
18-500 Final Project Report: 12/14/21

1

Abstract—A system capable of allowing a user to control their

computer cursor from a distance to access a web browser and

navigate to several different pages. The system will allow for a

touchless touchscreen experience where a user can use just their

hands. State of the art systems are either too expensive or require

the user to be very close to the screen for functionality. Our system

will allow for a user to control their device from a comfortable

distance using just a camera and code that can run on their

computer.

Index Terms—Calibration, Computer Vision, Cursor Location

Transform, Gesture Recognition, Hand Detection, Neural

Network, OS Interface, Pose Detection

I. INTRODUCTION

HE Virtual Whiteboard originated from the initial idea of

developing something similar to Tony Stark’s Iron Man

Suit user interface, where he just uses his hands to control a

bunch of different things on his user interface without direct

contact. However, we expanded on this idea of a touchless

touchscreen and thought of how it might be practical in the real

world. As students who likely spend lots of time on computers,

there are a lot of downsides with prolonged computer usage

including damage to the eyes from being too close to the screen

and harm to the body from sitting too long. The Virtual

Whiteboard which allows for any user to control their computer

cursor from a distance with hand motion and gestures would

allow for these problems to be mitigated since they can now

stay standing and will not be close to their screens. The

touchless aspect also has a sanitary benefit in this time where

the pandemic is still an issue, since people who might have to

use the same public computer can do so without transmitting

germs. Additionally, this system would allow for students or

teachers to give presentations or lectures naturally in a

classroom environment while making the experience more

interactive and engaging.

The most important requirements for this system are the

distance at which the system is functional and making the entire

experience very smooth for the user. The first requirement can

be directly quantified, and we have decided on trying to make

our system functional for users that are between 3 feet and 12

feet from their screen. The 3 feet minimum distance is because

the average arm length is around 3 feet, so if a user is within

this distance they could just reach out and use a normal

touchscreen. The 12 feet maximum distance is the length of an

average classroom at CMU (not lecture hall) and is also the

maximum distance at which a user can comfortably see their

cursor on an average 20-inch monitor. The smooth user

experience will be expanded more upon in the design

requirements, but we want to enable the user to simulate the

capabilities of a mouse with their hands by using different

gestures for mouse clicks.

II. DESIGN REQUIREMENTS

The smooth user experience can be broken up into three

quantitative categories.

A. Latency

One of the key aspects of a smooth experience is a user

making a gesture or a motion and seeing the result of it shown

immediately on screen. This will be accomplished by making

our design meet as low of a latency as possible. We have

decided to strive for achieving a 50 ms latency for our system.

This is equivalent to 20 Hz or 20 frames per second, which

means the user’s hand image is captured 20 times per second

and the cursor on screen should update its position following

user input at this frequency. This latency will not create

noticeable lag to the average human and should make the

system feel like it is instantly responsive.

B. Gesture recognition accuracy

When using a mouse or a touchscreen, a user wants a click to

be registered as a click 100% of the time. When using any

device, the user would desire that their inputs are properly

detected all the time. However even then, it is natural for users

to have to click multiple times with a mouse or to tap repeatedly

on a touchscreen to guarantee their input goes through. We have

decided to aim for less than 10% gesture recognition error in

our system. To put this into perspective, for every 10 clicks a

user tries to input through hand gestures, we would guarantee

that they must possibly repeat a gesture only one extra time for

successful detection. As an extension of gesture recognition, we

want to ensure that users only need to repeat a gesture at most

one extra time to execute their intended mouse command.

C. Cursor precision

Our system ultimately controls the computer’s cursor, which

allows for the user to interact with objects on the screen. For a

standard resolution of 1920x1080 pixels, the smallest area that

a user would have to click on is 15 pixels wide, which is the

“exit” button for a tab in a web browser or the width of the

scrollbar. For all other objects on screen, there is a larger area

for the object to be interacted with the cursor. We want our

system to be able to track user hand motion with an error of

around 15 pixels so that the user will never misclick because of

a system error, but only due to human error.

