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Abstract— ShelfBuddy is an assistive robot that
helps users grab objects from high shelves. When go-
ing grocery shopping, reaching objects on a shelf can
be a very difficult task, especially for those with dis-
abilities. ShelfBuddy makes grocery shopping an easier
and a more accessible process by allowing users to focus
on just looking for their items. A user can point to an
object on a shelf using a laser pointer, and ShelfBuddy
will be able to grab the object from the shelf and place
it in the user’s basket.

Index Terms—AprilTags, Autonomous Navigation,
Computer Vision, Control, Laser Point Detection, Lin-
ear Slides, Robotics

1 INTRODUCTION

Grocery shopping is intended to provide people with the
option of selecting their own goods and thus be a seamless
and enjoyable experience. Unfortunately, it is still a diffi-
cult task for people with disabilities as many objects are
located on higher shelves that are out of reach. Current
solutions are also inconvenient or require other people’s as-
sistance.

ShelfBuddy is an autonomous robot system that can
retrieve items on higher grocery shelves for users, ensuring
that grocery shopping is a personalized experience for ev-
eryone. The user first selects items by pointing a laser on
the object they want. Then, after detecting the laser point,
ShelfBuddy will navigate to the object on the shelf, grab
the object, and deliver the item to the user’s basket. This
solution allows users in need to have more control over their
grocery shopping experience and improves their accessibil-
ity.

Our current solution applies to shopping medical con-
tainers typically found at a pharmacy. We identify that
shoppers in this environment are more likely to require as-
sistance. In addition, the testing inputs would be more
controlled for us to test. The requirements for our solu-
tion were chosen with the intention of making ShelfBuddy
a user-friendly system. Our primary requirements are the
following:

1. The overall success rate of our system, which is the
entire process of detecting the item being pointed at,
retrieval of the object, and navigation to and from
the shelf and basket, should be 97.5%

2. Requirement 1 depends on the success rate of three
subsystems. The first requires the success rate of
the navigation to and from the shelf and basket. We
would like this value to be 98.5%.

3. The second subsystem in which we would like to mea-
sure its success rate is the detection of laser pointer.
We would like the robot to correctly detect an object
pointed with a laser with a success rate of 99.5%

4. The third subsystem to measure is the process of re-
trieving the item on the shelf, and holding on to the
item when sending to the basket. We would like the
success rate to be 99.5%

5. The robot should travel at a speed of 0.5 m/s.

6. The latency for grabbing an object when at the shelf
should be 3 seconds.

7. The latency of processing a snapshot of the shelf for
the laser point is 1 second.

8. The distance between items on the shelf is roughly 2
inches.

9. The dimension of the shelf is 3ft × 4ft × 1ft

10. The robot will retrieve items sized around 3 inches
and weighing a maximum of 1 pound.

11. The robot should be user-friendly in terms of space
occupancy within the grocery store and ease of use.

2 DESIGN REQUIREMENTS

Requirement 1: The average number of items a cus-
tomer would purchase per visit at a popular pharmacy
such as CVS is 4 [1]. Our robot would want to hit the
benchmark of successfully meeting the user’s shopping
needs 9 times out of 10 visits. We believe this would meet
user satisfaction levels. On average 10 visits at the store
would require 40 runs, so at lest 39 of them should be

successful. This corresponds to a success rate of
39

40
. To

test this requirement, we plan to run 40 complete trials,
where after executing the program the robot first follows
the user, scans through the shelf to find the pointed object,
successfully retrieves the object and places it to the grocery
basket. We expect the entire process to succeed 39 times.

Requirement 2: Based on the overall success rate from
Requirement 1, we determined that the success rate of the
navigation process is 98.5%. This success rate is slightly
lower than the expected success rate based on the overall
success rate. We determined that navigation would have
a poorer success rate because of the fact that compared
to the other subsystems, navigation involves more moving
components and has to deal with the complexity behind
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traversing across an area.

Requirement 3: Based on the overall success rate from
Requirement 1, the success rate for laser detection is 99.5%.
This is the anticipated success rate of the subsystem based
on the overall rate, and we decided that this was reasonable
given that laser detection is not as complex as navigation
but also not straightforward enough to have a lower error
rate.

Requirement 4: Based on the overall success rate from
Requirement 1, the success rate for object retrieval is 99.5%.
This is the highest accuracy among the three sub systems
which contribute to the overall success rate. We believe
that given successful navigation and item detection, the
robot would be positioned in a straight angle that should
be easy to grab the object, so there is little room left where
error could happen.

Requirement 5: To provide user-friendly assistance,
ShelfBuddy should travel at a speed that is close to the
average speed a user can travel in a wheelchair, which is
0.79m/s. [2] This would ensure that using ShelfBuddy
would take roughly the same amount of time as the user
travels.

Requirement 6: The latency of grabbing an object is 3
seconds because while it is slightly slower than the average
latency of the time taken for a human to grab an object,
it is still not unreasonably long for the user’s experience.

Requirement 7: The latency of processing a laser
pointer on an object will be 1 second. Research shows
that the average time a human takes to process visual
stimuli is .25 seconds [3]. Thus, a one second laser process-
ing time is within reason in comparison to the amount of
time it would take a person to detect the laser.

Requirement 8: Typically, two items on a shelf are on
average tightly packed on a grocery store. However, we
would be operating under the assumption that the gap is
2 inches in order to feasibly achieve our grabbing require-
ments. This is still as minimum of an increase from the
real world scenario.

Requirement 9: Our shelf mirrors a typical shelf found
in a pharmacy store in most dimensions. However, because
the actual height would unfortunately introduce too much
complexity for our project to manage in the short time
frame, we chose to limit our height to 3 feet. Our project
is hence more of a proof of concept for this idea that would
be blown into larger proportions in the real world.

Requirement 10: Our use case of the robot would be
to retrieve medicine containers typically seen at a CVS
pharmacy. The items are around 3 inches and weigh at
most 1 pound.

Requirement 11: Our use case is within a grocery store
with other shoppers and carts that the robot will have to
share narrow aisle space with. The robot should hence
cause minimal interference in order to succeed in our use
case. It should also be simple to use since its intention
is to improve a shopper’s experience and hence not cause
unnecessary inconvenience.

