catches any sudden changes in
routine, it alerts the user with an email explaining which cat had what
issue and recommends a check up with a veterinarian. TracKat is sure
to be an excellent tool for cat enthusiasts and vets alike.

Index Terms—Bluetooth Low Energy (BLE), Cats, Load
Cell, Printed Circuit Board (PCB), Radio-Frequency
Identification (RFID), Raspberry Pi (RPI), Web Application

1. INTRODUCTION
U nlike many other pets, house cats instinctively hide
signs of weakness or sickness, and can follow strange
behavior routines leaving their owners confused as to how to
best care for them. One tell-tale sign that a cat is sick or
injured is a change in its normal eating habits, but such
behavior patterns can be difficult for owners to track manually.
The problem is further confounded if a household has multiple
cats that eat freely throughout the day, as it is extremely
difficult to determine their individual food and water
consumption.

TracKat enables cat owners to track and maintain
their cat’s health by sensing sudden changes in food and water
consumption levels per cat. The system features a modular
network of sensor tags communicating with a small hub
computer. For the device to adequately inform users of their
cats’ health, it is built to accurately detect and display cat
feeding and drinking within a maximum window of 10% false
positives and 10% false negatives per day. To enable food
bowl placement anywhere within a user’s home (unrestricted
by wall outlets), the sensor tags are designed to run off local
battery power. To ensure the system is user friendly, the tags
are designed with strict power rationing to last nearly 8 weeks
on a single coin cell battery charge.

While there are devices on the market that perform
similar actions, there is a distinct lack of devices that allow
users to monitor their cat’s eating and drinking habits over
time. For instance, there are devices that first detect a cat’s
microchip number and then allow specific cats to get to their
food. On the flip side, there are autonomous feeders which
dispense food on a regular schedule. Both of these devices do
not allow for the user to be able to track eating and drinking
for multiple cats in a user friendly way.

II.DESIGN REQUIREMENTS

Establishing specific design requirements helped to
ensure that TracKat would be able to successfully track fast
changes and indicate cat health in multi-cat households.

The most important requirement for TracKat is its
ability to accurately detect a specific cat’s eating and
drinking habits. The system should not only track these
habits, but also be able to catch fast changes in consumption.
False positives within 10% translate to having roughly 1
“extra” value for every 10 real times a cat goes to eat or drink.
Likewise, false negatives within 10% mean the system can, on
average, fail to catch up to one eating or drinking event per 10
actual events. This way the owner can still get a great sense of
their cat’s health.

Another main aspect of the project is its ability to
support modular configurability. As previously mentioned,
other devices on the market are not suitable for multi-cat
households when it comes to regulating food intake. TracKat
must be configurable by the user for different numbers of cats
and bowls. This feature is tested by varying configurations and
verifying that the system works for all cases.

In order to allow the most accurate information as
possible about the cat’s consumption, the weight sensing
granularity must be able to detect the smallest size that a cat
could eat. This would be one kernel, which weighs roughly 0.1
grams. Hence the weight sensing granularity must be around
0.1 grams at the least to account for the minimum weight the
cat could consume. An average lick of water for a cat is 3/100
of a teaspoon!. At 5 grams per teaspoon, this translates to 0.15
grams of water. Thus the 0.1 gram requirement is sufficient to
also account for minimum water intake. To test this goal, one
kernel is taken out of a test food bowl, and the system is
checked for an accurate response.

Changing out batteries frequently can get tiresome and
redundant for a user. Hence, maximizing the battery life of
the components of the device is an important factor to
consider in easing the use of the system. This project considers
replacing batteries at a rate of once every 8 weeks as fairly
reasonable for most electronic devices. This design
requirement is tested by running the device through Dialog
Systems’ Power Profiling tool.

Lastly, being able to refer back to the cat’s information
for an extended period of time can be extremely valuable for
the user to understand their cat’s long term consumption
routines. However, any longer than a year as a period of time
to display the data won’t be as useful for the owner, since
fast changes in their habits are more likely to be of interest.
Hence the data should be available to the user for at least 1
year. This design goal is tested by calculating the memory
consumed by each data point, multiplying this by the absolute
extreme maximum number of possible data points in an entire
year, and then comparing this result against the available
storage size of the central hub.

18-500 Final Project Report: 12/14/2021

I11. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

Key
Hardware [Software]
Off-the-shelf Custom-made
RFID Sensor Tag
REID Antenna RFID Reader Accelerometer
IC Break Breakout RPI
RFID Reader IC
- R
Bluetooth Module / MCU Power tracKat Web App
/- ~\|| switcn || Battery
Tag Firmware Pack
Information
[Inter: Handler]l Scheduler] User I[igggi‘[Time
[Biuetootn Driver | RFID Driver ||| 8" won fefresh Graphs
I Accel. Driver][Timer L Reset Breakoit BLE - /
Button r \
Apache Web Server 2.0
Weight Sensor Tag
Load Cell HX711 ADC Accelerometer JSON JSON
0ad Cel Breakout Breakout
P : L .
Bluetooth h-AoduIe /MCU Smce': %«:Irlr BLE Data Analysis
Tag Firmware Clip Bluetooth
| interruptHandier || Scheduler ||I| yser > Driver | T I
| Buetooth Driver || HX711 Driver | Sl
TGN HX711 Driver WD Port Local Application
Reset Breakout
{\ Accel.Driver || Timer || Reset
1. System Diagram - RFID would eventually be scrapped to descope

A.Primary Components

1)Sensor Tags

The sensor tags are TracKat’s connection to the
physical world. Simplicity, modularity, and ruggedness are key
factors that drive the design of the electronics, firmware, and
mechanics.

The tags feature custom-designed PCB’s built around
the DA14531 - a bare-bones BLE module that supports the
computing and peripheral capabilities required by the tags
without being bloated with unnecessary extra features. The
tags also include a coin cell battery clip, a power switch, a
general purpose user button, a reset button, a six pronged pogo
pin SWD port, a 10 pin adapter for the SWD port, and GPIO
breakouts. This main PCB is designed to interact with custom
made sensor breakout boards - specifically a load cell ADC/
Amplifier chip breakout board, an accelerometer board, and an
RFID chip board.

The sensor tag firmware drives weight sensing
capabilities by running a system timer that fire interrupts at
constant intervals. The interrupts are handled with logic that
automatically establishes a baseline empty bowl reading upon
being connected to the hub computer, filters out invalid sensor
readings (such as a cat pressing into the bowl as it eats), and
saves timestamps of each eating event. The tag also
automatically senses food refills meaning that users do not
have to manually notify the system that they refilled a bowl.

The tag electronics are housed inside a custom
designed, 3D printed enclosure that comes in two pieces. The
bottom plate includes mounting brackets offset from the

ground to keep the electronics up and away from a potentially
messy floor. The top plate features a skirt that pushes any
falling water or food debris out and away from the electronics,
and a lip that securely holds onto a standard sized metal cat
food/water bowl.

2)Central Hub

The Hub (an RPI 4 computer) serves as the
connection between the physical sensors and the digital web
app. It runs a process that updates all of the cat’s information
every 4 hours.

It first connects to the tags that the user indicates they
would like to use via the provided bluetooth address. This
address value is given by the web app at time of registration. It
connects to the specified tags via bluetooth, then reads in
characteristics, which are memory mapped io arrays or values.
These arrays and values are little endian bytes, which are then
converted into integer arrays and values. Of these arrays and
values there are, an array of weights that are not in grams, an
array of timestamps in seconds, a baseline value for
conversion purposes, a microchip number array, and the
number of points being sent. The hub then uses the baseline
value sent over to convert the array of weights into grams.
Additionally, the microchip array is then used to sort through
the weight values, and separates each of the weight values and
time values according to the microchip number, meaning you
then know which cat has which value of weight and time
stamp.

It then does computation on these arrays to get some
more usable information. Using these arrays, it does

18-500 Final Project Report: 12/14/2021

calculations to determine the consumption. It does this by
subtracting adjacent weight values. Additionally it finds the
same information in terms of volume. While the volume was
not implemented in the web app in the end, they are still
internally there. All of these values are then stored in the
user’s dedicated folder, inside of a .json file, where the
filename is the cat.

After this process has been completed for all the
users, effectively reconnecting to the tags in their house,
reading in values, then organizing them, analysis is performed.
The hub performs statistical analysis on the feeding data by
calculating a running average of earlier eating and drinking
events. If a recent weight value falls outside of above two
standard deviations of the mean, the hub alerts the user by
sending an email warning them of potential health issues. To
keep track of eating or drinking too little, the same analysis is
done on the time array. This is done because there is
thresholding of the values done in the tags that does not enable
the hub to use the consumption arrays to determine whether
cats have only eaten a little. Therefore tracking how much
time has passed in between eating or drinking times can tell
more about how little a cat may have consumed.