Team A2 – Virtual Whiteboard

Authors: Alan Song, Andrew Huang, Brian Lane: Electrical and Computer Engineering, Carnegie

Mellon University

T

18-500 Final Project Report: 12/14/21

2

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The block diagram in figure 1 represents the overall system

architecture. The project is largely done in software with the

two main hardware systems being a camera and a laptop. The

camera will provide the primary input to the system in the form

of image data. We purchased our camera and will not be

building our own camera for this project. The camera will

continuously feed this image data into the laptop and more

specifically the calibration and pose estimation blocks, which

are both part of a hand detection module. The rest of the system

is software that runs entirely on the laptop. The laptop is also

something that we own, and we will not be building a laptop for

this project.

A. Hand Detection

The hand detection module includes the calibration and

pose estimation blocks in Fig. 1. The module takes in images

which include the user and possible other objects in the

background and isolates and identifies the user’s hand. The

hand data shows up as data points in the hand detection module

and will be converted into coordinate points to be sent to other

parts of the system. In the calibration block, the user will map

out their range of motion by moving one of their hands in a

circle to detect the largest range in which the user’s hand can

move. The range of motion will be sent into the cursor location

transform which is part of the OS interface. The pose estimation

block will continually send coordinate information about where

the hand is located into both the cursor location transform and

the gesture recognition module. Although the pose estimation

block could potentially be used to determine gestures from the

different points mapped onto the user’s hand, we decided to just

send landmark coordinates that were normalized to the bottom

of the user’s palm into the gesture recognition module instead.

This is different from the design report where we planned on

sending a cropped image of the hand with landmarks into the

gesture recognition module instead of numerical coordinates.

The pose estimation block was off-the-shelf while the

calibration block was developed by us.

B. Gesture Recognition

The gesture detection module will take in normalized hand

landmark coordinates to determine what gesture the user is

making. This is different from the design report where we

originally wanted to use a zoomed/enhanced image of the user’s

hand to determine what gesture the user is making. The change

from inputting images to inputting numerical coordinates

allowed us to develop a simpler and faster model for classifying

hand gestures. The gesture recognition module uses a neural

network to detect the user’s hand gesture among a dataset of 26

different hand gestures, of which we only need five. The neural

network will directly convert the landmark coordinate input

into an integer output that represents the gesture detected. This

gesture integer will be fed directly into the OS interface. The

gesture recognition module was developed entirely by us,

although the dataset used to train includes off-the-shelf images

as well as images we took ourselves.

Fig. 1. Block diagram for entire system

C. OS Interface

The OS interface module includes both the cursor location

transform and the OS interface. The cursor location transform

is a type of calibration for the OS interface system. Since

coordinates from the hand detection module will not correspond

directly to coordinates in the OS to represent the screen, a

transformation is needed to map motion of the user to motion

of the cursor on screen. This way for users far from the screen

they will not have to make super small and precise movements

to move the cursor onto small on-screen objects. This scaling

will also make the system’s sensitivity like a regular mouse,

where the user may have to pick up and re-adjust the mouse

multiple times while using it. Once the calibration is done, the

OS interface will move the cursor based on relative positioning,

which is taking the difference in position between two time

frames to determine how far to move. The gesture recognition

module will provide the gesture which will be converted into a

mouse action. The OS interface module will take the hand

position, calculate where to move the cursor based on current

and previous hand position, and perform certain mouse actions

based on the inputted gesture integer. These simulated mouse

movements and actions will be fed into the operating system of

the laptop, allowing for direct control of the cursor through

software.

18-500 Final Project Report: 12/14/21

3

IV. DESIGN TRADE STUDIES

A. Hand Detection Trade Studies

Multiple object detection methodologies have been used for

hand tracking as the problem boils down to recognizing and

sensing hand data. We considered multiple different solution

approaches for hand detection: IMU, infrared sensors,

ultrasonic sensors, computer vision, and Ultraleap Leap Motion

Controller. Ultrasonic sensors eliminate the need for external

sensors on the body, but usage of it would require complex

calculations for extracting pose and location data of hand

making it too difficult to work with for our use case especially

given its low resolution of around 1 cm. Infrared sensors obtain

sensor location with around a couple millimeters of resolution.

