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Abstract—A system capable of allowing a user to control their 

computer cursor from a distance to access a web browser and 

navigate to several different pages. The system will allow for a 

touchless touchscreen experience where a user can use just their 

hands. State of the art systems are either too expensive or require 

the user to be very close to the screen for functionality. Our system 

will allow for a user to control their device from a comfortable 

distance using just a camera and code that can run on their 

computer. 

 
Index Terms—Calibration, Computer Vision, Cursor Location 

Transform, Gesture Recognition, Hand Detection, Neural 

Network, OS Interface, Pose Detection 

I. INTRODUCTION 

HE Virtual Whiteboard originated from the initial idea of 

developing something similar to Tony Stark’s Iron Man 

Suit user interface, where he just uses his hands to control a 

bunch of different things on his user interface without direct 

contact. However, we expanded on this idea of a touchless 

touchscreen and thought of how it might be practical in the real 

world. As students who likely spend lots of time on computers, 

there are a lot of downsides with prolonged computer usage 

including damage to the eyes from being too close to the screen 

and harm to the body from sitting too long. The Virtual 

Whiteboard which allows for any user to control their computer 

cursor from a distance with hand motion and gestures would 

allow for these problems to be mitigated since they can now 

stay standing and will not be close to their screens. The 

touchless aspect also has a sanitary benefit in this time where 

the pandemic is still an issue, since people who might have to 

use the same public computer can do so without transmitting 

germs. Additionally, this system would allow for students or 

teachers to give presentations or lectures naturally in a 

classroom environment while making the experience more 

interactive and engaging. 

The most important requirements for this system are the 

distance at which the system is functional and making the entire 

experience very smooth for the user. The first requirement can 

be directly quantified, and we have decided on trying to make 

our system functional for users that are between 3 feet and 12 

feet from their screen. The 3 feet minimum distance is because 

the average arm length is around 3 feet, so if a user is within 

this distance they could just reach out and use a normal 

touchscreen. The 12 feet maximum distance is the length of an 

average classroom at CMU (not lecture hall) and is also the 

maximum distance at which a user can comfortably see their 

cursor on an average 20-inch monitor. The smooth user 

experience will be expanded more upon in the design 

requirements, but we want to enable the user to simulate the 

capabilities of a mouse with their hands by using different 

gestures for mouse clicks. 

II. DESIGN REQUIREMENTS 

The smooth user experience can be broken up into three 

quantitative categories. 

A. Latency 

One of the key aspects of a smooth experience is a user 

making a gesture or a motion and seeing the result of it shown 

immediately on screen. This will be accomplished by making 

our design meet as low of a latency as possible. We have 

decided to strive for achieving a 50 ms latency for our system. 

This is equivalent to 20 Hz or 20 frames per second, which 

means the user’s hand image is captured 20 times per second 

and the cursor on screen should update its position following 

user input at this frequency. This latency will not create 

noticeable lag to the average human and should make the 

system feel like it is instantly responsive. 

B. Gesture recognition accuracy 

When using a mouse or a touchscreen, a user wants a click to 

be registered as a click 100% of the time. When using any 

device, the user would desire that their inputs are properly 

detected all the time. However even then, it is natural for users 

to have to click multiple times with a mouse or to tap repeatedly 

on a touchscreen to guarantee their input goes through. We have 

decided to aim for less than 10% gesture recognition error in 

our system. To put this into perspective, for every 10 clicks a 

user tries to input through hand gestures, we would guarantee 

that they must possibly repeat a gesture only one extra time for 

successful detection. As an extension of gesture recognition, we 

want to ensure that users only need to repeat a gesture at most 

one extra time to execute their intended mouse command. 

C. Cursor precision 

Our system ultimately controls the computer’s cursor, which 

allows for the user to interact with objects on the screen. For a 

standard resolution of 1920x1080 pixels, the smallest area that 

a user would have to click on is 15 pixels wide, which is the 

“exit” button for a tab in a web browser or the width of the 

scrollbar. For all other objects on screen, there is a larger area 

for the object to be interacted with the cursor. We want our 

system to be able to track user hand motion with an error of 

around 15 pixels so that the user will never misclick because of 

a system error, but only due to human error. 
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III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION 

The block diagram in figure 1 represents the overall system 

architecture. The project is largely done in software with the 

two main hardware systems being a camera and a laptop. The 

camera will provide the primary input to the system in the form 

of image data. We purchased our camera and will not be 

building our own camera for this project. The camera will 

continuously feed this image data into the laptop and more 

specifically the calibration and pose estimation blocks, which 

are both part of a hand detection module. The rest of the system 

is software that runs entirely on the laptop. The laptop is also 

something that we own, and we will not be building a laptop for 

this project. 

A. Hand Detection 

The hand detection module includes the calibration and 

pose estimation blocks in Fig. 1. The module takes in images 

which include the user and possible other objects in the 

background and isolates and identifies the user’s hand. The 

hand data shows up as data points in the hand detection module 

and will be converted into coordinate points to be sent to other 

parts of the system. In the calibration block, the user will map 

out their range of motion by moving one of their hands in a 

circle to detect the largest range in which the user’s hand can 

move. The range of motion will be sent into the cursor location 

transform which is part of the OS interface. The pose estimation 

block will continually send coordinate information about where 

the hand is located into both the cursor location transform and 

the gesture recognition module. Although the pose estimation 

block could potentially be used to determine gestures from the 

different points mapped onto the user’s hand, we decided to just 

send landmark coordinates that were normalized to the bottom 

of the user’s palm into the gesture recognition module instead. 