3)Web App

The Web Application, deployed on the Raspberry Pi (http://
172.26.161.0), is the interface between the TracKat system
and the user. It features a registration page for new users to
enter their contact information, add new cats to track, and
select what the system is tracking (food, water, or both).
Existing users can login into their accounts once they have
fully registered.

They are then redirected to their custom profile page, from
which they can access unique pages for each of the cats they
had registered. On the cat’s profile page, they can view the
graphs of each cat they have entered into the system. They are
able to view either the food graph, water graph, or both,
depending on the option they chose at the time of registration.
The graphs displayed changes dynamically based on the
system configuration. Users can also click the “refresh” button
on their profile page to manually update the graphs with the
latest collected data from the sensor tags instead of waiting for
the pre-scheduled automatic updates (once every 4 hours).
Along with updating the graphs with the latest information, we
perform data analysis on the food consumption and water
consumption levels of the cat and determine if an unusual
event has occurred, based off of which we send a custom
message to the user’s email address informing them about the
issue.

The Web Application, along with storing data in its SQlite
database, writes data to a global JSON file to communicate
with the other software being written on the hub. This is done
at the time of registration and examples of data stored include
the user’s email address (stored to inform the user of unusual
eating/drinking activity), each cats’ microchip number (for
uniquely identifying which cat comes to the bowl), and the
user’s username (for correctly identifying the user for the cat,
which is especially essential when a user may have multiple
cats). In order to ensure full modularity of the system, at the
time of registration, the web app also creates directories based
on the user’s username, and subdirectories (based on the cat’s
name) for the multiple cats the user registers. These

subdirectories then contain JSON files which the web
application reads from to display the data in a graphical
manner on the web page.

B.System Connections

1)Tags — Hub

The RPI receives packets of information through
BLE 5.0 using the bluepy python library. It first scans and
connects to the correct bluetooth device, then gets the
information by looking at the characteristic values. In order to
conserve sensor tag battery life, bluetooth transmissions are
scheduled to occur once every four hours. This is an
acceptable time frame because, while TracKat is technically a
real-time system, the results it produces (food consumption
graphed over time) is not data that is highly time critical. The
user also has an option to manually request an immediate,
unscheduled update with the “refresh” button on their profile
on the webapp.

The sensor tags store equal size arrays of valid food/
water weights, valid eating event timestamps, and microchip
ID numbers. Each array’s values correspond to the other
values based on element index. For example, the weight of
food at weight array index 3 was detected at timestamp array
index 3 and was eaten by a cat with the ID stored at microchip
array index 3. The tags dump this data to the hub each time
they establish a connection along with the baseline value,
array length, and maximum value (updated upon food refill),
and then return to low power operation upon bluetooth
disconnect. The hub software then interprets these arrays and
sorts them based on microchip ID into the appropriate cat
profiles.

2)RPi «—— Web App

After the RPI receives data via BLE, it interprets the
sensor data as explained in the hub section. It then packages
the data in a standardized JSON file for each cat which can be
easily read by the web application, which goes on to display
the packaged data in a graphical manner.

When a user is registering information about
themselves and their cats, the web app updates a separate
JSON file with that information and stores it in a modular
manner for organized, accessible format for the RPI. The RPI
then uses this information to perform calculations such as
finding the volume, knowing which cat has which microchip
number, and storing other general information about the cats
and users.

18-500 Final Project Report: 12/14/2021

IV. DESIGN TRADE STUDIES

A. System Architecture: Single Device vs. Distributed System

An early trade study the team performed concerned
the overall configuration of the system. The question to
answer was whether to create a single, internet connected
device versus splitting it into a distributed bluetooth network
of multiple sensor tags with a single, internet connected
central hub. Ultimately, the latter approach was chosen for its
greater ease of use and implementation. It would be far
simpler to support modular configurations (changing numbers
of bowls) by simply connecting more individual tags to a
network rather than designing mechanical and electrical
hardware to connect/disconnect different bowls as a single
device. The distributed approach also offered more flexibility
in system configuration as the sensor tag bowls could be
placed anywhere within a home versus a single, modular
device having all bowls in one place.

B. Power

Another key design trade study concerned the power
sources for the different components of the system. In order to
allow users ultimate flexibility in terms of bowl placement, the
sensor tags were designed to operate from battery power.
Rechargeable LiPo batteries were ruled out because of
concerns about user safety (designing a tool for animals with a
potentially explosive component would not be ideal). A rough
estimate of the power consumption of the chosen BLE module
intermittently running a load cell ADC suggested that power
consumption of well under 150mAh over the course of 8
weeks was achievable based on sensor sampling rates and
bluetooth communication rates. The CR2032 coin cell was
chosen over AA batteries because of its smaller form factor
and because it provided sufficient power based on
consumption estimates (220mAh per coin cell).

Being able to connect to the tags wirelessly, the hub
computer could simply be placed near a wall outlet
independent of tag location, so the chosen power system for
the RPI was simply an off-the-shelf wall outlet adapter.

C. BLE Modules:

The primary drivers of the BLE module trade study
were power consumption specifications, simplicity of
implementation, and availability. The DA14531 chip was
chosen for several reasons. Most importantly, it supported
BLE 5.1 so it had the capabilities required by the project.
When comparing to other chips on the market, we found that it
contained every peripheral we needed without being bloated
with unnecessary “extras", had excellent and extensive
documentation, and was readily available in stock. It also
boasted extremely low power consumption due to using an
Arm Cortex MO+ processor in concert with what is currently
the least power-hungry bluetooth transceiver on the market.
The DA14531 consumed 270nA in hibernation, 3.5mA for
BLE TX and 2.2mA for BLE RX. In general it had all the
capabilities we needed while keeping power consumption
extremely low.

D. Deployment on Raspberry Pi vs. Cloud

Initially at the time of the design review, we were
planning on having the web server be deployed on the cloud,

either through an Amazon EC2 or S3 instance. However, after
discussions with the Professors and the TAs during the interim
demo, we realized a much better and logical solution would be
to have it deployed on the Raspberry Pi. It supports full
functionality that the cloud would have provided and allows us
to access the web application from anywhere (as demonstrated
in the demo where we had the server running on one laptop
and the web application being accessed from another). The
files we were creating and maintaining had no reason to exist
on the cloud and are all worked through locally on the hub.

E. Django vs. Flask

We were pretty certain that we wanted to proceed
with a Python based web application. Given that, Django and
Flask are the two most popular frameworks as of 2021.0One of
the reasons why Django turned out to be an obvious choice
was its built in object-relational mapping system, which would
make querying from the database much easier. Another reason
was that Django is much stronger than Flask in terms of
security, offering protection against cross-site scripting (XSS),
cross-site request forgery (CSRF), and sql injection attacks.
The final nail in the coffin was Django’s built-in
authentication system, making it easier to verify users wishing
to access information about their cat.

F. Information Display on Graphs

All the information that our graphs would need was
being stored in arrays being populated by the RPI. One thing
to consider, however, was what would be the most user-
friendly way to display the data in a manner that would allow
the user to easily understand their cats’ habits.

We figured that it would be best to have separate
charts for the food and water consumption of the cats since the
amount they would be consuming would vary quite a bit for
both of them, hence resulting in quite an uneven distribution
of the y-axis if we would have chosen to have them both on
the same graph. We were also initially planning on displaying
the volume of consumption, however we quickly realized that
the graphs for those would turn out the same since it would
just be a shift on the axis by a constant factor, hence it
wouldn’t provide any additional useful information to the user.

G. Bluetooth vs. WiFi

To determine how we would have the sensor tags
communicate with the RPI, we primarily focused on power,
flexibility, and range. In terms of power consumption
Bluetooth (especially the BLE 5.0 specification) completely
outclassed WiFi, with the former having example use cases of
battery powered devices running for approximately two years
on a single charge, as opposed to WiFi needing to be hooked
up to an outlet. Regarding flexibility, bluetooth allowed us to
be much more adaptable with the number of bowls we used.
When looking at cost however, implementing WiFi would
have been cheaper with some boards and modules coming in
at under $5, whereas implementing bluetooth required
approximately $5-15 per tag and another $60 for the two
evaluation boards we used to develop on. Given our relatively
large budget limit however, cost was not a major factor that
affected our choice. WiFi would have much better range by
spanning an entire home versus BLE 5.0 only reaching

18-500 Final Project Report: 12/14/2021

roughly 240 meters outside and around 40 meters indoors.
Still, the extreme difference in power consumption swung the
decision towards using bluetooth.