3 ARCHITECTURE OVERVIEW

A labeled figure of our robot (Figure 1, page 3) is shown
at the top of the following page and an informational flow
chart of our system (Figure 18, page 18) is shown in the
appendix. The overall mechanical design has not changed
significantly from our design review. The main difference
for our block diagram is that we added an IMU to our
system, where we record the angle of the robot to coun-
teract against the drift it was experiencing. We replaced
using two Arduino Uno boards to one Arduino Mega board,
since the larger board is sufficient for our purpose and we
ran into communication issues with multiple boards. We
also made explicit how we utilize two buck converters to
power the servo and the motor drivers with the same bat-
tery as the motors. Finally, we added a separate 12V power
bank for powering the Xavier. Our system is roughly split
into three sub systems: the drive train and navigation al-
gorithm, the detection and item recognition algorithm, as
well as the linear slide and retrieval system. We use a Jet-
son Xavier as the main computing board, and an Arduino
Mega as the controller of the motors, servo, and IMU. The
computer vision algorithms are run on the Jetson Xavier
based on frames taken by the Intel D435 camera. Informa-
tion is passed between the Xavier and the Arduino Mega
board connected with a USB cable via sending/decoding
messages on the serial terminal.

3.1 Wheel Chassis Design

The wheel chassis is driven by four omni-directional
wheels placed at diagonal directions. These omni-
directional wheels come in packs of two which give the robot
much more stability and less drift. Each pair of wheels is
controlled by its own DC motor, where it’s mounted to
aluminum extrusions that form the base of our system.
The chassis base is an octagonal shape such that the four
sides at the corners connecting to the wheels are shorter
than the four sides on the side.

3.2 Computer Vision

We use an Intel RealSense D435 Depth Camera, which
has high resolution and depth sensing technology. The cam-
era allows our robot to travel throughout the grocery store,
follow the user, and navigate to the shelf to retrieve the ob-
ject.
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Figure 1: Labeled Robot

3.2.1 Navigation:

We use AprilTags, a visual fiducial system, Figure 2,
for navigation. The tags were printed on paper and were
attached to the shelf and the user’s basket. Using the April-
Tag detection software, our robot can follow the user’s bas-
ket throughout the store. The AprilTag detection software
outputs the tag information and its precise 3D location in
relation to the camera, including the angle. The detection
software is highly accurate, within 4 centimeters of the ac-
tual position when the camera is 2 meters away from the
item [4]. This information allows our robot to navigate
accurately and efficiently.

3.2.2 Item Detection:

After the robot has reached the shelf and extended the
slides, it runs the edge detection function to draw bounding
boxes around the items on the shelf. The bounding boxes
provide the exact location of the items, and are used when
grabbing the item and searching for the laser.

3.2.3 Laser Recognition:

Once the bounding boxes have been computed, the
robot searches for the laser point inside each of the bound-
ing boxes. If the laser point is detected, the robot travels
to the object with the laser point, and proceeds to retrieve
the item.

3.2.4 Changes from Design Review

The order of events in the final project was a little differ-
ent from the design review. In the design review, we had
planned to run the laser recognition algorithm first, and
use the location of the laser to find the items. However,

once we began testing we found that items in the back-
ground of the frame resulted in the laser being detected in
the wrong location. To address this, we had to rearrange
the two algorithms so that first the bounding boxes were
calculated, and then the robot searched for the laser within
the bounding boxes. This sequence is also better in terms
of correctness, as we would not want the robot to travel to
the laser if the user is not shining it on a product, such as
on the back or sides of the shelf.

3.3 Retrieval System Design

3.3.1 Claw Gripper End Effector

We use a PWM servo-powered claw for our end effector.
This servo was used selected because its torque load fit our
use case specification.

3.3.2 Z-Axis Linear Slide System

We use a motorized pulley-powered linear slide system
for the z-axis linear slide system. We have 2 mirrored,
parallel linear slide systems mounted on both sides of the
chassis and powered by 2 DC motors (1 each

Figure 2: AprilTag example.
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respectively). We built 2 sets of linear slides in order to
keep the system stable during the extension process and
while extended.

4 DESIGN TRADE STUDIES

4.1 Wheel Selection Trade-offs

We had a few options of wheel types for our system
drive train. To meet Requirement 2, the robot had to move
in different directions with high precision, since navigation
involves following the user in one direction, and moving
towards the shelf in a potentially perpendicular direction.
The robot also needed to be able to position itself parallel
towards the shelf from any angle, since the retrieval pro-
cess required high precision from the direction of the wheel
base. Therefore, the choice of using normal wheels would
have been restricting, since the robot would then constantly
perform turning which might accumulate high inaccuracy.

We then decided from two popular omni-directional
wheel choices: omniwheels vs mecanum wheels. This re-
quired our system to have four DC motors for each wheel.
Although this was incovenient, we believe this was more
advantageous than using normal wheels connected to 2 DC
motors, as it saved us from putting significant cost in di-
rectional control. Both wheels were configurable and pro-
grammable in a way that enabled it to travel in eight di-
rections. The main advantage of mecanum wheels was that
they had greater traction to the floor, which helped in ter-
rains where the road conditions are less than ideal. How-
ever, this was not useful to our use case environment, and
its cons of being more costly, heavier, and less accurate in
directional control were far more problematic.

As for wheel size, there were 60 mm diameter choices
and 90 mm diameter options that the vendor provides.
Smaller wheel sizes provided more torque and large wheel
sizes provided more speed. Since the robot was travelling
on a smooth (low friction constant) and flat (no vector from
weight acting against) floor, we anticipated that the torque
inserted on the wheels would not be a main concern. How-
ever, to satisfy Requirement 5, we did want to optimize the
speed of the robot as much as possible. Hence, we decided
to use the 90 mm diameter wheels. As later verified in
section 4.2, this decision would work well with our choice
of motors and provided the speed that would meet the re-
quirement.

4.2 Motor Selection Trade-offs

We selected the appropriate motor to satisfy Require-
ment 5. We referred to equations

w = 2πf (1)

v = rw (2)

where f represents the rotational frequency, w refers to
angular velocity, v represents velocity of robot, and r rep-
resents radius on the wheels. Combining equations (1) and

(2), we derived

v =
D

2
· 2πf

= πDf

= π · 0.09m · RPM

60s

The weight of our system included sub components as fol-
lows: (Length of extrusions is justified in section 4.3, where
we derive the weight)

Item Weight(kg)
Wheel 0.07 ×8 = 0.56

Extrusion 9m → 2
Electrical components 1.5
Claw and object weight 1.5

Total: 5.56 kg + 6 × motor weight
Since our system incurs much weight, we estimated a 25%
reduction from max speed of motor. Hence, the expected
speed of our robot was

π · 0.09m · RPM

60s
>

0.5m/s

0.75
⇒ RPM > 141.47rpm

Hence, the robot required an RPM of at least 141.47 rpm,
so we couldn’t use another common standard of 100 rpm
motors. We also wanted to limit the weight of the mo-
tors, as higher weight would cause greater reduction in max
speed. This is because if the gain in rpm is small, then the
overall speed requirement might not be met.