This is different from the design report where we planned on 

sending a cropped image of the hand with landmarks into the 

gesture recognition module instead of numerical coordinates. 

The pose estimation block was off-the-shelf while the 

calibration block was developed by us. 

B. Gesture Recognition 

The gesture detection module will take in normalized hand 

landmark coordinates to determine what gesture the user is 

making. This is different from the design report where we 

originally wanted to use a zoomed/enhanced image of the user’s 

hand to determine what gesture the user is making. The change 

from inputting images to inputting numerical coordinates 

allowed us to develop a simpler and faster model for classifying 

hand gestures. The gesture recognition module uses a neural 

network to detect the user’s hand gesture among a dataset of 26 

different hand gestures, of which we only need five. The neural 

network will directly convert the landmark coordinate input 

into an integer output that represents the gesture detected. This 

gesture integer will be fed directly into the OS interface. The 

gesture recognition module was developed entirely by us, 

although the dataset used to train includes off-the-shelf images 

as well as images we took ourselves. 

 

Fig. 1. Block diagram for entire system 

C. OS Interface 

The OS interface module includes both the cursor location 

transform and the OS interface. The cursor location transform 

is a type of calibration for the OS interface system. Since 

coordinates from the hand detection module will not correspond 

directly to coordinates in the OS to represent the screen, a 

transformation is needed to map motion of the user to motion 

of the cursor on screen. This way for users far from the screen 

they will not have to make super small and precise movements 

to move the cursor onto small on-screen objects. This scaling 

will also make the system’s sensitivity like a regular mouse, 

where the user may have to pick up and re-adjust the mouse 

multiple times while using it. Once the calibration is done, the 

OS interface will move the cursor based on relative positioning, 

which is taking the difference in position between two time 

frames to determine how far to move. The gesture recognition 

module will provide the gesture which will be converted into a 

mouse action. The OS interface module will take the hand 

position, calculate where to move the cursor based on current 

and previous hand position, and perform certain mouse actions 

based on the inputted gesture integer. These simulated mouse 

movements and actions will be fed into the operating system of 

the laptop, allowing for direct control of the cursor through 

software. 
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IV. DESIGN TRADE STUDIES 

A. Hand Detection Trade Studies 

Multiple object detection methodologies have been used for 

hand tracking as the problem boils down to recognizing and 

sensing hand data. We considered multiple different solution 

approaches for hand detection: IMU, infrared sensors, 

ultrasonic sensors, computer vision, and Ultraleap Leap Motion 

Controller. Ultrasonic sensors eliminate the need for external 

sensors on the body, but usage of it would require complex 

calculations for extracting pose and location data of hand 

making it too difficult to work with for our use case especially 

given its low resolution of around 1 cm. Infrared sensors obtain 

sensor location with around a couple millimeters of resolution. 

However, the approach only gets the location of the sensors, 

and we would need to research and develop our own complex 

algorithms for pose and gesture estimation. IMU 

accelerometers are especially subject to drift, and small errors 

in measurements are exponentially multiplied during double 

integration for position estimation. We considered an external 

sensor as a calibration metric for position estimation as well as 

a Kalman filter, but both approaches seemed too complex given 

our problem statement and the effort to implement either was 

not outweighed by the benefits the IMU itself provided to our 

task. We also considered the use of an external hardware sensor 

called Ultraleap Leap Motion Controller that was geared 

specifically towards hand pose detection for AR games. While 

the accuracy was good at close distances, the most complex 

sensor the company provides has a max usage distance of 

around a meter; our solution statement requires around a three 

to fifteen feet operation distance. Thus, we ultimately decided 

on the use of computer vision for our detection algorithm for a 

multitude of reasons. 

First and foremost, there has been by far the most work done 

in this area with regards to hand detection, so it simplifies our 

solution approach as well as more easily discretizes our task for 

hand recognition. Secondly, as we are using a neural network 

on the hand image for gesture recognition, the computer vision 

approach standardizes and feeds more seamlessly into our 

system pipeline. The specific library we'll be using is the 

MediaPipe body landmark recognition library [1]. The library 

includes a pretrained model that includes facial and hand 

detection algorithms on images fed through a camera and 

allows for us to tune parameters like detection confidence and 

maximum number of hands to detect. With respect to the Leap 

Motion Controller, a computer vision approach will allow us to 

increase the distance with which our user can operate provided 

our camera has a high enough resolution. To combat low 

confidence detection due to motion blur when a user moves 

their hand in the camera view, a camera with a higher frame rate 

refresh will be used as well. The high frame rate camera (60 

frames per second) will also meet our requirement for 50 ms 

latency. We also decided on a webcam because it is likely that 

our users will have access to their own webcam that they can 

use with their own laptop to run our system. Practically, it is 

unlikely that users have professional cameras handy to use to 

get our system working on their computer. 

B. Gesture Recognition Trade Studies 

Classification of user hand gestures from image data is a 

perfect fit for a machine learning approach. Finding a function 

to discriminate between the number of hand gestures required 

to meet user product specifications would not be feasible by 

hand. The requirements for this users’ product specifications of 

this gesture recognition include quick training of our model and 

low inference computational latency, as well as high accuracy. 