H. Bluetooth 4 vs. Bluetooth 5

When looking at speed, we saw that Bluetooth 5 had
twice that of Bluetooth 4 due to the much larger bandwidth
provided in the newer version. In regards to range, we saw that
Bluetooth 5 could serve up to 4 times the distance to which it
should allow connectivity. When considering power, we found
that Bluetooth 5 tended to use up less than the older standard,
thus allowing the sensor tags to keep running for a longer
period of time. Finally when comparing support for IoT
devices, Bluetooth 5 came out on top primarily because of its
increased range and speed. Using Bluetooth 5 over Bluetooth
4 was an easy decision. This primarily drove the decision to
use the RPI 4 as a hub instead of the RPI 3, as the 4 supported
Bluetooth 5.0 whereas the 3 did not.

1. Weight Sensors: Load Cell vs. Force Sensitive Resistor

When taking into consideration factors like accuracy,
hysteresis, and granularity, the load cell came out on top as
compared to the force sensitive resistor, as it purportedly had a
much smaller error rate of +/- 5%. Load cells are also more
rigid, meaning they would survive better over many uses by
potentially mischievous cats.

V. SYSTEM DESCRIPTION
A.Sensor Tags

1)Electronics

Perhaps the most important aspect of the sensor tags was
the electrical hardware. The tag PCB’s were designed from
scratch and manufactured in house using a Bantam PCB mill.
The initial iteration of the tag schematic was designed around
using a DA14531 chip because the BLE module version of it
was not in stock. Thus all supporting components needed to be
spec’d, researched, and purchased.

This version of the board would feature the DA14531 chip,
a surface mount external antenna, 2MB SPI Flash memory
chip, an external crystal oscillator, an accelerometer connected
via 12C lines, an SWD port, a user button, a reset button, and
various other support circuitry components. The layout for this
design proved to be far more difficult than anticipated, as
proper RF design principles had to be adhered to, such as
using ground stitching and fencing vias and calculating trace
widths to support the external antenna.

Luckily, the module version of the DA14531 became
available part way through the semester. This module enclosed
the DA14531 chip, the SPI flash memory, and the crystal
oscillator into a single package that could be surface mounted
to a PCB. Most importantly, the module had a PCB antenna
built in, meaning that complicated RF design could be avoided
for the rest of the PCB layout. The weight tag board was re-
designed around this module and included the I2C
accelerometer, the SWD port, a coin cell battery clip, a power
switch, a user button, and a reset button. This board also
included the HX711 chip - an amplifier and 24 bit ADC used
to interface with the load cell sensor.

e/ \

2. Custom made HX711 breakout board used to verify the design

Prior to fabrication, an HX711 breakout board was built to
verify the design. Likewise, accelerometer and RFID breakout
boards were designed, etched, and populated. RFID sensing
was later scrapped to descope the project and shift greater
focus towards perfecting the weight sensing application.

3. The initial tag schematic was overly complicated

18-500 Final Project Report: 12/14/2021

1 I z I 3 1 I 5 6
[«
ez se= sees
r1 1 g P28 EdL nPa r P3L It PF
F - IR %] Py D%
A T b (71m WTTeR L T L A
ez : e ho g 0
1 1 n r A P
GND (ML S H
Ic . T IE
& 3 a2 (-2aTT 2
v 4‘ VIV 558550-H-T250T-23 [MCC-M pouT]
s 1, = S0
L o8 Ea [LViEeTT 7T ‘)
= -\, b . ——L L
2020 = fu - [X D
B v [oSty B
Z — A2 Lsitto—]
‘ s B8
v Sy
. - 10C
g1 Les] o B,
- .wr r i T o T = I
Nt RES 3 f h
TJA. o
|
c [o]
Ul T
H GH -
y ES MO 1 - s |35 ¢ SOK
[Tl 2 UM U] AZCEL_|b 1 4 ",F ER 2
) by L .) —— Pos HE Soa D
v H Gl g2 GND 1]] 0 CiSe 1] C_DATA
& 102w f— 1
» ' Com_ USCR_2TH i 7
lelo s M1 GHN -
M0 DA14531MOD-00F01002
E TITLE: TracKa: Maodule - \Weigh! E
Document Number: REV:
Date: 11/21/21 5:33 PM Sheet: 1/1
4. The intermediate tag design was built around the DA14531 module

rather than the chip, making it far easier to fabricate

5. Intermediate board layout

This board was designed to be programmed with a six-pinned
SWD connector that would press directly onto the copper
contacts. This connection worked, but unfortunately we soon
realized that the CMSIS-DAP board used to flash the module
had problems saving new code into the SPI flash memory.
This iteration of the board thus could only be run tethered to a
computer from a debug port.

6. Intermediate board fully built out

This version of the sensor tag board was etched on a single
layer PCB, making layout another serious challenge. The next,
and final iteration of the board would be made with two
layers. The next iteration would also solve the flashing
problem by include a new 10 pin port adapter for a new JLink
flash board, which used JTAG directly rather than going
through a CMSIS-DAP.

18-500 Final Project Report: 12/14/2021

T | 2 3] Z
V HIGH V HIGH V HIGH s2
A EVQ-P9102W/
) Pl | U vV HIGH N 1 s e o L4 USER BTN
A PL) > e +——1 NO_1 cOM2 | — A
p2 |E32 4 e s [- USER BTN 2 | com 1 ohD 2
— ek P — S 2] no2 A1
o . mo [° (EY E =
A GND RESET P > GND
—
- TC208 X-N V HIGH V HIGH
GND V HIGH L4 av4 s A
A GND SVS
- o, s
5 IPER 5 H) PO 2 M B PIO 5
’ — H el B4 e
P2 F b 2 CPIO 6
B p ; JV*_L M B
GND GND
D V HIGH
— Ul
— V HIGH BSS84AK s1 . —
EVQ-P9102\W VBAT -
. NO_1 com2 |2 MOSI 22 po PO 2 GPIO 1
MOS| COM 1 GND GPIO_4 KA [o 3_GPIO_3
NO_2 l PO _8 J16_GPIO_6
C = SWCLK 10 0 < po o |25 GPIO 5 C
GND J9 PO 8__GPIO_2
NC/GND |-
V_HIGH ohD 225 o
A ”
— 3 DA14531MOD-00F01002 -
V_BATT 1 >8 B 5_V_BATI =
2 }: He 6 GND
V_EXT 3 _." < 7V EXT
JS202011JCQN A
D 22.23-2021 D
V_EXT - %21 TracKat Module Breakout
ST 12/9/21 5:58 PM
GND Sheet: 1/1
1 3 | 4
7. Final board schematic
'I..........................Q.‘...............‘
. - Wau = y
L]
. - o {
L] L |
L] L
o
o
» 9
e o
L |
o
o _ o
OA3 o
IR RRERE XREEEY

8. Final board layout

10. Final board connected to an improved iteration of the external HX711
chip breakout board

18-500 Final Project Report: 12/14/2021

The final version of the sensor tag board was simplified with
the removal of the built-in accelerometer and load cell ADC in
favor of simply breaking out all of the GPIO lines and then
attaching the requisite sensors from external breakout boards.
This was done to allow for maximum design flexibility and
ease of implementation.

2)Firmware:

The firmware for the sensor tag boards was built with
Dialog System’s SDK 6. The SDK features a pre-made kernel
and bluetooth handling, which developers can tap into by
writing custom callback functions that are triggered by various
events. This custom code is referred to as the “user space”.
The sensor tag user space handles configuring GPIO, running
a custom BLE profile, driving the HX711 Amplifier/ADC chip
to read load cell sensor values, catching valid “eating events”,
and keeping time of each valid eating instance. An 12C
accelerometer driver and RFID driver were partially
implemented but ultimately left out due to RFID sensing being
removed from the scope of the hardware portion. To simulate
microchip ID’s (to allow the rest of the project pipeline to test
monitoring multiple cats), the general purpose user button of
the custom sensor tag board is used to manually select
between two different microchip ID’s - if an eating event
happens when the button is pressed it is logged under one cat’s
profile, while being logged as the other cat if the event
happens while the button is released. A second version of this
test simply tied what would be the user button input to an open
GPIO line that had no internal pullup or pulldown resistors -
this effectively made each eating event fall under a random
choice of the two cat ID’s thus simulating the randomness of
real world multi-cat operation.