However, the approach only gets the location of the sensors,

and we would need to research and develop our own complex

algorithms for pose and gesture estimation. IMU

accelerometers are especially subject to drift, and small errors

in measurements are exponentially multiplied during double

integration for position estimation. We considered an external

sensor as a calibration metric for position estimation as well as

a Kalman filter, but both approaches seemed too complex given

our problem statement and the effort to implement either was

not outweighed by the benefits the IMU itself provided to our

task. We also considered the use of an external hardware sensor

called Ultraleap Leap Motion Controller that was geared

specifically towards hand pose detection for AR games. While

the accuracy was good at close distances, the most complex

sensor the company provides has a max usage distance of

around a meter; our solution statement requires around a three

to fifteen feet operation distance. Thus, we ultimately decided

on the use of computer vision for our detection algorithm for a

multitude of reasons.

First and foremost, there has been by far the most work done

in this area with regards to hand detection, so it simplifies our

solution approach as well as more easily discretizes our task for

hand recognition. Secondly, as we are using a neural network

on the hand image for gesture recognition, the computer vision

approach standardizes and feeds more seamlessly into our

system pipeline. The specific library we'll be using is the

MediaPipe body landmark recognition library [1]. The library

includes a pretrained model that includes facial and hand

detection algorithms on images fed through a camera and

allows for us to tune parameters like detection confidence and

maximum number of hands to detect. With respect to the Leap

Motion Controller, a computer vision approach will allow us to

increase the distance with which our user can operate provided

our camera has a high enough resolution. To combat low

confidence detection due to motion blur when a user moves

their hand in the camera view, a camera with a higher frame rate

refresh will be used as well. The high frame rate camera (60

frames per second) will also meet our requirement for 50 ms

latency. We also decided on a webcam because it is likely that

our users will have access to their own webcam that they can

use with their own laptop to run our system. Practically, it is

unlikely that users have professional cameras handy to use to

get our system working on their computer.

B. Gesture Recognition Trade Studies

Classification of user hand gestures from image data is a

perfect fit for a machine learning approach. Finding a function

to discriminate between the number of hand gestures required

to meet user product specifications would not be feasible by

hand. The requirements for this users’ product specifications of

this gesture recognition include quick training of our model and

low inference computational latency, as well as high accuracy.

Considered approaches included deep learning in the form of a

deep convolutional neural network applied to raw image data or

a simpler architecture neural network that would be provided

feature data in the form of landmark coordinates output by our

hand pose estimation. Both approaches would be implemented

with a simple supervised learning approach employing

stochastic gradient descent on a multiclass cross-entropy loss

function. Unsupervised learning approaches were found unfit

for this product, due to the extended learning time required, as

well as the saturation of available appropriate datasets including

images of various hand gestures.
The final design selected is the latter of the two options: the

simple neural network trained on pose estimation data. This

selection was made because the simplicity of the model would

allow for a much shorter inference time, as well as a predicted

higher accuracy than what could be achieved from raw image

data that would include background pixels, pixel alpha

differences from lighting, as well as overall higher noise. This

meets the requirements for a smooth user experience by

lessening overhead for latency and improving classification

accuracy for gesture recognition accuracy.

C. OS Interface Trade Studies

The OS interface and cursor location transform will be

implemented in Python. Python will allow for easy connections

between our design components and easy transfer of

information between modules. The control of the mouse

through the OS will be done using the mouse library in Python

[2]. Other libraries that could accomplish the same task of

controlling the cursor include pywin32 and pyautogui [3][4].

All these libraries would fit the user product requirements since

they would all be able to interface with and control all aspects

of the cursor with minimal overhead. However, the mouse

library has excellent user-friendly wrappers that are much

easier to work with than the functions in the other libraries.

We chose to use a laptop rather than something like an RPi

(Raspberry Pi) because we felt that this fit our user product

requirements better. The goal of our Virtual Whiteboard is to

allow the user to control their own computer from a distance

using hand gestures. Having on the system run on an RPi may

be sufficient and cheaper for demonstration purposes, but the

goal is for users to be able to run the code on their own

computers and use their own webcams to utilize the system on

their own. Therefore, ensuring that the system can function on

one of our laptops using a webcam is what we want to verify

that our system fits what we want it to do.