Considered approaches included deep learning in the form of a 

deep convolutional neural network applied to raw image data or 

a simpler architecture neural network that would be provided 

feature data in the form of landmark coordinates output by our 

hand pose estimation. Both approaches would be implemented 

with a simple supervised learning approach employing 

stochastic gradient descent on a multiclass cross-entropy loss 

function. Unsupervised learning approaches were found unfit 

for this product, due to the extended learning time required, as 

well as the saturation of available appropriate datasets including 

images of various hand gestures. 
The final design selected is the latter of the two options: the 

simple neural network trained on pose estimation data. This 

selection was made because the simplicity of the model would 

allow for a much shorter inference time, as well as a predicted 

higher accuracy than what could be achieved from raw image 

data that would include background pixels, pixel alpha 

differences from lighting, as well as overall higher noise. This 

meets the requirements for a smooth user experience by 

lessening overhead for latency and improving classification 

accuracy for gesture recognition accuracy. 

C. OS Interface Trade Studies 

The OS interface and cursor location transform will be 

implemented in Python. Python will allow for easy connections 

between our design components and easy transfer of 

information between modules. The control of the mouse 

through the OS will be done using the mouse library in Python 

[2]. Other libraries that could accomplish the same task of 

controlling the cursor include pywin32 and pyautogui [3][4]. 

All these libraries would fit the user product requirements since 

they would all be able to interface with and control all aspects 

of the cursor with minimal overhead. However, the mouse 

library has excellent user-friendly wrappers that are much 

easier to work with than the functions in the other libraries. 

We chose to use a laptop rather than something like an RPi 

(Raspberry Pi) because we felt that this fit our user product 

requirements better. The goal of our Virtual Whiteboard is to 

allow the user to control their own computer from a distance 

using hand gestures. Having on the system run on an RPi may 

be sufficient and cheaper for demonstration purposes, but the 

goal is for users to be able to run the code on their own 

computers and use their own webcams to utilize the system on 

their own. Therefore, ensuring that the system can function on 

one of our laptops using a webcam is what we want to verify 

that our system fits what we want it to do. 
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D. Gesture Recognition Model Trade-Off 

 

Fig. 2. Model accuracy vs epochs for 5 classes and 13 classes 

One major trade-off for machine learning models is the 

relationship between verification accuracy and the number of 

classes used for classifying. There is an established relationship 

between the number of classifications and the accuracy of the 

model. As the number of classifications goes down, the 

accuracy of the model should increase. In our case, we started 

with a dataset of 26 possible gestures (13 for each hand), but 

since we only need to use 5 of these, we wanted to see if it 

would be beneficial to train a model for classifying gestures into 

only 5 classes per hand instead of the original 13. The results 

shown in Fig. 2 indicate that the model accuracy does indeed 

benefit from a smaller number of classifications. However, 

while accuracy does improve, this limits the expandability of 

the system to include more features in the future using more 

gestures. The improvement of the model allows up to get up to 

88% validation accuracy, which is enough for us to meet our 

gesture accuracy requirements with some clever improvements 

in the OS interface implementation. 

E. Latency vs Accuracy Trade-Off  

The two biggest and most important requirements that we 

could trade off for our system would be latency and accuracy. 

We found that in our system, the hand detection module and the 

OS interface did not have tunable parameters that would trade 

off between latency and accuracy. Instead, the gesture 

recognition model was the most likely candidate for any 

evaluation in this department. With the trade-off done in section 

D with different classification numbers, it turns out that having 

the same machine learning model structure keeps latency 

constant, regardless of how many classes are used for 

classification. We then thought to experiment with different 

model architecture and developed a deeper model that would 

sacrifice speed for accuracy. Unfortunately, this model turned 

out to yield lower validation accuracy than our simpler shallow 

model, so the result of our brief trade-off analysis here was to 

stick with our original model. 

F. Use Case Distance vs Accuracy Trade-Off 

While we wanted our system to be fully operational between 

3 feet and 12 feet of distance from the camera, we want to see 

what the ideal distance to use our system is. At variable  

  

Fig. 3. Gesture accuracy vs distance for 100 trials of mouse commands 

distances, latency and cursor precision did not vary much, 

however gesture accuracy in practice did. The process of 

obtaining the gesture accuracy will be expanded on in the 

testing and validation section. As seen in Fig. 3, gesture 

accuracy is very high and consistent between 3 feet and 9 feet, 

however there is a definitive drop at 12 feet. It is also worth 

noting that right click detection accuracy was consistently 

lower than the left click and left hold + drag accuracies. While 

we wanted to isolate an ideal distance for using the system, any 

distance between 3 and 9 feet proved to have nearly perfect left 

clicking capabilities, while the system did seem to struggle with 

accuracy at our maximum of 12 feet. 

V. SYSTEM DESCRIPTION 

A. Hand Detection 

To get accurate live-time hand detection, we used the 

Mediapipe library which is a crowd sourced package that 

produces several detection models for different human 

structures such as hands, face, and body pose. The hand detector 

we used scans an input image for sub-images that look like 

hands and tries to map a set of 21 landmarks corresponding to 

21 major hand points, as seen in Fig. 4 and Fig. 5. If the detector 

found a sub-image of the camera frame that looks like a hand, 

it returns these 21 landmarks in the form of a 21x2 matrix where 

the ith 2-dimensional vector of the matrix corresponds to the x, 

y pixel location of the ith landmark.  