The vendor that we ordered from provided a couple of
DC motor options, including a planetary gear motor with
a 40:1 gear ratio, a planetary gear motor with a 20:1 gear
ration, a spur gear motor with a 40:1 gear ratio, as well as a
spur gear motor with a 20:1 gear ratio. The 40:1 gear ratio
motors provide 150 rpm at stall torque of 4.2 Nm, and the
20:1 gear ratio motors provide 300 rpm at stall torque of 2.1
Nm. Although an rpm value of 150 rpm would theoretically
meet the speed requirements according to calculations, the
requirements would barely be met under the ideal case. We
also used the maximum specs to compare, and maximum
specs were not always achieved during experiments. The
cost of using a 20:1 gear ratio motor is that its stall torque
is reduced by half. However, given that each motor weighs
at most 0.5 kg, the total weight would be at most 8 kg.
With the assumption that the robot travels on a flat and
friction-less surface, the robot would require the torque to
provide a force such that F = ma to start from the stopped
state to the start state. Assume a = 0.25m/s2. The output
shaft length is 0.04 m, so the force that can be applied by
one motor at least 2Nm/0.04m = 50N ≈ 5kg. We power 4
DC motors in total, so the max weight of our robot could
be 20 kg. Note that most of the numbers we used to esti-
mate the minimum torque load are worse than worst case
situations. The conclusion is that the stall torque specs for
either motor should work for our system.
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Initially our team decided to choose the spur gear mo-
tors with 20:1 gear ratios followed from the calculations
above. We also chose the spur gear motors over planetary
motors because our system isn’t complex enough to jus-
tify the usage of planetary motors, where the advantage
is prominent during high loads. The spur gear motors are
also lighter, cheaper, and perform equally if not better in
efficiency. Unfortunately, the 20:1 gear ratio motors were
out of stock. The only feasible option was to use the plan-
etary gear motor with a 20:1 ratio, with a slight increase
in 20 dollars for our budget.

4.3 Motor Driver Trade-offs

We noticed the Capstone Inventory had a L298N based
motor controller, and the model is a popular choice among
similar projects. Our motor requires 12 V and has a max-
imum output power of 15 W. This means that the motor
needs at least 15 W / 12 V = 1.25 A. The maximum allow-
able current of an L298N is 2 A, which is too close to the
lower bound that our motor needs. To err on the safe side,
we decided to use the BTS7960 DC stepper motor drivers,
as the maximum allowable current is 43 A

4.4 Wheel Chassis Trade-offs

We designed the separate mechanical components in
SolidWorks to ensure the components were physically com-
patible with each other. Our initial design is shown in Fig-
ure 3. Compared to the current iteration, the main differ-
ence between the two designs is size. To satisfy Requirement
9, we were concerned that having a base size much smaller
than the height of the reaching claw would cause the robot
to be unbalanced, especially since the claw would extend
horizontally further than the front of the robot. The previ-
ous size of the design was roughly 70 cm × 70 cm, where the
4 longer extrusions were 55 cm long. However, after pre-
liminary calculations, we realized the initial concerns were
redundant: The weight of the motors themselves are 0.45 kg
× 6 = 2.7 kg. From Requirement 1 our item weight is 0.45
kg. Additional components that reach in front of the robot
include an Intel Realsense camera, weight around 0.072 kg,
and the weight of the claw itself. Assuming the claw ex-
tends in front of the robot base for 20 cm, and according
to lever theory in physics, we estimate there is

Figure 3: First chassis design

Figure 4: Current chassis design

sufficient normal force from the ground that would bal-
ance the robot and prevent it from “tipping” forward.

Therefore, our goal was to make the chassis base as
small as possible, since a smaller size means smaller weight
and more power efficiency. We wanted to mount the lin-
ear shaft on the side of the base, which is 1.5 cm × 4 =
6 cm in length. The side also included the length of the
motor and the size of its mount. We also included the mar-
gins of connecting brackets, which take up roughly 8cm.
Hence, we designed the four longer extrusions to be 20cm
in length, which sufficiently fit these components without
wasting too much extra space. We also wanted to fit all
the electrical components on the board mounted on top
of the extrusions, including a Jetson Xavier, one Arduino,
a breadboard, a power supply, motor drivers, and other
miscellaneous items. From rough calculations we found a
board size of 8 cm and the length across the base was suffi-
cient. Note that the extrusions at the corners which mount
to the wheels were designed to be of length 12 cm, since
the diameter of the wheels are 9 cm.

The top down design for the current chassis is shown
above in Figure 4.

4.5 Battery Selection Trade-offs

The nominal voltage of our motors is 12V. We decided
to use rechargeable batteries, which could be of material
NiMH or LiPo.

We looked at two reasonable models correspondingly,
the “Tenergy NiMH Battery Pack 12V 2000mAh High Ca-
pacity Rechargeable Battery”, as well as the “Ovonic 11.1V
5000mAh 3S 50C-100C LiPo Battery”, two of which most
suited our needs. Including the charger, the NiMH battery
is around 10 dollars more expensive than the other option.

We first calculated the energy needed for our robot.
For power consumption using the NiMH battery, given the
maximum rated power of the motors is 15 W, the max-
imum current each motor draws would be 1.25 A. The
wheel chassis which includes 4 motors connected in par-
allel would draw 5 A current. With the assumption that
the motors controlling the linear slide system are not con-
sistently turning, we estimated an average of 6 A current
drawn throughout one run. With a 2000 mA h capacity,
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this means that a single charge would only last for 2 / 6
h = 0.333 h ≈ 20 min, which is inconvenient for consis-
tent testing. It also violated Requirement 11, as the robot
would have to be constantly recharged, and a user-friendly
system should not only operate for a short time frame.
In addition, the specs state that a recharging rate of 1 A
maximum is recommended. Therefore, the battery needs
to charge itself for 2 hours, which worsens the problem of
a short duration per charge.