The HX711 is driven by running a systick timer that fires
interrupts every 20pus. A custom interrupt handler runs logic to
decide how each interrupt affects the rest of the system. Upon
the first bluetooth connection being established, the timer is
initialized and starts ticking. The load cell is read by waiting
for the data output line of the HX711 to signal that a value is
ready to be sent, and then pulsing the clock line 25 times to
read the 24 bit ADC value from the chip’s internal shift
register. Upon a successful read, the load cell is put to sleep to
conserve power until the time comes to read it again.

Upon initial connection, the sensor tag immediately runs a
calibration routine to tare itself and reports this baseline value
as a characteristic in the custom profile read by the hub
computer. It then reads the load cell once every 5 seconds with
the rest of the time spent in low power sleep mode operation.
The driver maintains a maximum value that is updated upon
detection of a large weight being held constant for an extended
period of time. This way, users never have to manually inform
the system every time they fill a bowl. An eating event is
considered valid only if it decreases the weight in the bowl by
an amount greater than the threshold value. This thresholding
is necessary to ensure that spurious vibrations and other sensor
noise are not counted as eating events.

When an eating event is captured, the value is saved as an
element in the weight array, the timestamp of the event is
converted into seconds and saved as an element in the
timestamp array, and the microchip of the cat at the time of the
event is saved as an element of the microchip array. These
three arrays must be the same size as elements of the same

index in each array correspond to one another - cat ID at
element “x” ate food amount at element “x” at timestamp
element “x”. When the hub preforms a reading of the sensor
tag, the arrays are dumped and then erased to conserve the

limited local memory.

3)Mechanical Enclosure:

The most critical part of the mechanical design was
ensuring that the sensor tag electronics would be protected
from various debris falling from the food and water bowls. As
such, the top plate of the weight tag was designed with an
umbrella-like outer skirt to push any messy food a cat might
spill away from the hardware underneath. The top plate was
also designed with a semi-circular lip on top to firmly secure
the food bowl. The press fit was tight enough to grip the bowl
without being a nuisance to remove it.

11. Custom designed test hardware was made first to ensure dimensions
and fittings were correct

12. Top plate of the weight tag enclosure

18-500 Final Project Report: 12/14/2021

The bottom plate of the tag included standoffs to secure the
custom tag PCB and keep it further offset from the floor which
could also become messy.

13. Bottom plate of the weight tag enclosure
16. Fully assembled tag loaded with food

Prior to descoping the project away from RFID, a mock
enclosure was designed and the antenna coil frame was built.

14. Final board and sensor attached to bottom plate

17. Proposed RFID bowl enclosure

18-500 Final Project Report: 12/14/2021

18.

19.

Side profile of RFID antenna coil frame

Custom made RFID antenna coil wrapped around custom designed
and 3D printed frame

10

B.Hub

20. Raspberry Pi 4 as a Hub

As explained in previous sections, the hub has a bluetooth
driver which communicates with the tags, reads in the values,
then organizes it, and also has a portion that does data
analysis, and communicates with the web application via
JSON files. All of the code written that will be detailed in the
later sections are then copied over and used for the refresh
button on the web app’s end.

As a general reminder, the hub communicates with the web
app using .json files. There is one main file that includes
information that the user entered during registration. For
example, the user’s email, name, and other information about
the user, and each cat’s name, microchip number, weight, and
other information about their cat. We also have a file system,
where there is a folder for each user, of which files are named
after each cat. Inside these files are the data that is collected
from the user. The hub fills the files, and the web app uses
these values to display.

All of the following code was done for each user. Since
each user inputs the bluetooth addresses for the tags they have
“bought”, every 4 hours we are able to connect to all the user’s
tags and gather values, then do the following procedure:

1)Bluepy

To create the bluetooth driver, the bluepy module was used.
This is a module that helps you use bluetooth low energy. It
allows you to connect to a peripheral device that has bluetooth
low energy enabled, then read from, and write from the
device. While using it, there were lots of snags in the
beginning. The documentation is not extensive, and it was
very confusing to work with. For instance, when we started
using it to connect to the peripherals, it would refuse to find
and connect to any peripheral device. We later found out it
was searching for all address types and had to do lots of
google searching to figure out what was wrong. Once we were
searching for only random addresses, we were able to connect
but this took weeks to figure out. Otherwise, it was quite
confusing as you have to decide which service, then which
characteristic you want to read from, and then read. While we
had documentation online that had examples, we carefully
went through what each was doing and used all of these
functions.

In general, we used this module to connect to, and then read
the values for each user. Since the user also says whether they
want to use either the food, water, or microchip values, we
have also written custom code to ensure the following

18-500 Final Project Report: 12/14/2021

procedures only happen to either the food and/or water bowls.
Additionally, if the user doesn’t want to use the microchip tag,
the web app inputs 0 as the microchip number. If this is seen,
the hub assumes there is only one cat for that user and only
updates that file.

2)Converting from Little Endian Arrays and Values

Once we are able to then read via bluetooth, we then have to
convert the little endian arrays and values into readable
information. First we wrote custom code to look through the
array and index into each 4 bytes, and using struct.unpack(),
turn it into the int version. We would do this for all three
arrays, the microchip array, weight array, and the timestamp
array. We also read in the baseline value and convert it. While
the microchip array and time stamp arrays are all at the right
units, we had to convert the weight array into grams using the
baseline value and another static ratio value. We then had all
three arrays ready to go.

3)Organizing Using Microchip Number

We then wrote custom code to organize the information.
First we found all the unique microchip numbers that were in
the microchip array. For each unique number, we were then
able to find all elements in it that matched that. We then were
able to find the index of where that was, and index into both
the weight and time stamp values and add it to a new list.
Therefore, each unique microchip number had a weight and
time stamp list.

4)Analysis on Arrays

The following process is done for each individual cat in the
user’s folder. For the weight values, we just run it through a
for loop to find the difference between adjacent indices.
Additionally, it looks at the last value from the weights already
stored in the .json file for the cat and makes sure that this is
also accounted for. It also calculates the food and water
consumption and raw weights in terms of volume as well.
Then the .json file for that cat is updated.

We hit some bugs in the beginning because fixing edge
cases can sometimes be hard. We ended up using dummy
arrays and testing out all assortments of arrays that could
come in. From being empty, to being 1 element long, etc. to
make sure it worked for all types of data coming in.

5)Statistical Analysis

After the process explained above is done for all users and
therefore all the cats, data analysis is performed on all of them
in order to figure out if there was an unusual eating event. To
do this, we determine values called danger levels, where if a
data point goes over or under this value there is a problem. We
use the idea that 95% of data falls within 2 standard deviations
of the mean. We use up till the last 3 values to determine the
original mean and standard deviation. Then we look at the last
3 values to see if they fall outside of this “danger level”. While
we landed on 3 for the demo, this is a hard coded value that
would change depending on how often the cat would eat every
4 hours.

11

To achieve this, we used a python module called statistics to
find the mean and standard deviation of the beginning data
points inside of the consumed data. Then we were able to use
these values to figure out what the danger level would be. This
danger level would then get put as a static value into the cat’s
file to then be displayed on the web app.

Since the values coming from the tags are only saved if the
amount consumed is over a certain threshold, there was no
way we could use the weight values to then figure out if they
were eating too little. Because then we would not be able to
catch the smaller eating events. Hence for overeating or over
drinking we use the weight values, but for under drinking and
undereating, we use the timestamp values to see if there was
too much time between eating events.

If this data analysis is done and there is an unusual event,
then it will use code written by Tarush that sends an email. It
will send a custom message that shows the user’s name, cat’s
name, the type of event, and a suggested course of action
depending on the event.

C.Web App

[

Toua Gommenec 1

P W N S - S S) S S

PSS E I E S TP P FILSEPCELI L EFEE LIPS I I

21. Screenshot of Web Application

1)Registration and Login

For building the web application, we used the Django
framework and have the web application deployed on the RPI,
allowing for accessibility on different devices. When the user
first visits the page, they are met with a login page which asks
for the user’s username and password. For authentication,
Django provides us with a user authentication system which
will handle user accounts, permissions, and groups. If the user
does not have an account, we provide a link which directs
them to a registration page. Over here, they can create their
account as well as store basic information about the cats they
wish to register. They also input whether they wish to keep
track of food and/or water intake as well as the bluetooth
addresses for the bowls. Both the login and registration pages
on the web application are created using Django’s forms
class.

2)Storage of Data in Database and Files

This data is then stored and managed in an SQlite database
where we have two separate classes, the cat owner class for
each user and a cat class, for each cat registered for each user.
Along with this, the web application is responsible for creating
directories based on the user’s username and subdirectories
based on the cat’s name. Each inner cat directory then consists
of a JSON file which contains arrays of data (ex. time arrays,
food and water consumed arrays, updated danger levels) from
which the charts read information from and display.