When we tested the package, MediaPipe was accurate to a 

reasonable extent. The Mediapipe hand detector streamlines our 

solution approach since it allows us to vectorize our data 

making our model simpler and easier to fine tune and train. In 

using Mediapipe, we were able to avoid using a convolutional 

neural net which would likely have slowed down our train time 

depending on our kernel size and increased latency on our entire 

system since the model would have more inputs. We applied 

the hand detector to our entire train image set into a csv file 

where the ith csv row corresponds to the hand detector 

landmarks of the ith image. 
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Fig. 4. Image of Andrew with landmarks on his hand 

 

Fig. 5. 21 landmark coordinates from pose estimation 

The calibration step was implemented as follows. The 

calibration happens on system start-up, giving the user a few 

seconds to move to the position they want to use the system 

from while the camera connects to the system. The code will 

then continue to accept hand coordinate inputs for about 10 

seconds in which the user will move their hands through a 

comfortable range of motion. The cursor location transform 

function will record the maximum and minimum x and y 

coordinate values received within this time frame. These x and 

y values will be used to construct a rectangle that represents the 

user’s range of motion. This rectangle will then be scaled to the  

device’s screen size. Screen resolution is obtained using the 

ctypes library to directly obtain screen size using the 

GetSystemMetrics() method. After the calibration, all hand 

positional changes will be scaled based on this calibrated 

rectangle of motion. 

Originally, we wanted to fit a bounding box that has 

dimensions of the interaction screen to the person to serve as a 

mapping between the hand location to on screen coordinates 

where we will put the mouse. Our initial functionality would 

have allowed the user to move in both vertical and lateral 

directions, so we would have to scale the bounding box initially 

calibrated to the user to follow their positional change. 

However, given that our use case shifted from giving 

presentations or demonstrations to a more general-purpose 

cursor control from a distance, the original bounding box idea 

was scrapped. 

After calibration, the hand detection module continually 

sends the 21 landmark coordinates, seen in Fig. 5, to the OS 

interface to control cursor movement, and sends normalized 

coordinates to the gesture recognition module for hand gesture 

detection. 

B. Gesture Recognition 

 
Fig. 6. Subset of gestures in the HANDS dataset with relevant gestures 

indicated 

Gesture recognition was initially proposed to be 

implemented through transfer learning from pre-built gesture 

recognition models. This avenue did not end up being explored 

though, because of availability of time sequenced data 

containing relevant gestures on which to train. The gesture 

recognition model was intended to be trained on a data set of 

static images containing gestures, and no accessible pretrained 

models were found to meet this specification. 
The gesture recognition model (GRM) for this project was 

instead custom designed and trained in python using the pytorch 

library. We used a dataset called HANDS [5][6], hosted by 

Mendeley Data, to perform this training. The GRM we created 

functions by taking in an input of 21 coordinate pairs 

corresponding to the location of the 21 hand landmarks detected 

by our pose estimation. These 42 features (2 for each of the 21 

landmarks) are then normalized before being run through a fully 

connected neural network (FCNN) consisting of 13 hidden 

layers with two batch normalization layers with ReLU as an 

activation function. The output layer consists of the 13 one 

handed gestures represented within the dataset, and outputs are 

softmaxed to generate an estimation probability, with the 

highest probability gesture being selected as the model’s output. 
While training this model several data processing and 

augmentation tasks were performed. Initially, the training 

dataset consisted of RGB-A images of subjects performing 

gestures with each of their hands, along with a text file 

containing annotations, including labels, and bounding boxes 

within the image. To adapt this data to suit our model’s needs, 
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python scripts were written to read through the annotations file, 

find each labeled gesture within each RGB-A image using its 

bounding box. Following this, our MediaPipe pose estimation 

software was applied to the labeled gesture to produce the 

coordinates of the hand’s 21 landmarks, which were  then 

standardized by designating the wrist landmark as the origin 

and recording each landmark’s location as relative to this point. 

These relative landmarks were recorded into a CSV file along 

with the label, and this data is what was used to train the model. 
Along with this data preprocessing, data augmentation was 

also utilized to improve the performance of the GRM on 

gestures made at various angles and with various orientations. 

This data augmentation involved representing each gesture as a 

three-dimensional matrix along the x-y plane, and then applying 

matrix rotations around the x, y, and z axes at random angles 

between -45 to 45, -45 to 45, and -90 to 90 degree angles for 

each axis respectively. Three randomly rotated gestures were 

created for each data point in our training set, resulting in a 

quadrupling of our model and vastly improving the accuracy of 

the model when in use. 
The training of the GRM was performed over 50 epochs  with 

a 1:3 validation to training data split, resulting in a final 

validation accuracy of about 88%. 

 

Fig. 7. Visual reprsentation of gesture recognition model 

C. OS Interface 

As mentioned before, the OS interface, which includes the 

cursor location transform, takes inputs from the hand detection 

and gesture recognition modules, and outputs simulated cursor 

actions for the OS to execute. The OS interface is implemented 

in Python and mainly makes use of the Python mouse library. 