We then considered the power consumption associated
with the usage of the LiPo battery. Most LiPo rechargeable
batteries come at a standard size of 11.1 V. We decided this
1 V difference would not significantly impact performance.
Given the maximum rated power of the motors is 15 W,
the maximum current each motor draws would be 15 W
/ 11.1 V = 1.35 A. The wheel chassis which includes 4
motors connected in parallel would draw 5.4 A current. In
a similar fashion, we estimate the average current drawn
through a run would be 6.5 A. With a battery of 5000
mA h capacity, a single charge would last for 5 / 6.5 h =
0.769 h ≈ 46 min. A charge rate of 1C is the recommended
value for LiPo batteries [5], which corresponds to a current
of 5 A. Therefore, it would take one hour to fully charge
the battery. This is a significant improvement in timings
compared to the NiMH battery. Therefore, we decided to
use the 11.1 V LiPo batteries as our power source.

We also chose to use a separate 12V power bank for the
Xavier since it requires a 9-20V power supply and we al-
ready were drawing a lot of current from our LiPo battery.

4.6 End Effector Trade-offs

We wanted to select an end effector that would be able
accessible for us in terms of money and availability while
still emulating modern solutions. At first, we explored us-
ing a vacuum suction gripper end effector as this was the
most common solution being used in current industry for
robots similar to our intended use case. Using a vacuum
suction gripper would have also given us the ability to have
a larger margin of error for getting bounds of an object and
gripping items of various shapes and sizes. Unfortunately,
such vacuum suction gripper parts were unavailable to us
as they were either too costly for our budget or would not
have shipped in our tight time frame. Hence, we pivoted
our end effector design choice to using a claw gripper, as
this was the second most popular end effector option we
found in our research.

When researching claw gripper options, the most pop-
ular choice that was accessible for us and would meet our
use case was a servo-powered claw. We found that we could
either purchase an off-the-shelf part for out of the box use,
or we could design and custom cut or print a claw. Based
off our research, custom designing our own claw had the
advantage of potentially improved gripping strength and
the ability to grab larger objects. However, we determined
that the time cost of this approach was significantly larger

than its added value as there was not much existing infor-
mation regarding it to work off of. As a result, we opted
for purchasing an off-the-shelf servo claw part that would
meet our requirements. Since choosing to purchase the part
returned an extra week of time that would have been spent
building and testing the claw part, we decided to allocate
this time towards integration. This is a highly beneficial
investment of time because our project has so many sub-
systems that are required to integrate completely for the
system to work and thus was one of the most complicated,
time-consuming, and failure-prone parts of our project.

To satisfy our Requirement 10, we had to find a claw
gripper that has a maximum gripping width of at least 3
inches. We also needed a servo that would power the claw
to provide a gripping force and have a coefficient of friction
with the object as defined in the following:

Fgripµ ≥ (0.4536kg)(9.8
m

s2
)

≥ 4.4463N

To find the part that would satisfy these requirements,
we considered many vendors. We first looked at Robot-
shop.com as there were many claw gripper options from var-
ious brand-name robot part vendors. However, we had a lot
of difficulty finding a part that could satisfy our width re-
quirement and had a promising design. Hence, we looked to
Amazon.com instead as even though the vendors may have
been slightly more off-brand, we knew that the part would
arrive with faster shipping time and allow us to spend more
time testing to compensate for this concern.

We found 2 servo claws that seemed to meet our Re-
quirement 10.

Both were from the same vendor, and one had a larger
linear gripping block (claw A) while the other had a more
rounded claw design (claw B). Based on its specifications,
claw A has a link radius of 43mm. This means that for claw
A to grab an object of width 3 inches, a single claw side
must open θ = 62.38◦. Similarly, based on its approximate
specifications, claw B has a link radius of 100mm. This
means that for

Figure 5: Claw Angle Calculation
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claw B to grab an object of width 3 inches, a single claw
side must open θ = 23.92◦.

Originally, we had assumed that the aluminum claw
would be capable of gripping our materials, but the claw
did not have a large enough coefficient of friction to prop-
erly hold onto our cardboard boxes. Hence, we wrapped
rubber bands around the claw which gave us a static co-
efficient of friction (between rubber and cardboard) of at
least 0.5 [6]. This means that we could find approximately
find the torque, τservo, of the servo needed using following:

Fgripsin(θ)r = τservo

Fgrip =
τservo
sin(θ)r

τservo
sin(θ)r

≥ 4.4463N

µ

τservo ≥ 4.4463Nsin(θ)r

0.5
τservo ≥ 8.893Nsin(θ)r

This meant that claw A would require a servo with a
torque of at least 8.893Nsin(62.38◦)(0.043m) = 0.339Nm
Similarly, this meant that claw B would require a servo with
a torque of at least 8.893Nsin(23.92◦)(0.1m) = 0.361Nm
The claw kits were from the same vendor and came with a
PWM servo of torque 1.96Nm which was more than suffi-
cient for meeting our requirements.

We purchased both claw options and manually tested
each claw to determine which shape was best suited for
gripping objects in our use case, given that both otherwise
satisfy our end effector requirements. In the end, we chose
claw B because the shape of the claw was significantly bet-
ter suited for grabbing our items due to its larger gripping
range.

4.7 Linear Z-Axis Actuating System
Trade-offs

For our linear z-axis actuating system, we made several
alternative design considerations with a focus on meeting
the height aspect of Requirement 9. The industry standard
choice would have been to use a link arm robot, but we
decided that this would introduce unnecessary complexity
to our project since we only need actuate on the z-axis and
would not use the extra degree of freedoms offered. Another
alternative was to use a linear guide rail system, but we did
not consider this choice as it would have occupied too much
vertical space. This would have caused our robot to pose as
a larger interference to others, especially when not in use,
and hence did not meet our Requirement 11. Hence, we
decided to use a cascading linear sliding system and ulti-
mately ended up deciding between a pulley powered linear
slide system or a cascading rack and pinion system. We
ended up selecting the pulley powered linear slide system
as we wanted to reach a large height which would require
several sets of rack gears and would introduce unnecessary

complexity and cost.
The total mass of the lifted system is mextrusions +

mslideparts + mcamera + mclawsystem = 0.44kg + 0.1kg +
0.3kg + 0.2kg = 1.04kg. This means that the lift had to
be able to handle a force of (1.04kg)(9.8m

s2 ) = 10.19N. We
also wanted to have 2 parallel sliders to keep the system
balanced. Hence, each motor and pulley pair that we chose
to control the system had to be able to handle at least
5.095N of force. The motor we chose had 4.2Nm of stall
torque. We also opted for a pulley with smaller radius of
60mm, which resulted in a force of 4.2Nm

0.06m = 70N which was
more than enough force.