We also store this data in a separate JSON file to allow easy
accessibility of this information for the other software that is
written on the hub. This allows for easy integration between

18-500 Final Project Report: 12/14/2021

the two subsystems and avoids requiring us to always have to
access our database constantly for reading and writing.

3)Bluetooth Integration

One of the pain points we faced with regards to allowing
full integration from the hardware with the web app was
getting the bluetooth module to work with the virtual
environment running on the Raspberry Pi. Due to my lack of
experience with this module and with importing external
packages, a lot of time was spent on researching, debugging,
and ensuring correct installation. Ultimately the solution
ended up being a quick fix, but a good amount of time was
spent in figuring out the issue.

This however, was a big accomplishment and really
improved the functionality of the web application. Originally,
the graphs were only being updated at a fixed interval of time.
However, now with the bluetooth working from the server, the
user, from their home profile page, could request for the most
immediate information from the bluetooth tags with the click
of a button which would write to the json file and update the
graphs accordingly.

4)Charts JS Graphs

The cat’s page comprises the graphs tracking their food and
water consumption. This was achieved using the Charts JS
library, where we use line graphs to display how the
consumption amount changes over time as well as the danger
level determined by statistical analysis being conducted on the
hub. The Y-axis of the graph displays the food/water
consumption and the X-axis of the graph consists of the
timestamps at which the cat ate/drank a minimum threshold
amount of food/water to trigger the tags.

5)Notifications

When we do detect an unusual event occurring with the
cat’s consumption, we wanted to immediately inform the
owner about this. To do so, we would send an email to the
owner, which we had stored at the time of registration. We use
Python’s smtplib (SMTP protocol client) library, where we
would create a client session, ensure our connection is secure,
and send an email to the user from a global email we create for
the web application. The email message is customized based
on the cat eating or drinking less than it usually does or much
larger than it does.

6)Raspberry Pi Deployment

Initially, we were running our application on Django’s local
web server and ensuring it would work as intended. Later on
to allow for global access, we deployed it fully on the
Raspberry Pi on it’s IP address, such that we could have the
server running on one end and could access it on other
devices. This required ensuring that the hub had full access to
all of the static files (ex. CSS) and ensuring that it could
perform reads and writes from the database as well.

12

VI.TEST AND VALIDATION

A.Accurate Cat Feeding and Drinking Detection

I WEIGHT TAG VALUE TEST

Weight Values and Errors

Reading

Sensor Reading (g) Actual Weight (g) EI?r t::r Er"y:or
1 4.61 5.67 -1.05 18.51
2 2.15 3.17 -1.02 32.16
3 3.46 4.54 -1.08 23.79
4 4.25 4.66 -0.39 8.37
5 17.49 16.22 +1.27 783
6 11.30 11.86 -0.56 4.72
7 1533 16.57 -1.24 7.48
8 1.85 1.88 -0.03 1.59
9 5.30 4.84 +0.46 9.50
10 1.85 2.76 -0.91 32.97
Totals: 72.17 67.59 8.01

Average Error: 14.69%

Raw Absolute Window Error (absolute value of distance from actual
weight): 11.10%

Raw Value Error (% off from actual weight totaled across 10 readings):
6.35%

Cat feeding and drinking detection was tested by grabbing
ten varying handfuls of food back-to-back from the food bowl,
and comparing the sensor reading against the actual weight of
each handful of food (as reported by a highly accurate jewelry
scale). Technically, the requirements laid out as project goals
were to keep false positives and false negatives within 10%. In
this sense, the system performed nearly flawlessly as it did not
fail to report a single food event. The sensor did however
detect an extra handful of food that was not taken at the end of
the test session. Thus the system had a false negatives rate of
0% and false positives of 10%.

More interesting than that was the error rate. The average
sensor error per reading came out to 14.69%. Seeing as the
TracKat system is designed to keep rolling averages of sensed
values over long periods of time, any single erroneous value is
less important than error spread across an average of readings.
The total raw value error of the system across ten readings
(taking the absolute value of each raw difference and summing
together) came to 8.01, or just 11.10% off from the actual
weight. The total grams the system was off across all ten
readings came out to just 6.35%.

These results were extremely encouraging, but could likely
further be improved in the future with more sophisticated
calibration routines.

18-500 Final Project Report: 12/14/2021

B.Modular Configuration

For the web application, we wanted to ensure that its
functionality was fully modular. We conducted multiple tests
in order to ensure that the web app could handle any
combination of users, cats, and food and water consumption.
This was first tested at the time of registration, by letting the
user register one cat or multiple cats, and having the
optionality of tracking only food or water (as opposed to
both). We also made sure that, based on what users input, the
web app only displayed graphs for what the user wished to
track (so having only the food/water graph show up as
opposed to both) and that in the case of an unusual event an
email was sent to the correct user with accurate information on
what the detected issue was. These features were all
successfully implemented so this requirement was fully met.

C.Weight Sensing Granularity

Weight sensing granularity was derived theoretically by
taking the total weight of the load cells used and dividing this
value by the 24 bits the HX711 was capable of outputting. The
sensor tags’ 1kg load cells would thus theoretically be capable
of sensing differences of roughly 1000 / (2 * 24) = 0.0000596
grams. This theoretical value, of course is the highly idealized
version that ignores sensor offsets and threshold wvalues.
Sensor offset (the reading at which 0 actually started) was
determined experimentally by simply running the sensor
calibration on zero weight (but including the weight of the
empty top plate and empty bowl, as this would factor into
what the “0” food value was). Afterwards, a known weight
was placed on the tag and the weight in grams was divided by
the difference in raw values to derive the finest possible
granularity achievable. This value came out to roughly
0.0008g per bit when using 2kg load cells. The final tags,
however, were switched to using lkg load cells, as the
maximum possible weight of food that could fit in the bowl
plus the weight of the bowl and top plate came out to less than
420 grams. The new theoretical value came out to roughly
0.00048g/b.

This value was further cut down by the necessary
thresholding, which cut out readings that differed less than a
certain amount from the previous valid reading. After several
tests, a raw value of 3000 was set as the best threshold in
terms of balancing not missing valid readings while also not
generating false positives. 3000b * 0.00048g/b gave a final
granularity of 1.44 grams, or roughly 5 kernels of kibble. This
was much higher than the desired granularity of 0.1 grams, but
still sufficient to detect most reasonable average eating
sessions. It should be noted that lower threshold values
produced much better granularity results but at the cost of
worse false positives. A threshold of 250b produced
granularity of 0.12 grams.

D. Long Battery Life

Battery life was calculated using Dialog Systems’ Power
Profiling tool. This software allowed us to enter values for
how much current external components used, how long they
were on, how often BLE transmissions would take place, what
percent of time would be spent in Sleep Mode, and other such
factors. It then calculated power consumption and output a
resulting battery life estimate given a specific size power

13

bank. Given the single coin cell capacity of 220mAh, we
derived a battery life estimate of 53.84 days - just under our
56 day target. This requirement as successfully met
considering the result was within 4% of the target.

o
—mmm

Advercising Charge per minute

53.84 days
onnection Charge per minut

Tolal Average Current Advercising Average Current

Connection Average Current

EE|E &5

Average Current 185.53

170.26 UA

22. Power Profiler results

E.Displayed Data Time Range

Data time range was based entirely on the storage
capacity of the RPI 4 hub computer. Given a microSD card
size of 128GB, there was roughly 97GB of available storage.
To ensure no edge cases could crop up, the absolute worst case
scenario was used - assuming every single sensor reading
resulted in a valid reading. This would mean a new reading
every 5 seconds for an entire year - 6311520 in total. This
value multiplied by the 12 bytes of information per read
(weight integer, timestamp integer, and microchip integer),
gave a total year’s maximum data use of 75738240 bytes, just
0.076GB. This requirement was firmly knocked out of the
park, with just 0.00781% memory used for a whole year
under extreme worst case conditions.

F.Reach Across Average American Apartment

Another goal of the project was to be able to have sensor tag
bowls be placeable anywhere within a user’s home. To test this
we set a goal of reaching across an average sized American
apartment (~950sqft). Assuming the hub would be placed in
the middle of the diagonal of the theoretical room, this meant
a target of supporting BLE communication across a 25 foot
distance from tag to hub. This requirement was tested by
simply placing the hub at the end of a long hallway and
walking back with the tag until a communication error was
encountered. We reached the full length of the ECE wing
hallway without running into any communication errors and
called it a day. This means that the supported communication
distance achieved was >69 feet!