18-500 Final Project Report: 12/14/21

4

D. Gesture Recognition Model Trade-Off

Fig. 2. Model accuracy vs epochs for 5 classes and 13 classes

One major trade-off for machine learning models is the

relationship between verification accuracy and the number of

classes used for classifying. There is an established relationship

between the number of classifications and the accuracy of the

model. As the number of classifications goes down, the

accuracy of the model should increase. In our case, we started

with a dataset of 26 possible gestures (13 for each hand), but

since we only need to use 5 of these, we wanted to see if it

would be beneficial to train a model for classifying gestures into

only 5 classes per hand instead of the original 13. The results

shown in Fig. 2 indicate that the model accuracy does indeed

benefit from a smaller number of classifications. However,

while accuracy does improve, this limits the expandability of

the system to include more features in the future using more

gestures. The improvement of the model allows up to get up to

88% validation accuracy, which is enough for us to meet our

gesture accuracy requirements with some clever improvements

in the OS interface implementation.

E. Latency vs Accuracy Trade-Off

The two biggest and most important requirements that we

could trade off for our system would be latency and accuracy.

We found that in our system, the hand detection module and the

OS interface did not have tunable parameters that would trade

off between latency and accuracy. Instead, the gesture

recognition model was the most likely candidate for any

evaluation in this department. With the trade-off done in section

D with different classification numbers, it turns out that having

the same machine learning model structure keeps latency

constant, regardless of how many classes are used for

classification. We then thought to experiment with different

model architecture and developed a deeper model that would

sacrifice speed for accuracy. Unfortunately, this model turned

out to yield lower validation accuracy than our simpler shallow

model, so the result of our brief trade-off analysis here was to

stick with our original model.

F. Use Case Distance vs Accuracy Trade-Off

While we wanted our system to be fully operational between

3 feet and 12 feet of distance from the camera, we want to see

what the ideal distance to use our system is. At variable

Fig. 3. Gesture accuracy vs distance for 100 trials of mouse commands

distances, latency and cursor precision did not vary much,

however gesture accuracy in practice did. The process of

obtaining the gesture accuracy will be expanded on in the

testing and validation section. As seen in Fig. 3, gesture

accuracy is very high and consistent between 3 feet and 9 feet,

however there is a definitive drop at 12 feet. It is also worth

noting that right click detection accuracy was consistently

lower than the left click and left hold + drag accuracies. While

we wanted to isolate an ideal distance for using the system, any

distance between 3 and 9 feet proved to have nearly perfect left

clicking capabilities, while the system did seem to struggle with

accuracy at our maximum of 12 feet.

V. SYSTEM DESCRIPTION

A. Hand Detection

To get accurate live-time hand detection, we used the

Mediapipe library which is a crowd sourced package that

produces several detection models for different human

structures such as hands, face, and body pose. The hand detector

we used scans an input image for sub-images that look like

hands and tries to map a set of 21 landmarks corresponding to

21 major hand points, as seen in Fig. 4 and Fig. 5. If the detector

found a sub-image of the camera frame that looks like a hand,

it returns these 21 landmarks in the form of a 21x2 matrix where

the ith 2-dimensional vector of the matrix corresponds to the x,

y pixel location of the ith landmark.

When we tested the package, MediaPipe was accurate to a

reasonable extent. The Mediapipe hand detector streamlines our

solution approach since it allows us to vectorize our data

making our model simpler and easier to fine tune and train. In

using Mediapipe, we were able to avoid using a convolutional

neural net which would likely have slowed down our train time

depending on our kernel size and increased latency on our entire

system since the model would have more inputs. We applied

the hand detector to our entire train image set into a csv file

where the ith csv row corresponds to the hand detector

landmarks of the ith image.

18-500 Final Project Report: 12/14/21

5

Fig. 4. Image of Andrew with landmarks on his hand

Fig. 5. 21 landmark coordinates from pose estimation

The calibration step was implemented as follows. The

calibration happens on system start-up, giving the user a few

seconds to move to the position they want to use the system

from while the camera connects to the system. The code will

then continue to accept hand coordinate inputs for about 10

seconds in which the user will move their hands through a

comfortable range of motion. The cursor location transform

function will record the maximum and minimum x and y

coordinate values received within this time frame. These x and

y values will be used to construct a rectangle that represents the

user’s range of motion. This rectangle will then be scaled to the

device’s screen size. Screen resolution is obtained using the

ctypes library to directly obtain screen size using the

GetSystemMetrics() method. After the calibration, all hand

positional changes will be scaled based on this calibrated

rectangle of motion.