 Firstly, the cursor location transform function is 

implemented by taking in hand coordinate data from the hand 

detection calibration block. While the system is running, the 

cursor location transform will continue to receive hand position 

coordinates and convert them to coordinates on the screen. The 

module will keep track of the currently received position as well 

as the three most recent previous positions. The x and y 

coordinates of the current position and the average of the 

previous three positions will be subtracted, and the result put 

into the mouse library move function. The averaging of the 

previous hand coordinates is done to smooth our cursor 

movement and decrease the amount of jitter. The function 

mouse.move takes in x, y, and absolute as input. The absolute 

input tells the function whether the x and y values represent set 

coordinates on the screen or if they represent the change in x 

and y that the cursor must move. This is an important distinction 

because our cursor movement is all relative since we are not 

scaling the range of motion to cover the entire screen. If we 

were to try to implement absolute cursor movement, the user 

would likely struggle to reach the corners of the screen as they 

would have to extend their arms as far as possible. The cursor 

location transform handles all the cursor movement. 

When we first tested our system, we noticed that if we based 

our mouse movement off a specific hand point like the wrist, 

we would get a lot of jagged cursor motion due to a combination 

of non-complete stability of the hand and noise in image and 

frame affecting landmark mapping. We wanted our cursor 

update location to mimic mouse functionality, and that would 

entail being able to move physical location on screen and 

moving the cursor in the same way, like how if you pick up a 

mouse in physical space and set it down, on screen cursor 

location does not change. As such, we needed to stick with the 

vectorization approach with the difference between the first and 

last cursor location. Ultimately, we added a couple different 

smoothing methods to get our final smooth cursor motion. First, 

we set the hand position at each frame to be the average of the 

0, 1, 5, 9, 13, 17 landmarks which correspond to the hand parts 

bordering the palm. The reasoning for this is that we use the 

fingers to make gestures, so if we used an average of finger 

landmarks as well to estimate pose, cursor location would 

change when we’re making a gesture which would heavily 

impede the accuracy of our system. We then added a 3-frame 

sampling window keeping track of the last 3 frames of hand 

location and set the current location equal to the average of 

those three frames. Since we were using a 60-fps camera, this 

corresponds to a 0.05 s window where we obtain this average 

hand location which serves as a low pass filter. Our final 

filtering step involves checking to see if the distance between 

the current frame position and the previous hand frame position 

is greater than 0.05-pixel distance after sensitivity calculations 

gathered from the initial calibration phase and only update the 

cursor in the direction of the movement vector if it’s greater:  

another low pass filter. We manually experimented with 

sensitivity scaling as well as the sampling window frame to get 

our final smoothness of the cursor movement and settled on 

values that we found to be adequate for our user testing. 

 The other mouse operations including left and right clicking 

and holding will also be implemented using the mouse library 

and will use the gesture recognition output. The integer 

representation of hand gesture will be cased on, and different 
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mouse functions will be called corresponding to what was 

detected. The system remembers the three most recent gestures 

detected and takes the mode of this to determine what command 

to execute. This is to ensure that errors in the gesture 

recognition model output or gestures outputted in the middle of 

transition between two different gestures does not get inputted 

as a mouse command. The commands mouse.press, 

mouse.release, and mouse.click were used. Press, release, and 

click function exactly as they sound like, where press keeps the 

mouse button pressed until release is called and click issues a 

click to the OS. Originally, we had planned to only use press 

and release with clicks implemented as a press with release 

shortly after, but we later decided to use two different gestures 

to differentiate between clicking and holding instead. All the 

above functions take in mouse.LEFT or mouse.RIGHT as an 

argument to distinguish between left mouse button and right 

mouse button commands. We had planned on implementing a 

separate scrolling gesture but found that this was unreliable as 

the possible choices from our gesture output did not have high 

confidence in classification. 

 

 

Fig. 8. Overall state machine view of our system 

VI. TEST AND VALIDATION 

A. Latency 

To test latency, we used Python’s time.time() command to 

set benchmarks at different points in our code to measure how 

much time passed during the execution of each module and the 

system as a whole. We measured latency for the hand detection 

and gesture recognition modules separately, and then had an 

overall system latency. The hand detection module latency was 

measured as the time it took for an image to be inputted into the 

system until the landmark coordinates were assigned to the 

image. The gesture recognition module latency was measured 

as the time between when the landmark coordinates were 

received by the model and when the model outputted its 

classification. The overall system latency was the time between 

when a new image was inputted from the camera to after a 

mouse command had been executed in the OS. These latency 

measurements are collected whenever we run the system. There 

is a function that collects measurements and then outputs the 

minimum, maximum, and average latencies measured. The 

results are shown in Table 1. 

 

Specification Performance 

Hand Detection Latency Min: < 0.1ms 

Max: 4.7ms 

Mean: 1.8ms 

Gesture Recognition Latency Min: < 1ms 

Max: 3ms 

Mean: 2ms 

System Latency Min: 16ms 

Max: 75 – 80ms 

Mean: 36ms 
Table 1. Latency measurements 

 

 Our measured latency falls within our requirement of 50ms. 

In fact, our results are within our specification by a margin of 

about 47%. This means that our system functions fast enough 

so that our users perceive mouse movements and commands as 

if they were essentially instant, which should make the user 

experience extremely responsive and smooth. 