4.8 Computer Trade-offs:

When choosing the computer for our project we con-
sidered two main options, the Jetson Xavier and the Rasp-
berry Pi. Both computers were in the ECE inventory, so
price was not a concern. Some members of our group were
familiar with the Raspberry Pi, while none of us had expe-
rience with the Xavier NX. In terms of specifications, the
Raspberry Pi has a BroadCom VideoCore VI GPU, 2-4GB
of RAM, a 40 GPIO pin header and a variety of ports. [7]
In contrast, the Xavier NX has a 384-core NVIDIA Volta™
GPU, a 7-way visual processor, and 8GB of memory.[8] We
chose to use the Jetson Xavier due to the extra memory,
and the fact that all our research concluded that the Jet-
son Xaiver was superior when it came to AI applications.
Since we planned to use Computer Vision in our project,
we wanted to select a computer which would best support
this.

Figure 6: CAD of one side of linear slide part
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4.9 Camera Trade-offs:

We mainly considered two cameras for our project, an
Intel Realsense or the Arducam UC-698 along with a depth
sensor. Both cameras were available to us at no cost, and
the distance sensor would also be inexpensive. The Ard-
ucam has a 75 degree FOV, 4k@30FPS frame rate [9]. In
comparison the Intel Realsense 435 has an 85 degree depth
FOV and 90 FPS depth frame rate, 69 degree RGB FOV
and 30 FPS RGB frame rate [10]. The FOV and frame
rate of both cameras were similar, but the main difference
between the two cameras was the depth sending capability
of the RealSense. Given that our robot must approach the
shelf and move the claw a precise amount to retrieve the
object, we wanted to select the camera that would provide
us with the most accurate depth information. Thus, we
chose the Intel Realsense for our system.

5 SYSTEM DESCRIPTION

5.1 Hardware Connections

As explained in the design trade studies, we decide to
use the BTS 7960 DC stepper motor drivers due to the
current requirements from our motors. One disadvantage
that comes along with this choice is that only one motor
can be connected to this motor driver. Along with the two
motors from the actuating system, we would require 6 mo-
tors in total, which require 6 motor drivers. Each motor
driver consists of 2 PWM pins for controlling motor speed
and 2 output signal pins for controlling motor direction. In
total, we would need to connect to 12 PWM pins, at least
24 more digital pins, and an addition of a few more digital
pin for the servo and IMU. The Jetson Xavier has 40 GPIO
pins in total, but unfortuntely do not provide PWM pins.
Hence, we decide to connect the pins to and Arduino Mega
board, which has 15 PWM pins and 39 more pins can be
used for digital input. Communication between the Jetson
and the Arduino can be performed through the PySerial
library. Hardware connections to the Jetson board include
one intel realsense camera, one Arduino Mega board, and
a battery source. The camera and the Arduino all require
a usb-c connection, and a Jetson has 4 usb-c ports in total,
which is much more than needed. Even though the Jetson
requires 9-20V, and the LiPo battery provides 12V which
falls into that range, due to the power senstivity of our
system, we decide to power the Jetson through a different
power source, the Talentcell 12V power bank, which is con-
veniently supplied by the inventory. The motor shield and
the servo require 5V and 7V separately, which is lower than
the 12V supplied by the power source. Hence, we added
a buck converter. After experiments we realized that the
servo would draw more power in comparison to the Ar-
duino, so we used a buck converter to 5V for each of them
separately, giving the system the most consistency. The
hardware connection design is shown in figure 7.

5.2 Software Control

The entire process is broken in smaller steps that run
sequentially in a python program. Since the Jetson runs
the computer algorithm programs, whereas the Arduino
Mega runs the program to control the motors, a commu-
nication bridge needs to be established between the two
entities. Since all of us on the team are very familiar with
Python, we decide to use Python as the language to send
serial data between these models. There is a package called
PySerial which is a convenient tool to read data to / from
the Arduino.

We experiment and find the relationship between dis-
tance input from the sensor to the time needed to run the
motors on the Arduino. There were some issues regarding
the encoder on the motors, and rather than spending the
effort on debugging the encoders, our test results show that
running motors based on time measurements are accurate
enough. We would apply this linear relationship conversion
to the Arduino for it to run the specified amount of time.

Finally, during our experiments we realize that drift on
the wheels are inevitable. Once the robot orients itself to
the shelf from the basket, it would then move past the bas-
ket and towards the shelf. After the robot is in front of the
shelf, the tag is off the viewpoint from the camera, so the
robot could not utilize the april tag information to re-orient
itself again. Hence, we added in IMU to record angle infor-
mation, such that when the robot is in front of the shelf,
the robot can re-orient itself such that it faces the parallel
direction again.

5.3 Computer Vision

5.3.1 Navigation:

For navigation we used AprilTags. We chose to use
AprilTags because the tags are free to generate and print,
and easy to use. The detection software is originally writ-
ten in Java, but we used a version written in Python for
simplicity [11]. The detection software is able to detect all
AprilTags that are fully in frame, and outputs the center
and corner coordinates, along with the pose matrix. Us-
ing the pose matrix we are able to calculate the x,y and
z location and the angle of the tag in relation to the cam-
era. The detection software also outputs the tag family and
id of the tag, allowing us to differentiate between different
shelves and baskets. The detection software mostly worked
out of the box, but we had to make a few changes to inte-
grate it seamlessly with the camera stream, and with the
navigation code. These changes included configuring the
algorithm to work with our camera given its specifications,
and extracting the output information. An example of the
algorithm’s output can be seen figure 8.

5.3.2 Edge Detection:

The edge detection algorithm draws a bounding box
around each item on the shelf and outputs the location,
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Figure 7: Hardware connections for Motor, Motor Drivers, and Servo

Figure 8: April Tag detection output
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Figure 9: Box detection example output

width, and height of the item so that the robot is able to
orient itself to retrieve the item. The steps of the algorithm
are as follows:
1: The CV2 Gaussian blur function is applied on the cur-
rent frame to smooth the image
2: The CV2 Canny edge detection function is applied,
which identifies all the edges in the image
3: The CV2 find contour function is applied, using the rect-
angle option, which joins all points within a boundary.
4: The rectangles found are filtered based on width and
height values to remove extraneous boxes
The algorithm outputs the top left and bottom right cor-
ners of each box found, and the width and height. An
example of the detected boxes can seen in figure 9.