Originally, we wanted to fit a bounding box that has

dimensions of the interaction screen to the person to serve as a

mapping between the hand location to on screen coordinates

where we will put the mouse. Our initial functionality would

have allowed the user to move in both vertical and lateral

directions, so we would have to scale the bounding box initially

calibrated to the user to follow their positional change.

However, given that our use case shifted from giving

presentations or demonstrations to a more general-purpose

cursor control from a distance, the original bounding box idea

was scrapped.

After calibration, the hand detection module continually

sends the 21 landmark coordinates, seen in Fig. 5, to the OS

interface to control cursor movement, and sends normalized

coordinates to the gesture recognition module for hand gesture

detection.

B. Gesture Recognition

Fig. 6. Subset of gestures in the HANDS dataset with relevant gestures

indicated

Gesture recognition was initially proposed to be

implemented through transfer learning from pre-built gesture

recognition models. This avenue did not end up being explored

though, because of availability of time sequenced data

containing relevant gestures on which to train. The gesture

recognition model was intended to be trained on a data set of

static images containing gestures, and no accessible pretrained

models were found to meet this specification.
The gesture recognition model (GRM) for this project was

instead custom designed and trained in python using the pytorch

library. We used a dataset called HANDS [5][6], hosted by

Mendeley Data, to perform this training. The GRM we created

functions by taking in an input of 21 coordinate pairs

corresponding to the location of the 21 hand landmarks detected

by our pose estimation. These 42 features (2 for each of the 21

landmarks) are then normalized before being run through a fully

connected neural network (FCNN) consisting of 13 hidden

layers with two batch normalization layers with ReLU as an

activation function. The output layer consists of the 13 one

handed gestures represented within the dataset, and outputs are

softmaxed to generate an estimation probability, with the

highest probability gesture being selected as the model’s output.
While training this model several data processing and

augmentation tasks were performed. Initially, the training

dataset consisted of RGB-A images of subjects performing

gestures with each of their hands, along with a text file

containing annotations, including labels, and bounding boxes

within the image. To adapt this data to suit our model’s needs,

18-500 Final Project Report: 12/14/21

6

python scripts were written to read through the annotations file,

find each labeled gesture within each RGB-A image using its

bounding box. Following this, our MediaPipe pose estimation

software was applied to the labeled gesture to produce the

coordinates of the hand’s 21 landmarks, which were then

standardized by designating the wrist landmark as the origin

and recording each landmark’s location as relative to this point.

These relative landmarks were recorded into a CSV file along

with the label, and this data is what was used to train the model.
Along with this data preprocessing, data augmentation was

also utilized to improve the performance of the GRM on

gestures made at various angles and with various orientations.

This data augmentation involved representing each gesture as a

three-dimensional matrix along the x-y plane, and then applying

matrix rotations around the x, y, and z axes at random angles

between -45 to 45, -45 to 45, and -90 to 90 degree angles for

each axis respectively. Three randomly rotated gestures were

created for each data point in our training set, resulting in a

quadrupling of our model and vastly improving the accuracy of

the model when in use.
The training of the GRM was performed over 50 epochs with

a 1:3 validation to training data split, resulting in a final

validation accuracy of about 88%.

Fig. 7. Visual reprsentation of gesture recognition model

C. OS Interface

As mentioned before, the OS interface, which includes the

cursor location transform, takes inputs from the hand detection

and gesture recognition modules, and outputs simulated cursor

actions for the OS to execute. The OS interface is implemented

in Python and mainly makes use of the Python mouse library.