 Due to the choice of simplifying our model and using 

landmark coordinate data to classify gestures instead of image 

data, we were able to meet the requirements immediately as we 

started running tests, and our system managed to surpass our 

requirements as we continued to develop and make 

improvements to it. 

B. Gesture Recognition Accuracy 

The gesture recognition accuracy was measured and 

quantified in two ways. The first measure of accuracy is the 

pure validation accuracy that we have for our final gesture 

recognition model. This is the simulated accuracy of our 

machine learning model using verification data. We obtained a 

validation accuracy of about 88% for our final model. 

While this value falls below the 90% gesture detection rate 

outlined in our requirements, our second test measures true 

gesture accuracy in practice while users are using the system. 

Our code includes lots of features that should make the gesture 

detection accuracy in practice much higher, and indeed it does. 

The second test for gesture accuracy is done by performing 

different mouse commands at various distances and counting 

the number of missed commands. In each trial of this test, the 

user tried to perform 100 of a certain gesture, both in a row and 

as a mixture of different gestures and counted the number of 

successfully recognized and executed gestures. This was also 

done at variable distances to try and find the ideal distance for 

system use. For this metric, we only collected data from our 

team members, who are more experienced and used to using the 

device. In total, we performed around 30 total trials of 100 of 

each mouse command. We wanted to gather metrics for our 

system with optimal usage and decided to include new user 

testing as another section of testing. The results for our testing 

are shown in Table 2. 
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Distance Left Click Left Hold Right Click 

3 feet 99/100 99/100 92/100 

6 feet 99/100 98/100 93/100 

9 feet 97/100 98/100 91/100 

12 feet 86/100 81/100 68/100 
Table 2. Gesture accuracy measurements 

 

 According to our metrics, our system functions just as we 

required from the 3 feet to 9 feet range. However, at 12 feet the 

system does meet the requirements that we wanted. A big 

reason for this is that at 12 feet and further, the 21 landmark 

coordinates assigned to the user’s hand that are used for gesture 

recognition start to become closely grouped together, and the 

distinction between different gestures is hard for our model to 

capture. Ultimately, this is a limitation of our camera resolution 

and the way MediaPipe works in assigning hand landmarks. 

Also, our data indicates that the gestures we selected for left 

click and left hold were detected with much higher confidence 

and accuracy than the gesture we chose for right click. In 

practice, the system is nearly flawless for just left clicking and 

left holding, which is what most of interacting with a web 

browser needs. Many trials ended in perfect 100/100 clicks and 

holds. There were less than 5 instances in which two mouse 

commands failed in a row, meaning that for any mouse 

command a user would only have to retry it once to get it to 

work properly in practice. 

C. Cursor precision 

To quantify cursor precision, we measured the amount of 

jitter the mouse cursor experienced while we kept our hands 

still at variable distances. In this test, we would keep our hand 

still for a 5 second interval and measure the standard deviation 

of the cursor during this time, as well as the maximum distance 

between two points the cursor moved during this time. This 

measurement of cursor precision allows us to quantify the 

uncertainty in cursor movement, since this jitter is what 

prevents the cursor from perfectly following user hand 

movements. We ran this jitter test over 5 second intervals 

around 20 times total between team members. Initial testing of 

our system yielded the following results for our cursor jitter. 

 

Distance Average Jitter Max Jitter 

3 feet 5.76 pixels 38.6 pixels 

6 feet 4.29 pixels 35.4 pixels 

9 feet 3.73 pixels 25.0 pixels 

12 feet 3.85 pixels 29.2 pixels 
 Table 3. Initial jitter measurements 

 

 Initially, our results indicated that maximum potential jitter 

at the 3 feet and 6 feet distances were beyond our 30-pixel 

cursor precision requirement. However, at 9 feet and 12 feet our 

system satisfied our requirements. These jitter values are caused 

by the pose estimation constantly estimating and re-estimating 

landmark coordinates, many times shifting the average position 

ever so slightly, which translates to bigger movements of the 

cursor. We wanted to try and lower this value and eliminate any 

jitter if we could, since jittering of the mouse on screen while 

the user’s hand is stationary does not make the system seem 

very stable. After we made changes to our system, we ended up 

re-doing our cursor precision tests and ended up with virtually 

no jitter across 20 more trials of the test. In the end, our system 

has no observable cursor jitter, especially during use where the 

user corrects their own movement as they use the system. 

D. New User Testing and Feedback 

We originally planned on issuing a formal user survey for 

new users who tried out our system, including a somewhat 

quantitative rating between 1-10 of how easy to use and smooth 

our system was. However, we instead opted to go for a more 

qualitative approach in evaluating new user testing, since we 

noticed there was a lot of variability in our new user testing. 

Starting from Thanksgiving break and through the final 

minutes of the Final Demo, our group had many friends, family 

members, students, faculty, and strangers test out our system. 

In total, we had around 25 new users try out our system either 

on our home setups or during the TechSpark and final demos. 

These new users covered a vast range of age groups and 

familiarity with engineering and computer vision technology. 

Every single user seemed to be comfortable with the mouse 

movement immediately. Several users commented on how 

accurate and precise the mouse movement was. There was little 

to no trouble for new users to navigate their cursors to locations 

that they wanted to interact with. However, when it came to 

executing mouse commands with different gestures, there was 

a lot of mixed results. 