5.3.3 Laser Detection:

The laser detection algorithm detects the presence of
the laser point in the frame. The algorithm is implemented
in Python [12][13]. In order to account for noise, the robot
only searches for the laser point within the boxes on the
shelf. The robot first performs object detection, drawing
bounding boxes around the items present on the shelf and
then searches for the laser point within the bounding boxes.
To detect the laser point, the image is first converted from
BRG to HSV. Then, two masks are applied. The first mask
keeps the brightest 10% of pixels in the image. The second
mask filters out all pixels in the image that are not red.
These two masks are then combined to preserve the pixels
that are both very bright and red. An example of the algo-
rithm’s output is seen in figure 10, which has a white dot
at the location of the laser and is black everywhere else.

6 TEST & VALIDATION

6.1 Overall Success Rate

The success rate of the entire procedure is 80%. We ob-
tained this number by running the process 20 times, start-
ing

Figure 10: Laser detection output result

from navigation to the user’s basket and ending at dropping
the item to the basket. Since the entire process depends
on the success rate of sub systems, error rates in the sub-
systems would affect the correctness of the overall run. In
addition, failures might occur at points not accounted for
in the requirement where we didn’t envision in the design
phase. For instance, consistent lifting and lowering of the
linear slides, navigation to the correct distance range up to
the shelf, and dropping the item in the region of the bas-
ket. After a long time of fine tuning, the current success
rate still does not meet the design requirement of 97.5%.
We believe this is due to many hardware inconsistencies in-
cluding wheel drift and communication delay. However, we
believe our current success rate still demonstrates a viable
working product.

6.2 Navigation Success Rate

The success rate for traveling to and from the basket
is 92.5%. We obtained this number by running the sub
procedure 40 times, and 37 of the trials succeeded. Since
the robot’s navigation is based on detection of the April-
Tag and accurately reading off its location information, the
bottleneck is to ensure the AprilTag can be read when the
robot is searching for its position, which depends on the
position of the robot from the AprilTag. Given the far dis-
tance a Realsense camera is able to detect, the robot is
easily able to see the tag from over 10 feet away. However,
such a far distance does not apply to the use case, since the
robot is likely to be closer to the user. Hence, we determine
the closest distance which the robot can find the AprilTag
instead. We found this value by incrementally moving the
robot closer to the basket. We defined the success case as
whether the robot can correctly find the AprilTag while ro-
tating. The testing data and plot are seen below in figures
11 and 12.
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Figure 11: Navigation Testing Data

Figure 12: Navigation Testing Plot

The data shows that locating the AprilTag during rota-
tion is relatively consistent from further distances, up until
the robot is 2.5 feet away, where the success rate then drops
significantly. This is due to the AprilTag not being fully in
frame, as the camera is too close to capture the entire tag.
As the robot moves even closer, the success rate drops to 0.
Hence, for the navigation process to be successful, we have
to position the robot at least 3 feet away from the user’s
basket.

6.3 Laser Detection Success Rate

To determine the optimal distance in which the cam-
era can detect the laser, we ran a few tests at various dis-
tances and calculated the success rate at these distances
separately. The corresponding testing data and plot are
seen in figure 13 and 14.

Figure 13: Laser Testing Data

Figure 14: Navigation Testing Plot

From data we see that laser detection is accurate in the
range of 33 cm to 50 cm from the shelf. At 52 cm, accuracy
drops significantly, and the success rate drops to 0 at far-
ther distances. This is due to hardware constraints in the
camera not being able to detect the tiny laser point from
a far distance, as well as the fine tuning implemented in
the code to filter out objects of specific sizes. Within the
optimal range, overall the success rate is 92.73%, which is
calculated from 51 success trials out of 55 in total.

6.4 Grabbing Success Rate

Similar to laser detection testing, to determine the op-
timal distance in which the robot can grab the object, we
ran a few tests at various distances and calculated the suc-
cess rate at these distances. We define grabbing as the
robot navigating and centering itself in front of the object
and moving forward to grab the object. The corresponding
testing data and plot are seen in figure 15 and 16.
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Figure 15: Laser Testing Data

Figure 16: Navigation Testing Plot

From data we see that grabbing is most accurate when
the robot starts from a distance of 33 cm to 47 cm from
the shelf. After 47 cm, we see a sharp decreasing trend of
grabbing accuracy. This is due to drift in wheels result-
ing in imprecise stopping in front of the object to grab it.
Within the optimal range, overall grabbing success rate is
84%, which is 42 successful trials out of 50.

In conclusion, we should aim to have the robot stop
at 33 cm to 47 cm from the shelf for grabbing and laser
detection to work optimally.

6.5 Other Requirements

The average speed of our current implementation is 0.33
m/s. We performed the test by having the robot drive a
measured distance, record the time taken, and calculate
the speed. We didn’t achieve the designed specification of
travelling at 0.5 m/s. Since the motors are not running
under the maximum rotational speed, our group in theory
could increase that number in the Arduino code. However,

after trials we found out that this might lead to other in-
consistencies such as the the wheels “overshoot” a bit by
traveling half a second more than it should have, which
would lead to inaccurate results for the further procedures.

The current grabbing latency is currently 6.8 seconds,
which is roughly 2.6 times slower than our design require-
ment. We had to increase the time for closing the claw to
avoid accidentally tipping the object over.

The current laser point latency is 0.561 seconds. We
define laser point latency as the time from the start of the
laser detection computer algorithm, to identifying the laser
point and its position. To test this we ran the algorithm
and printed out timing information on the console, and
took the average over a few runs. This meets our design
specification of being under 1 second.

The current distance between items on shelf is 4 inches.
This is greater than our design specification. This is due
to our claw having a wide range when opening, and if the
objects are closer together, there’s a much higher chance
of the claw knocking off one of the neighboring objects.
4 inches is the sweet spot we determined such that item
retrieval can achieve sufficient accuracy, while minimizing
distance between objects.

The items that we are using for test are 2 inches wide
and weight 1 lb. This roughly meets our design specifica-
tions.

7 PROJECT MANAGEMENT

7.1 Schedule

See figure 19 on page 19 for the schedule.

7.2 Team Member Responsibilities

Ludi Cao was primarily responsible for building the
drivetrain and implementing its navigation to and from
the shelf.

Esther Jang was primarily responsible for building and
programming the linear slide system and setting up the
claw gripper.

Bhumika Kapur was primarily responsible for the com-
puter vision aspect of the project.

All members worked together for integration and fine
tuning parameters to achieve the most accurate result. The
project schedule is seen in figure 19.

7.3 Budget

See page 16 for the bill of materials for our various
subsystems. Note that we added the order of one switch
battery, one 5.5x2.5mm male to DC 5.5x2.1mm female
adapter, and one IMU after the design review. We also
borrowed the power bank from the inventory, as well as
replaced the usage of two Arduino Uno boards with one
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Arduino Mega boards. The Arduino boards are all already
previously owned.