18-500 Final Project Report: 12/14/2021

23. Hallway distance test

VII.PROJECT MANAGEMENT

A.Schedule
Schedule is included in Appendix. Page 17

B.Team Member Responsibilities

We split responsibilities for each team member based on
their strengths. Lucas worked primarily on the hardware side.
He developed all of the embedded electronics, firmware, and
mechanical parts for the sensor tags. MeeDm worked on the
hub, specifically, establishing communication between the
BLE module and RPI hub, decoding the packets of
information sent from the sensors, doing statistical analysis,
and communicating with the web app via JSON files. Tarush
worked on building and deploying the web application, storing
and managing data for users and their cats, connecting to the
bluetooth tags from the web app, displaying graphical data for
each individual cat, and communicating and sending
information from the web app to the RPI.

C.Budget
Budget is included in Appendix. Page 16.

1AWS Credits

Although we requested AWS credits for our project, we did
not end up using them since as mentioned in previous sections,
we ended up deploying our web application on the RPI
instead. However, we would still like to thank Amazon for
providing us with these credits for our project.

14

D.Risk Management

One of the greatest risks the team encountered was
supply chain problems. Specifically, these issues impacted
chip selection as well as board fabrication. The HX711 chip
was entirely out of stock, which forced us to desolder the
chips from existing breakout boards we could find around
campus. The TMS3705 RFID chip we had designed around
was in stock for a short duration but ran out before our order
could be placed (the day after the order form was submitted).
We re-spec’d the RFID portion of the design around an
existing, in-stock chip, but ultimately abandoned RFID
sensing as it was out of scope for a single semester project.
PCB fabrication also would have taken too long to allow for
adequate prototyping, so we opted to manufacture them in
house with a Bantam PCB mill.

VIIL

If TracKat is being relied upon to give an accurate picture of
a cat’s health and fails, there can be two cases. In the first, the
user may be notified of a potential problem where there is no
problem. This would not have too devastating an impact, but
eventually could become annoying if it continued to happen.
The second case is that the user may not be notified of a
problem when there is in fact a problem with the cat. Since the
user is relying on the device to monitor the condition of the
cat, this false negative case could lead to the cat’s health
declining. This could possibly result in illness, injury, or even
death of the cat. In order to avoid this, a disclaimer could be
added to the web application to inform the user to not solely
rely on the device to monitor their cat. TracKat performs
within the bounds of 10% false positives and 10% false
negatives to further mitigate this issue.

Lastly, some parts of the device, with enough wear and tear,
could be ripped off and become a choking hazard. This could
affect the cats or small children in the household. Care will
have to be given to package the device when handing it to a
user so that they know this can happen and to use caution if
they have a particularly destructive pet or child.

ETHICAL ISSUES

IX.RELATED WORK

There are other products on the market that use the concept
of having an RFID tag to distinguish between an owner’s
different pets. Products like the SureFeed Microchip Small Cat
& Dog Feeder and PetLibro Automatic Cat & Dog Feeder
store sealed food and have lids which only open for the
designated pet. You can also choose to allot specific timings
and frequency of when you want to be feeding your pet. Our
project takes this in a different direction by allowing owners to
develop a better understanding of what their cats’ eating and
drinking habits on a regular basis. TracKat immediately
detects and notifies the owner of sudden changes as opposed
to the current products more so functioning as black boxes that
performing the mundane tasks necessary for feeding pets.
TracKat thus removes the burden from the owners of having to
regularly check up on their pet’s well-being.

X.SUMMARY

The system was able to perform most of the key
components and functions that we set out to build. However, it
did not do some. It was able to accurately detect how much

18-500 Final Project Report: 12/14/2021

food and water was consumed and display it on the web app
which was the main goal of the project. We held on to the goal
of implementing RFID tags until quite late in the semester, but
ultimately had to descope and drop RFID altogether. Still, the
hub and web app software was designed to work with
microchip array values that would have been sent from the
RFID tags, had they been implemented. Using user-provided
zip codes to recommend nearby veterinarians was also
removed from the scope of the project. Overall, TracKat met
nearly all of its stated goals.

A.Future work

There is plenty of work ahead of this project, and we hope
to take it much further. First and foremost would be
implementing the RFID sensing hardware we initially wanted
to build. After that, more carried sensor tags could be
developed such as infrared sensor tags and vibration sensor
tags. The hub software could be expanded to account for more
varied behavior patterns and seek out potential health issues
based on cat weight, age, and type. The web app could also be
expanded with more user options and controls for expanding
or zooming into particular sections of time.

B.Lessons Learned

The most important lesson we learned was how
important communication between team members is. The
more communication there was between parts, the faster they
got integrated. It was necessary for integration, but
additionally to keep everyone on the same page for
everything. Even if another team member didn’t fully
understand a part, having a general idea was so important for
all of the reports, presentations, demos, but most importantly,
integration and to respect one another’s anxiety and stress
levels.

Another lesson we learned was how to take into
consideration other’s working schedules. Some of us work
better at the last minute and others of us worked better earlier.
In order to make sure we all worked together, we ended up
dividing up tasks so that the ones that work differently were
able to do things at their own pace. Even if it did cause some
stress, it ended up making it so that everyone was allowed a
chance to do their best.

Accurately assessing how long the project would take
is also important. We found that the team members that were
better at doing this were able to get a more finished product.
This is because knowing how long something will take to
complete lets you determine the scope of your area properly.
That way you can finish the simpler area and build on it if

need be.

GLOSSARY OF ACRONYMS

ADC - Analog-Digital Converter

BLE - Bluetooth Low Energy

CMSIS-DAP - Cortex Microcontroller Software Interface
Standard Debug Access Port

EC2 - Elastic Compute Cloud

GPIO - general purpose input/output

IC - Integrated Circuit

JSON - Javascript Object Notation

JTAG - Joint Test Action Group

PCB - Printed Circuit Board

15

RPI - Raspberry Pi
SDK - Software Development Kit
SWD - Software Debug

REFERENCES

https://www.newportri.com/ZZ/sponsored/20200811/top-5-ways-to-
encourage-your-cat-to-drink-more-water?template=ampart

User Authentication in Django https:/docs.djangoproject.com/en/3.2/
topics/auth/

SureFeed Microchip Small Dog & Cat Feeder https://www.chewy.com/
surefeed- mlcrochm small-dog- cat/dD/157145"utm source=google-

m_ N
d&utm_term= &LClld CIWKCA]Wh5qLBhALElWA100d§4XaZbHaDEA-

diE20MsKp41S2hRiWLkrfjCiDPrCWegDGxfhL
BwE

Petlibro Automatic Dog & Cat Feeder https://www.chewy.com/petlibro-
automatic-dog-cat-feeder/dp/303874?utm source=google-

product&utm medium=cpc&utm campaign=hg&utm content=Petlibro
&utm_term=&gclid=CiwKCAjwhS5qL.BhATL EiwAioods2d54A 1dJfONJ

XJwImINDIFYEbILkd4qePIbqgOQSyDtPekD1fiauxPhoCjSkQAvD Bw
E

Picture for user’s home page https://wallpapercave.com/wp/
21MQXjm.jpg

Bootstrap forms https://bootsnipp.com/snippets/z8MPd,
bootsnipp.com/snippets/bxzmb

Python Library for sending emails https:/docs.python.org/3/library/
smtplib.html

Dialog Systems DA14531 Resources: https://www.dialog-
semiconductor.com/products/bluetooth-low-energy/dal4530-and-
dal4531

RFID 101: System Frequency Ranges

BLE 5 vs Thread Reasoning: Range/power: IEEE802.15.4 (thread) vs.
Bluetooth 5 - Nordic Q&A - Nordic DevZone

I'made a REAL magic wand! (DA14531 project)

How to Design and Build Your Own Idea - Example: A Magic Wand
(with Samson March) (DA14531 project)

Vibration Sensor Selection Guide from Cole-Parmer

RFID basics by Priority 1 Design
Nordic Semiconductor Infocenter

RFID Cat Door : 8 Steps

BLE and GATT for IoT: Getting Started with Bluetooth Low Energy and
the Generic Attribute Profile Specification for IoT | Programmatic
Ponderings

Home All Products TWN4 MultiTech Nano LF

Taidacent Long Range Iso11784/85 Fdx-b Em4305 Ear Tag Reader Rfid

Module Ttl Uart 134.2khz Animal Rfid Reader Module - Buy 134khz
Reader Rfid Module,Animal Rfid Reader Module,Rfid Module Product

on Alibaba.com

TMS37157 data sheet, product information and support | TI.com
TMS3705 data sheet, product information and support | TI.com
https://www.priorityldesign.com.au/shopfront/index.php?