 Firstly, the cursor location transform function is

implemented by taking in hand coordinate data from the hand

detection calibration block. While the system is running, the

cursor location transform will continue to receive hand position

coordinates and convert them to coordinates on the screen. The

module will keep track of the currently received position as well

as the three most recent previous positions. The x and y

coordinates of the current position and the average of the

previous three positions will be subtracted, and the result put

into the mouse library move function. The averaging of the

previous hand coordinates is done to smooth our cursor

movement and decrease the amount of jitter. The function

mouse.move takes in x, y, and absolute as input. The absolute

input tells the function whether the x and y values represent set

coordinates on the screen or if they represent the change in x

and y that the cursor must move. This is an important distinction

because our cursor movement is all relative since we are not

scaling the range of motion to cover the entire screen. If we

were to try to implement absolute cursor movement, the user

would likely struggle to reach the corners of the screen as they

would have to extend their arms as far as possible. The cursor

location transform handles all the cursor movement.

When we first tested our system, we noticed that if we based

our mouse movement off a specific hand point like the wrist,

we would get a lot of jagged cursor motion due to a combination

of non-complete stability of the hand and noise in image and

frame affecting landmark mapping. We wanted our cursor

update location to mimic mouse functionality, and that would

entail being able to move physical location on screen and

moving the cursor in the same way, like how if you pick up a

mouse in physical space and set it down, on screen cursor

location does not change. As such, we needed to stick with the

vectorization approach with the difference between the first and

last cursor location. Ultimately, we added a couple different

smoothing methods to get our final smooth cursor motion. First,

we set the hand position at each frame to be the average of the

0, 1, 5, 9, 13, 17 landmarks which correspond to the hand parts

bordering the palm. The reasoning for this is that we use the

fingers to make gestures, so if we used an average of finger

landmarks as well to estimate pose, cursor location would

change when we’re making a gesture which would heavily

impede the accuracy of our system. We then added a 3-frame

sampling window keeping track of the last 3 frames of hand

location and set the current location equal to the average of

those three frames. Since we were using a 60-fps camera, this

corresponds to a 0.05 s window where we obtain this average

hand location which serves as a low pass filter. Our final

filtering step involves checking to see if the distance between

the current frame position and the previous hand frame position

is greater than 0.05-pixel distance after sensitivity calculations

gathered from the initial calibration phase and only update the

cursor in the direction of the movement vector if it’s greater:

another low pass filter. We manually experimented with

sensitivity scaling as well as the sampling window frame to get

our final smoothness of the cursor movement and settled on

values that we found to be adequate for our user testing.

 The other mouse operations including left and right clicking

and holding will also be implemented using the mouse library

and will use the gesture recognition output. The integer

representation of hand gesture will be cased on, and different

18-500 Final Project Report: 12/14/21

7

mouse functions will be called corresponding to what was

detected. The system remembers the three most recent gestures

detected and takes the mode of this to determine what command

to execute. This is to ensure that errors in the gesture

recognition model output or gestures outputted in the middle of

transition between two different gestures does not get inputted

as a mouse command. The commands mouse.press,

mouse.release, and mouse.click were used. Press, release, and

click function exactly as they sound like, where press keeps the

mouse button pressed until release is called and click issues a

click to the OS. Originally, we had planned to only use press

and release with clicks implemented as a press with release

shortly after, but we later decided to use two different gestures

to differentiate between clicking and holding instead. All the

above functions take in mouse.LEFT or mouse.RIGHT as an

argument to distinguish between left mouse button and right

mouse button commands. We had planned on implementing a

separate scrolling gesture but found that this was unreliable as

the possible choices from our gesture output did not have high

confidence in classification.

Fig. 8. Overall state machine view of our system

VI. TEST AND VALIDATION

A. Latency

To test latency, we used Python’s time.time() command to

set benchmarks at different points in our code to measure how

much time passed during the execution of each module and the

system as a whole. We measured latency for the hand detection

and gesture recognition modules separately, and then had an

overall system latency. The hand detection module latency was

measured as the time it took for an image to be inputted into the

system until the landmark coordinates were assigned to the

image. The gesture recognition module latency was measured

as the time between when the landmark coordinates were

received by the model and when the model outputted its

classification. The overall system latency was the time between

when a new image was inputted from the camera to after a

mouse command had been executed in the OS. These latency

measurements are collected whenever we run the system. There

is a function that collects measurements and then outputs the

minimum, maximum, and average latencies measured. The

results are shown in Table 1.