Upon very first use of the system, around 20 of the 25 new 

users struggled to execute mouse commands immediately. We 

first gave them vague instructions such as “make an ok sign to 

click” or “make a fist to hold and drag.” There were 5 users who 

were immediately able to use our system almost flawlessly and 

continued to do so during their time with our system. These 

users all said something along the lines of, “This  thing is so 

intuitive and easy to use.” There were around 12 users who were 

able to execute clicks and holds after a few tries. After they got 

the hang of it, a few of them also commented on how it was 

easy to use after they had some practice with it. Unfortunately 

for the remaining 8 users, but fortunately for us, they continued 

to struggle with executing mouse commands for a while, but we 

were able to gain insight into how to best use our system. 

For these 8 users, we gave more specific details in how to use 

the system. An important aspect is keeping the hand in an open 

palm state that faces the camera when moving the mouse 

around. This way, the camera can pick up on the changes in 

gestures and execute the correct commands. Another thing is 

stay aware of where in the camera frame the user’s hand is. 

Users that kept their hand near the center of the camera’s view 

had greater success than those that ended up on the edge of the 

frame. Additionally, there were a lot of small intricacies to 

executing some of the commands that the team members had 

not realized, since we were so used to using the system. A big 

part of using the system is to exaggerate the hand gestures as 

much as possible, such as extending the thumb as far out as 

possible when trying to right click, or to really make the “o” 
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part of the “ok sign” visible when executing a left click. By the 

end, we were able to get every user who tried our system to 

successfully execute a few clicks and holds. 

The qualitative data we collected was a bit disappointing, as 

we had hoped that all users could have had a smooth experience 

right off the bat. However, the new user testing was very 

informative in showing us what we might want to improve on 

if we had more time, and how we would show our system off in 

the future. The experiences we gained during the TechSpark 

demo allowed us to have smoother demonstrations and new 

user success for the final demo. 

As an aside, nearly every user was impressed and commented 

that the project was very cool! 

VII. PROJECT MANAGEMENT 

A. Schedule 

Our schedule was designed based on team member 

responsibility and how our different modules connect. The hand 

detection module and the gesture recognition module can be 

developed in parallel before needing to be tested together before 

overall system integration. The OS interface can also largely be 

worked on in parallel and would just need to change the 

potential inputs based on modifications that are made to the 

hand detection and gesture recognition outputs. The schedule 

also leaves a lot of time near the end of the class to focus on 

integration and getting all our modules to work together. This 

time at the end also allows for lots of time to verify and test our 

system.  

Our schedule was updated extensively right after our design 

report. Firstly, we were able to highlight more specific and 

relevant tasks now that we knew what exactly our project was 

and what would go into completing it. We also scheduled much 

more integration earlier on instead of working purely in parallel 

until the final few weeks. Our project’s submodules were much 

more connected than we initially thought, and our new modified 

schedule allowed us to work out issues together much sooner. 

Our new schedule is shown on a separate page at the end of the 

report. 

B. Team Member Responsibilities 

Alan’s main responsibility is to develop the OS interface 

module. He will develop most of the code in Python to interface 

with the OS and cursor. Since Alan’s part largely relies on 

receiving inputs from the other modules, he will be designated 

some lighter tasks in earlier weeks to help the other team 

members with getting their components up and running. 

Although not explicitly depicted on the schedule, Alan’s 

secondary responsibility will be to aid both Andrew and Brian 

with the hand detection and gesture recognition modules 

respectively, especially in the first weeks. In the last few weeks, 

he will work with the whole team on integration and testing of 

the entire system. 

Andrew’s main responsibility will be to develop the hand 

detection module. He will be responsible for turning the image 

data received from the camera into hand position data for the 

OS interface as well as sending enhanced and cropped hand 

image data to the gesture detection algorithm. Since his 

responsibilities overlap with the gesture detection, his 

secondary responsibility will be to work with Brian and 

ensuring that images are properly sent from the hand detection 

module into the gesture detection module. In the last few weeks, 

he will work with the whole team on integration and testing of 

the entire system. 

Brian’s main responsibility will be to develop the gesture 

detection module. He will be responsible for training our neural 

network model to receive image input and produce gesture 

classification output. Since the gesture detection module is 

largely dependent on the hand detection module, Brian’s 

secondary responsibility will be to work with Andrew and 

ensure that the proper images are sent into the gesture detection 

module. In the last few weeks, he will work with the whole team 

on integration and testing of the entire system. 

The division of labor above was essentially what happened 

while we developed our system, however there was a lot more 

overlap where every team member was involved in making 

improvements to every submodule and the system together. The 

main developments of the submodules were an individual task 

but bringing the whole system together and improving 

performance based on collected metrics was a job that 

everybody contributed to. 

 

Budget 

As shown in table 1 below, our budget is only used for our 

cameras to capture image data and AWS credits that we planned 

to use to train and run the gesture recognition model but ended 

up not using. 

 

Description Model Manufacturer Quantity Cost 

Camera C922x Logitech 1 $99.99 

Camera BRIO Logitech 1 $199.99 

AWS 

Credits 

N/A Amazon 1 $50 

Laptop Varies Varies 1 $0 
Table 4. Bill of Materials 

C. Risk Management 

The biggest risk in our project is the integration of all our 

individual components and the final product meeting all our 

design requirements. We foresee that integration will likely be 

a tough challenge, and so we have allocated sufficient time in 

our schedule to focus on this aspect. We decided to do a lot of 

our individual development in parallel so we could all come 

together at the end to sort out problems that came up during 

integration and testing. The risk of not meeting design 

requirements is also largely present since we are developing our 

modules in parallel, so even if individual testing and 

verification passes, once the entire system comes together, we 

may run into additional issues with meeting our requirements. 