main_page=product info&cPath=1&products id=3
RF430F5978 data sheet, product information and support | TI.com

cVnBoCKESQAvVD

https:/

https://www.newportri.com/ZZ/sponsored/20200811/top-5-ways-to-encourage-your-cat-to-drink-more-water?template=ampart
https://www.newportri.com/ZZ/sponsored/20200811/top-5-ways-to-encourage-your-cat-to-drink-more-water?template=ampart
https://docs.djangoproject.com/en/3.2/topics/auth/
https://docs.djangoproject.com/en/3.2/topics/auth/
https://www.chewy.com/surefeed-microchip-small-dog-cat/dp/157145?utm_source=google-product&utm_medium=cpc&utm_campaign=hg&utm_content=SureFeed&utm_term=&gclid=CjwKCAjwh5qLBhALEiwAioods4xazbHapEA-djE2OMsKp41S2hRiWLkrfjCjDPrCWgDGxfhLpycVnBoCkE8QAvD_BwE
https://www.chewy.com/surefeed-microchip-small-dog-cat/dp/157145?utm_source=google-product&utm_medium=cpc&utm_campaign=hg&utm_content=SureFeed&utm_term=&gclid=CjwKCAjwh5qLBhALEiwAioods4xazbHapEA-djE2OMsKp41S2hRiWLkrfjCjDPrCWgDGxfhLpycVnBoCkE8QAvD_BwE
https://www.chewy.com/surefeed-microchip-small-dog-cat/dp/157145?utm_source=google-product&utm_medium=cpc&utm_campaign=hg&utm_content=SureFeed&utm_term=&gclid=CjwKCAjwh5qLBhALEiwAioods4xazbHapEA-djE2OMsKp41S2hRiWLkrfjCjDPrCWgDGxfhLpycVnBoCkE8QAvD_BwE
https://www.chewy.com/petlibro-automatic-dog-cat-feeder/dp/303874?utm_source=google-product&utm_medium=cpc&utm_campaign=hg&utm_content=Petlibro&utm_term=&gclid=CjwKCAjwh5qLBhALEiwAioods2d54A1dJfONJXJw9mINDlFYEbLkd4qePIbqOQSyDtPekD1fiauxPhoCj5kQAvD_BwE
https://www.chewy.com/petlibro-automatic-dog-cat-feeder/dp/303874?utm_source=google-product&utm_medium=cpc&utm_campaign=hg&utm_content=Petlibro&utm_term=&gclid=CjwKCAjwh5qLBhALEiwAioods2d54A1dJfONJXJw9mINDlFYEbLkd4qePIbqOQSyDtPekD1fiauxPhoCj5kQAvD_BwE
https://www.chewy.com/petlibro-automatic-dog-cat-feeder/dp/303874?utm_source=google-product&utm_medium=cpc&utm_campaign=hg&utm_content=Petlibro&utm_term=&gclid=CjwKCAjwh5qLBhALEiwAioods2d54A1dJfONJXJw9mINDlFYEbLkd4qePIbqOQSyDtPekD1fiauxPhoCj5kQAvD_BwE
https://wallpapercave.com/wp/21MQXjm.jpg
https://wallpapercave.com/wp/21MQXjm.jpg
https://bootsnipp.com/snippets/z8MPd
https://bootsnipp.com/snippets/bxzmb
https://bootsnipp.com/snippets/bxzmb
https://docs.python.org/3/library/smtplib.html
https://docs.python.org/3/library/smtplib.html
https://www.dialog-semiconductor.com/products/bluetooth-low-energy/da14530-and-da14531
https://www.dialog-semiconductor.com/products/bluetooth-low-energy/da14530-and-da14531
https://www.dialog-semiconductor.com/products/bluetooth-low-energy/da14530-and-da14531
https://www.rfid-101.com/rfid-frequencies.htm
https://devzone.nordicsemi.com/f/nordic-q-a/21400/range-power-ieee802-15-4-thread-vs-bluetooth-5
https://devzone.nordicsemi.com/f/nordic-q-a/21400/range-power-ieee802-15-4-thread-vs-bluetooth-5
https://www.youtube.com/watch?v=HailNA14bNk
https://www.youtube.com/watch?v=87srNv8rDVQ
https://www.youtube.com/watch?v=87srNv8rDVQ
https://www.coleparmer.com/tech-article/vibration-sensor-selection-guide
https://www.priority1design.com.au/rfid_design.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fstruct_nrf52%2Fstruct%2Fnrf52820.html
https://www.instructables.com/RFID-cat-door/
https://programmaticponderings.com/2020/08/04/getting-started-with-bluetooth-low-energy-ble-and-generic-attribute-profile-gatt-specification-for-iot/
https://programmaticponderings.com/2020/08/04/getting-started-with-bluetooth-low-energy-ble-and-generic-attribute-profile-gatt-specification-for-iot/
https://www.elatec-rfid.com/en-us/product-detail/twn4-multitech-nano-lf
https://www.alibaba.com/product-detail/Taidacent-Long-Range-ISO11784-85-FDX_60509169480.html?spm=a2700.galleryofferlist.normal_offer.d_title.509333c9b7WxCu
https://www.alibaba.com/product-detail/Taidacent-Long-Range-ISO11784-85-FDX_60509169480.html?spm=a2700.galleryofferlist.normal_offer.d_title.509333c9b7WxCu
https://www.ti.com/product/TMS37157
https://www.ti.com/product/TMS3705
https://www.priority1design.com.au/shopfront/index.php?main_page=product_info&cPath=1&products_id=3
https://www.priority1design.com.au/shopfront/index.php?main_page=product_info&cPath=1&products_id=3
https://www.ti.com/product/RF430F5978#product-details%23%23features