7.4 Risk Management

In terms of the potential design risks, we have the con-
cern that laser detection would not work as accurately as
desired. This is due to the laser point being small, the
presence of noise, and the distance from the camera to the
laser needs to be within a certain range. The initial perfor-
mance was indeed very poor. In order to mitigate the noise
interference, we built our own shelf using white stryofoam
board, so that no other red light would be in the frame. In
addition, we ran edge detection to identify the boxes first,
so that objects in the background are not mistakenly identi-
fied as the laser point. We also had imprecise results when
running edge detection algorithms to find boxes, as mis-
cellaneous edges in the camera frame would disturb what
the algorithm would think as boxes. To mitigate the issue,
our team did a lot of experiments to filter out the range of
height width of boxes the camera should see in frame.

Another design risk that came up during testing, is that
the wheels tend to drift when travelling through the low
friction floor in the lab. The drift could also be caused by
the unbalanced weight on the robot. In order to resolve
this issue, we added an IMU sensor. This allows the robot
to rotate to the angle it recorded previously to compensate
the drift it encountered when driving.

Finally, during the design phase we were concerned the
claw would not grab the object firmly enough to grasp it
as it travels to the basket. We found that wrapping the
claw with a material of high coefficient of friction mitigates
the issue. We ended up wrapping rubber bands around
edge of the claws, which increased it’s gripping capability
significantly.

In terms of schedule, we made sure to budget enough
time for integration of our subsystems as there is a big risk
of our entire system failing if integration does not succeed.
Initially in our design review, we set aside 3 weeks in our
time schedule and also had Esther spend a week starting
on integration to allocate even more time to this task. In
reality, we started integration from the week Nov 8 - Nov
13, which is three weeks before the final presentation, and
five weeks before the final demo, which is on our proposed
schedule plan.

Our project faced many budget constraints. The robot
required many pieces of hardware that when added to-
gether, was almost over budget. The motors themselves
cost nearly 200 dollars in total, and a lot of aluminum was
required for the chassis since our robot has a wide frame
and a great height when the linear slides are expanded. To
mitigate these risks, we tried to borrow from the inventory
or clubs so we did not exceed our budget. Thanks to Tao
Jin, we were able to borrow an Intel Realsense camera. We
also acquired the Jetson Xavier and the power bank from
the inventory. To save up the cost of purchasing a shelf to
test, we built a simple version of our own by using the stry-
ofoam pieces in the lab. We also borrowed miscellaneous

items from Roboclub, such as jumpwires, nuts and bolts,
and the servo for the claw. In addition, we did careful cal-
culations about the exact amount of pieces we needed for
the robot when placing the order from RevRobotics, so we
could minimize our shipping fees. Even though this put us
about half a week behind in building the robot, eventually
this process turned out successful as we used up all the
pieces we ordered with barely any extra material left. We
still exceeded the allocated budget by around 100 dollars,
but we were able to minimize excess spending.

8 ETHICAL ISSUES

Our intended audience is people who have disabilities
and are unable to grab items on high shelves, hindering
them from grocery shopping. Hence, one main ethical con-
cern is that our robot should not harm the vulnerable users
under any circumstances. Since our robot includes integra-
tion of various hardware components, the failure of any one
of them might lead to dangerous outcomes. For instance,
if the sensor distance malfunctions and reads items farther
than they actually appear, then the robot might acciden-
tally run into the user, causing injuries. Other possible
edge cases of harm include the linear slides breaking and
falling down on the user when up at a certain height. Or
a wire wearing down, which results in an electrical haz-
ard due to potential short circuiting. The user would be
adversely impacted in these situations, and we strive for
zero tolerance on any edge cases that would risk the user’s
safety. However, it is impossible to guarantee all compo-
nents would work seamlessly, and it is hard to predict what
might go wrong in the system. Hence, the best way to mit-
igate these risks is to implement an “emergency-stop” sys-
tem, such that once the user detects a problem and senses
danger, the user can press a button and the robot would
immediately stop all programs. We hope that the prob-
ability of both the robot and the emergency halt system
not working at the same time is minimal, and the user can
feel safe around the robot. Another safety procedure is to
conduct an inspection on the robot every few months.

One other ethical issue relates to the misuse of computer
vision technologies, where some users might feel uncomfort-
able about their privacy potentially being infiltrated. Edge
cases happen when a malicious party gains illegal access to
the computer vision information, and use this negatively
against the the person captured. The most important so-
lution is to ensure the robot’s network is secure and safe
from third parties breaking in. The computer vision should
also only be turned on when the robot is in operation, to
reduce the amount of time that individuals may be caught
on camera.

The last ethical issue is the delegation of responsibil-
ity when the robot unintentionally cause damages (such as
breaking an item in the store). The manufacturer of the
robot, the store, and the user may all be asked to account
for this damage, and it may be unclear who is responsible.
Mitigation approaches include only allowing the robot to
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operate on items that are not fragile (avoid glass) and to
avoid dangerous items (anything that is sharp or heavy).
A legal statement about the delegation of responsibilities
for all parties involved should be written and agreed upon
by all. Once a mutual agreement is established, it should
be clear who bears responsibility in different situations.

9 RELATED WORK

IAM Robotics Swift: An autonomous manipulation
robot that can autonomously pick up items specified in a
fulfillment order from shelves. A shelf can be up to 7 feet
tall, and the robot can scan through an aisle of shelves.
The robot uses a vacuum gripper end effector that can
hold up to 15 lbs. It also uses 3D mapping-based computer
vision for its autonomy control [14].

Amazon Picking Challenge: The company Amazon
used to host a robotics competition which involved robots
being able to retrieve objects off a shelf. The winning robot
of 2017’s competition used an end effector that was a com-
bination of a suction gripper, claw, and sliding mechanism.
It also trained itself on models of objects to guide its com-
puter vision detection [15].

10 SUMMARY

Our project meets the functionality requirements set for
our use case. The robot first locates and drives upwards
towards the user’s basket. It then orients itself towards the
shelf, approaches it, then lifts the linear slides. The robot
detects the object being pointed at by the laser tag through
edge detection filtering. The robot retrieves the object and
return back to the user. To meet the functionality require-
ments, we had to modify many of our accuracy require-
ments, due to the many hardware inconsistencies not ad-
dressed in the design review, including sensitive power re-
quirements, and communication lag between the Arduino
Mega and the Jetson. In hindsight, we were overly con-
fident about our power analysis during the design review,
and didn’t take into account that the robot can only work
at peak consistency if the battery is charged at full power.
This requires a power source of much higher capacity for
us to continuously test for some amount of time, so we
should have chosen a battery that would better satisfy the
requirements. In addition, we realized we could’ve poten-
tially eliminated using an Arduino Mega board by using
software pwm pins instead of hardware pwm pins, and the
40 GPIO pins on the Jetson would then be sufficient. This
would result in a much faster run time.