Our resources should not be a point of risk at all since we chose 

a project that requires simple resources. However, this means 

that a lot of the success of the project will fall onto our 

individual responsibilities of developing the proper software. 

By following the proper process that we were taught to in this 
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course, starting from the proposal to the design review, we can 

think about all these risks ahead of time and plan/schedule 

accordingly. 

VIII. ETHICAL ISSUES 

There are always potential ethical issues that arise when it 

comes to any new product. Our Virtual Whiteboard is no 

exception to this fact, but we have carefully considered these 

issues. One ethical issue is accessibility for who can use our 

system. There was some discussion at the demos about how our 

system could also help those with physical disability who 

cannot use a mouse, and that we could potentially customize 

gestures for those that can only make certain gestures. 

However, as our system is now, many of our gestures are still 

difficult to make for those with physical disabilities such as 

carpal tunnel. Those with these types of disabilities would still 

not be able to interact with their desktop environment using our 

system. 

Another concern is that our project relies heavily on camera 

usage to feed image data into our system. Any product that uses 

a camera has some privacy concern attached to it, whether it be 

camera data collected or a possible hack that steals camera data. 

Our system only uses the camera to move the mouse, but a 

malicious party may take advantage of the camera part of our 

system to invade privacy of our users. Additionally, if our 

system were to be used extensively, many users may become 

used to having their camera constantly on since they would 

need it to control their computer. This may lead to user’s being 

unaware that their camera is currently on, and users may not be 

aware that their image data is being captured and could 

potentially be used by malicious attackers. 

In terms of accessibility, there are other potential hand 

gestures or even body parts that users can use to control their 

mouse. Our development of a system that uses hands is just a 

start, but the technology may be there for users to control their 

desktop using something like just their eyes. As for the camera 

aspect of our project, we can only warn the user about the 

possible dangers of keeping their camera on all the time and tell 

them that even though we are not invading their privacy through 

camera usage, there is always a risk of being hacked.  

IX. RELATED WORK 

Basically any product in the field of Virtual Reality could 

potentially be extended to do the same thing that our Virtual 

Whiteboard does. VR systems such as the Oculus can be used 

to interact with the cursor. These systems that allow users to 

interact with a virtual world using their hands can probably also 

have their application extended to using a web browser with just 

their hands. Additionally, touchless touchscreen technology in 

products such as kiosks are like our system and could 

potentially be extended to work with users at further distances. 

The standard of touchless touchscreen is very short range but 

accurate detection, but it is only a matter of time before the 

range and accuracy continue to increase. There are also other 

ECE capstone projects from previous semesters that are like our 

project, such as the Gesture Glove from this semester, which 

uses similar machine learning techniques to classify hand 

gestures for sign language applications, and the AR FruitNinja 

project from a previous semester that utilizes hand tracking for 

more of a game application. 

X. SUMMARY 

Overall, our system was able to meet our design 

specifications. Our system latency and cursor precision were 

easily within our requirements and allowed for very smooth 

operation of certain aspects of our system. As for gesture 

recognition, left clicking and left button holding work 

fantastically and are as reliable as a mouse for users who get 

used to the system, however there is still room for improvement 

in incorporating other gestures and mouse commands. Right 

now, the system works super well just for using the left mouse 

button, which is frankly enough for using a web browser and a 

lot of activities on the computer. However, there are 

improvements that could be made to the system. If we had more 

time, we would have experimented more with the options 

outlined in our design trade studies. If we could combine our 

computer vision approach with an IMU to possibly get more 

accurate detection of gestures in a 3D space, or if we were able 

to develop several different complete machine learning models 

for classifying gestures, our system accuracy and extendibility 

could be improved greatly. 

While we obviously learned a lot about working with 

computer vision and machine learning models during our time 

working with our project, but we learned that it is worth looking 

into all your options and experimenting with a lot of ideas early 

on before you must commit to something. We decided on using 

computer vision and simple neural net earlier, but I would say 

that weighing all your options and doing more work earlier, 

even if you might have to abandon most of your options to focus 

on one, is worth it to get the best result as possible in the end. 

On the project management side, it is very important to pay 

attention to all the early semester assignments, especially the 

design review report, and to really listen to the feedback from 

professors and TA’s. 

XI. AWS 

For this project we were fortunate enough to have access to 

AWS credits for cloud computing, which we used to develop 

and train our gesture recognition model. Our AWS credit usage 

only tallied up to about $15, using up only one $50 credit. Due 

to the relatively simple design of our model, a large amount of 

computational power was not required, and we were able to use 

the low priced “a” instances. The access to cloud computing 

was extremely valuable to the development of the machine 

learning portion of this project, and we would like to thank 

Amazon for providing us with these credits. 
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GLOSSARY OF ACRONYMS 

CMU – Carnegie Mellon University 

IMU – Inertial Measurement Unit 

OS – Operating System 

RPi – Raspberry Pi 

VR – Virtual Reality 
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Fig. 9.  Detailed schedule 