18-500 Final Project Report: 12/14/2021

Description Model # Qty. Value
Used to connect our Raspberry PI 4 1o
USBC to USB power 2.0-CM-AM-6FT 1 $6.99
Micro HOMI 10 HDMI | Used to connect our Raspberry Pi 4 to
Adaplar display 40506 1 $7.99
Cal Bowls Cat bovde lo test our device none 3 $14.99
DA14531 series Transcaiver; Blugtooth® 5
BLE Dev Boards Evalualion Board DA14531-00FXDEVKT-U |2 $60.00
Sensor baard IC RF TxRx + MCL Blugioolh Blustocth
electronics parts. v5.1 2.4GHz 24-NFQOFN, FC DA14531-00000FX2 10 $19.94
Sensor board Sipolar (8JT) Translstor PNP 25 ¥ 1.5 A
sloctronics parts 100MHz 625 mW Surface Mount SCT-23 MMSS8550-H-TP 5 $1.00
Sensor board FLASH Memory IC 2Mb (256K x 8) SPI 104
eleclronics parls MHz 8-USON (2x3) W25X20CLUXIG TR 10 $5.38
Sensor baard
elactronics parts. RF ANT 24GHZ CHIP SOLDER SMD 2450AT1800100E 10 $5.61
Sengor board
cloctronics parts TRANS PNP 25V 1.6A S0T22 MMSSES50-H-TP 5 $1.00
Sensor board
eleclronics parls IC FLASH 2MBIT SPI 104MHZ BUSON VIZSXZOCLUXIG TR 10 $5.30
Sensor baard
electronics parts RF ANT 24GHZ CHIP SOLDER SMD 2450AT1800100E 10 561
Seneor board
elactronics parts CAP CER 10UF 4V X5R 0603 | COB0GC105MTPACTA1! 10 165
Sensor board
eleclronics parls CAP CER 0.1UF 25V X7R DB03 COBDAL104KIRACTIRY 10 are
Sensor baard
electronics parts IC RFID READER 134.2KHZ 1650IC TMS3705DDRA1 5 45
Sensor board
electronics parts MOSFET P-CH S0V Z30MA DFN1006-3 |BSSE4AKI31S 10 275
Sensor board
elecironics parls BLE DEV KIT USS FOR DA14531 DA14531-00F XDEVK T 2 60
Saensor baard
electronics parte BLE 6.1 SOC WITH ARM CORTEX M)+ DA14531 00C00FX2 10 1694
Sensor baard
electronics parts MEMS DIGITAL OUTPUT DUAL MOTION LS2DTW12TR 10 3024
Sensor board
elecironics parls CRYSTAL 32 0COOMHZ 6PF SMD XRCGRIZMCOUF 1HOIRD 10 164
Sensor board
eleclronics parls CRYSTAL 32.7080KHZ 72F SMD SC208 TPF20PPM 10 .58
Sensor baard
electronics parts. CAP CER 1.8FF S0V COGINPO 0201 GRMO335C1H1RECAD1D 0 03
Sensor board
elacironics parts FIXED IND 33NH 45004 250MO0HM SM LOFO3TNINGBOZD 10 047
Sensor board
eleclionics parls FIXED ING 2.2UH 1.2A 139MOHM SMD LONMZMPNIR2MAGOL 10 214
Sensor baard
elactronics parts FIXED IND 2.2UH 24 168 MOHM SMD DFE207610P-2R2M-P2 10 283
Sensor board
cloctronics parts 1C FLSH 2MBIT SPIQUAD IO BUSON ZULe 10 529
Sensor board
eleclonics parls LEAD FREE LW TEMPERATURE SOLOER | 4902P-26G 1 28.80
Sensor banrd
electronics parts 4.7X3.5MM SMD LTSW EVQ-Pat02V/ 10 443
Seneor board
cloctronics parts BLUETOOTH LOWN ENERGY 5.1 MODULE DA14531MOD-00F01002 10 40
Sensor board
elecironics parls 3.5%2 SN SMO LED AAISIBLEC 10 292
Sensor baard
electronics parts. LED GREEN CLEAR CHIP 0603 SMD CSBICGTICZMA 10 39
Sengor board
cloctronics parts LED AMBER CLEAR CHIP 0402 S1D CSAZEAZC 10 39
Sensor board
eleclronics parls LED GREEN CLEAR CHIP 0402 SM0 C542EG20 1 0.39
Sensor baard
electronics parts. LED RED CLEAR CHIP 0803 SND CSBICR2C2MA 10 33
Sensor board
elocironics parts 1206 GREEN SMD LED L152L-GC 10 245
Sensor board
eleclionics parls 1206 GREEN SMD LED L152L.GC 10 245
Sensor baard
elactronics parts. 1206 RED SMO LED Lis2L-Lc 10 20
Sensor board
elacironics parts SWITCH SLIDE DPDT 300MA 5Y JSZ02011SCON 10 53
Sensor board
eleclronics parls SWITCH SLIDE DPDT 200MA 6V J5202011JCEN 10 53
Sensor baard
electronics parts TACT 52X 5.2, 1.5 MM H, 150GF, PTS526 SM15 SMTR2LFS (10 1.09
Sensor oard
elocironics parts TACT 52X 52, 1.5 MM H, 250GF, F15576 5K15 SMTRZLFS |1 0.1
Sensor board
eleclronics parls RES SMD 120 OHM 1% 1/10AV 0603 RC1600F101CS £020 587
Sengor baard
electronics parts RES SMD 100 OHM 1% 1/10HV 0603 CR0603-FX-1000ELF 100 063
Sensor board
eleclironics parls RESISTOR AFC -Q200 CROSOILFX-1T00ELF 101 183
Saensor board
electronics parte CAP CER 10UF 4V XER 0603 COB0OCTI0BMTPACTAT 102 0.3
Sengor board
electronics parts CAP CER 2.2UF 8.3V X5R 0808 COECGCZ25KEPACTY 50 3.98
Sensor board
elecironics parls CAF CER SMD 0E03 1UF 10% X7R 10 COBDBC104KERACALTO 50 344
Sensor baard
electronics parte RES SMD 1.5K CHM 1% 1/10A 2603 ERJAEXF1501Y 102 .7
Sensor board
electronics parts RES SMD 10K OHM 1% 1/10W 0603 ERJ3EXF1002V 100 1.7
Sensor board
elecironics parls RES SMD 1K OHM 1% 1:4W 0503 ERLPAIFII01Y 101 5
Sensor board
electronics parte RES SMD 4.7K CHM 1% 1/4% 0803 ERJPAIFATO1Y 103 5
Sengor board
electronics parts BATT RETAN COIN 1 CELL FC PIN |BK-013 10 403
Sensor board
elecironics parls BATT RETAN COIN 1 CELL FC PIN BK-#13-TR 10 511
Sensor baard
elactronics parte. BATT RETAN COIN 1/2 CELL SMD BHETAS 10 342
Seneor board
electronics parts BATT HOLDER COIN 20fAM 2 CELL SMD (3074 S 655
Sensor board
elecironics parls 126KHZ-134KHZ, READW/RITE ANALDI ENGOSSHIASO 168~ 5 2205
AWS Credits Credits for AWS services. 1 [
Total Cost Incurred $550.27

24. Project Budget

16

17
18-500 Final Project Report: 12/14/2021

Lucas. Tarush. LoT. Lo Team Wook Of 820 Week of S Week of W12 Week of W19 Weok of 926 Week of 103 Week of 10110 Week of 10117 Wesk of 1028 Waek of 10/31 Week of 117 Week of 11114 Wesk of 11/21 Wask of 1128 Week of 12/5 Week of 12112
Course Loglstics.

Asract Team

Prejact Websito

Propossl Presentation Team

Ceaign Prasentation Team

Cesign Documentation Toam
Ethics Assignmant

It Oemo T
Final Présentation

Maks Videc Docementaticn
Maka Poster Boara/Presantation
Final Demo

Hardware mplamentston

y Lucos
Prelminary Demo Hardwars (RPI Hub Server Set Up) TeL
Parts Seletion - BLE module / MCU Lucas

TIJure cut which prolocol 1o Lse and start develoging it MeeDm
Detarmise how to read in information Laing Huepy
-0 e
Pralminary RFID Ansiysis Cade (Huk) MecOm
Prelrninary Weght Analysis Code (Hub) NeeDm
Dobug @y problems win racsving packages via bhsstootn
Intsgraste earler code that anslyzss vakiss to decods
pachets of information

Pt packets of informaten o json ik MoaDm
CAD design load csl

CAD design enclosura

Enor Handing

Sensor Tag Fimmware - Cors Routine

‘wrte code % crganize arays by microchip # MosDm
Sensor Tag Firmmware - BLE

Sensor Tag Fimware - Wolgn Sensing

Load Cedl Poling Firmmears

Sansor Tag Firmmware - Powsr Sanaing / Ratisaing

Deta Analysis (stabistical srelysis 1o determine

unususl comsumpton)

Usar Alert System

Converting Little Endian Byte Aray 1 List Type.

BLE Data Tag 1o Hun Implementad

Software Slack

Web App

Ceaign Diagram for info flow, reaearchirade saudy for stack Tarush

Set up basic wed 8D framework

Wistrame Ul for tha web app

Preliminary Qummy dala enelysss (dummy food dats) Tarush
Loam and Intagrats charts into D angs

Sl data orer verious ime ranges snd varied factors.

Detabaso sotup Tarush
Set up login for different users and cats

Sat up diractrias and JSON tles for e cats

s JSON fie for RPY

Emall ard skaet notteations Tarush
Deployment on R

Intagrate code with actual users and data

Geaphs

Lpaa
Intagrate buetooth int> web apphaaton

Aow ful scaled modulanity of the web applcation

Dobuj any Isswss with receiving rfermationirtegration

Updsie models. forms bssed on ker changes

Vieb App Siack

Integration

Comurscaton betwsse R 206 wab 05 | Tem |

BLE communication established between Tag and Hub

BLE communizton betwaen maxmum # Tags and Fub

Intagration Siack

Tosting

Prelminary System Tosts Teem
Varkns Final System Tasts And Twesk

Tosting Slack

25. Project Budget

	Introduction
	Design Requirements
	Architecture and/or Principle of Operation
	Primary Components
	Sensor Tags
	Central Hub
	Web App
	System Connections
	Tags → Hub
	RPi ←→ Web App

	Design Trade Studies
	System Architecture: Single Device vs. Distributed System
	Power
	BLE Modules:
	Deployment on Raspberry Pi vs. Cloud
	Django vs. Flask
	Information Display on Graphs
	Bluetooth vs. WiFi
	Bluetooth 4 vs. Bluetooth 5
	Weight Sensors: Load Cell vs. Force Sensitive Resistor

	System Description
	Sensor Tags
	Electronics
	Firmware:
	Mechanical Enclosure:
	Hub
	Bluepy
	Converting from Little Endian Arrays and Values
	Organizing Using Microchip Number
	Analysis on Arrays
	Statistical Analysis
	Web App
	Registration and Login
	Storage of Data in Database and Files
	Bluetooth Integration
	Charts JS Graphs
	Notifications
	Raspberry Pi Deployment

	Test and Validation
	Accurate Cat Feeding and Drinking Detection
	Modular Configuration
	Weight Sensing Granularity
	Long Battery Life
	Displayed Data Time Range
	Reach Across Average American Apartment

	Project Management
	Schedule
	Team Member Responsibilities
	Budget
	AWS Credits
	Risk Management

	Ethical Issues
	Related Work
	Summary
	Future work
	Lessons Learned

	Glossary of Acronyms
	References