10.1 Lessons Learned

One lesson our team learned is to conduct thorough
research about various approaches during the design re-
view stage, and be confident that the proposed solution
meets the requirements and is reasonable for the team to

implement. For instance, our team initially used two Ar-
duino uno boards, since the motors require 6 pwm pins,
but one Arduino Mega board turned out to be better. We
also should have looked into software pwm pins, eliminating
the need for an Arduino altogether. The other important
takeaway is that hardware projects can have much more
inconsistencies, especially compared to software projects.
Hence, a sufficient amount of time should be budgeted for
integration, as many tests need to be run to debug hidden
errors and find tune parameters.
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13. Chávez, F., et al. “Automatic Laser Pointer De-
tection Algorithm for Environment Control Device
Systems Based on Template Matching and Ge-
netic Tuning of Fuzzy Rule-Based Systems.” In-
ternational Journal of Computational Intelligence
Systems, vol. 5, no. 2, 2012, p. 368.,
https://doi.org/10.1080/18756891.2012.685327.

14. “Swift Robot: Autonomous Material Picking Robot
with Obstacle Detection.” IAM Robotics, 10 May
2021, https://www.iamrobotics.com/products/swift/.

15. Leitner, Jürgen. “Picking the Right Robotics Chal-
lenge.” Nature Machine Intelligence, vol. 1, no. 3,
2019, pp. 162–162., https://doi.org/10.1038/s42256-
019-0031-6.



18-500 Final Report - Dec 14, 2021 Page 16 of 19

Table 1: Bill of Materials for Chassis

Description Model # Manufacturer Quantity Cost @ Total
HD Hex Motor 40:1 Spur Gearbox REV-41-1301 Rev Robotics 4 $30.00 $120.00
15mm Extrusion - 1m - 90° Ends REV-41-1017 Rev Robotics 2 $12.00 $24.00
90mm Omni Wheel - 2 Pack REV-41-1190 Rev Robotics 4 $25.00 $100.00
Slim Shaft Collar - 10 Pack REV-41-1629 Rev Robotics 1 $8.00 $8.00
15mm Plastic 135 Degree Bracket - 8 Pack REV-41-1310 Rev Robotics 2 $5.00 $10.00
15mm Metal Flat HD Hex Motor Bracket V2 - 4 Pack REV-41-1486 Rev Robotics 1 $5.00 $5.00
15mm Metal Bent HD Hex Motor Bracket V2 - 4 Pack REV-41-1487 Rev Robotics 1 $5.00 $5.00
M3 Nut - 100 Pack REV-41-1126 Rev Robotics 1 $5.00 $5.00
M3 x 16mm Hex Cap Screws - 100 Pack - 4 Pack REV-41-1360 Rev Robotics 1 $11.00 $11.00
DC Stepper Motor Driver BTS7960 DORHEA 1 $27.55 $27.55
Ovonic 11.1V 5000mAh 3S 50C-100C LiPo Battery Lipo Battery Ovonic 1 $27.99 $27.99
HTRC LiPo Battery Charger B3AC Pro HTRC 1 $22.24 $22.24
9-DOF Absolute Orientation IMU Fusion Breakout BNO055 Adafruit 1 $39.9 $39.9
Switch Battery On/Off Connector Lead B07NQGV78D Dilwe 1 $10.89 $10.89
5.5x2.5mm Male to DC 5.5x2.1mm Female Adapter B07L5GGW7Q ZdyCGTime 1 $5.99 $5.99
12V power bank model YB1206000-USB Talentcell 1 $26.09 Borrowed

$411.62

Table 2: Bill of Materials for Linear Slides and Claw

Description Model # Manufacturer Quantity Cost @ Total
HD Hex Motor 40:1 Spur Gearbox REV-41-1301 Rev Robotics 2 $30.00 $60.00
15mm Metal Flat HD Hex Motor Bracket V2 - 4 Pack REV-41-1486 Rev Robotics 1 $5.00 $5.00
15mm Metal Bent HD Hex Motor Bracket V2 - 4 Pack REV-41-1487 Rev Robotics 1 $5.00 $5.00
15mm Linear Motion Kit V2 REV-45-1507 Rev Robotics 3 $12.00 $36.00
5.5mm Nut Driver REV-41-1119 Rev Robotics 1 $6.50 $6.50
2mm Allen Wrench REV-41-1377 Rev Robotics 1 $1.00 $1.00
15mm Extrusion - 1m - 90° Ends REV-41-1017 Rev Robotics 2 $12.00 $24.00
Small Pulley Bearings - 10 Pack REV-41-1368 Rev Robotics 1 $11.00 $11.00
1.2mm UHMWPE Cord - 10M REV-41-1162 Rev Robotics 1 $6.00 $6.00
15mm Metal HD Inside Corner Bracket - 4 Pack REV-41-1688 Rev Robotics 1 $10.00 $10.00
15mm Plastic Lap Corner Bracket - 8 Pack REV-41-1321 Rev Robotics 1 $5.00 $5.00
60mm Pulley - 4 Pack REV-41-1345 Rev Robotics 1 $8.00 $8.00
Mechanical Claw BigClaw Robot Gripper w/ 335MG Servo B089KMK954 LewanSoul 1 $33.00 $33.00
LewanSoul Mechanical Claw BigClaw Robot Gripper B08Q7XZVR4 LewanSoul 1 $23.00 $23.00
Adafruit 16-Channel 12-bit PWM/Servo Driver PCA9685 Adafruit 1 $15.00 $15.00
DC Stepper Motor Driver BTS7960 Teyleten Robot 1 $10.50 $10.50

$259

Table 3: Bill of Materials for Miscellaneous Items

Description Model # Manufacturer Quantity Cost @ Total
SanDisk 32GB MicroSDHC Memory Card SDSDQ-032G-A11M SanDisk 1 $7.50 $7.50
Shipping From Vendor 1 $14.50 $14.50
Intel RealSense D435 Intel 1 $299.00 Borrowed
Jetson Xavier NX Nvidia 1 $399.00 Borrowed
Arduino Mega A000067 Arduino 1 $38.05 Already Owned

$25
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