Specification Performance

Hand Detection Latency Min: < 0.1ms

Max: 4.7ms

Mean: 1.8ms

Gesture Recognition Latency Min: < 1ms

Max: 3ms

Mean: 2ms

System Latency Min: 16ms

Max: 75 – 80ms

Mean: 36ms
Table 1. Latency measurements

 Our measured latency falls within our requirement of 50ms.

In fact, our results are within our specification by a margin of

about 47%. This means that our system functions fast enough

so that our users perceive mouse movements and commands as

if they were essentially instant, which should make the user

experience extremely responsive and smooth.

 Due to the choice of simplifying our model and using

landmark coordinate data to classify gestures instead of image

data, we were able to meet the requirements immediately as we

started running tests, and our system managed to surpass our

requirements as we continued to develop and make

improvements to it.

B. Gesture Recognition Accuracy

The gesture recognition accuracy was measured and

quantified in two ways. The first measure of accuracy is the

pure validation accuracy that we have for our final gesture

recognition model. This is the simulated accuracy of our

machine learning model using verification data. We obtained a

validation accuracy of about 88% for our final model.

While this value falls below the 90% gesture detection rate

outlined in our requirements, our second test measures true

gesture accuracy in practice while users are using the system.

Our code includes lots of features that should make the gesture

detection accuracy in practice much higher, and indeed it does.

The second test for gesture accuracy is done by performing

different mouse commands at various distances and counting

the number of missed commands. In each trial of this test, the

user tried to perform 100 of a certain gesture, both in a row and

as a mixture of different gestures and counted the number of

successfully recognized and executed gestures. This was also

done at variable distances to try and find the ideal distance for

system use. For this metric, we only collected data from our

team members, who are more experienced and used to using the

device. In total, we performed around 30 total trials of 100 of

each mouse command. We wanted to gather metrics for our

system with optimal usage and decided to include new user

testing as another section of testing. The results for our testing

are shown in Table 2.

18-500 Final Project Report: 12/14/21

8

Distance Left Click Left Hold Right Click

3 feet 99/100 99/100 92/100

6 feet 99/100 98/100 93/100

9 feet 97/100 98/100 91/100

12 feet 86/100 81/100 68/100
Table 2. Gesture accuracy measurements

 According to our metrics, our system functions just as we

required from the 3 feet to 9 feet range. However, at 12 feet the

system does meet the requirements that we wanted. A big

reason for this is that at 12 feet and further, the 21 landmark

coordinates assigned to the user’s hand that are used for gesture

recognition start to become closely grouped together, and the

distinction between different gestures is hard for our model to

capture. Ultimately, this is a limitation of our camera resolution

and the way MediaPipe works in assigning hand landmarks.

Also, our data indicates that the gestures we selected for left

click and left hold were detected with much higher confidence

and accuracy than the gesture we chose for right click. In

practice, the system is nearly flawless for just left clicking and

left holding, which is what most of interacting with a web

browser needs. Many trials ended in perfect 100/100 clicks and

holds. There were less than 5 instances in which two mouse

commands failed in a row, meaning that for any mouse

command a user would only have to retry it once to get it to

work properly in practice.

C. Cursor precision

To quantify cursor precision, we measured the amount of

jitter the mouse cursor experienced while we kept our hands

still at variable distances. In this test, we would keep our hand

still for a 5 second interval and measure the standard deviation

of the cursor during this time, as well as the maximum distance

between two points the cursor moved during this time. This

measurement of cursor precision allows us to quantify the

uncertainty in cursor movement, since this jitter is what

prevents the cursor from perfectly following user hand

movements. We ran this jitter test over 5 second intervals

around 20 times total between team members. Initial testing of

our system yielded the following results for our cursor jitter.

Distance Average Jitter Max Jitter

3 feet 5.76 pixels 38.6 pixels

6 feet 4.29 pixels 35.4 pixels

9 feet 3.73 pixels 25.0 pixels

12 feet 3.85 pixels 29.2 pixels
 Table 3. Initial jitter measurements

 Initially, our results indicated that maximum potential jitter

at the 3 feet and 6 feet distances were beyond our 30-pixel

cursor precision requirement. However, at 9 feet and 12 feet our

system satisfied our requirements. These jitter values are caused

by the pose estimation constantly estimating and re-estimating

landmark coordinates, many times shifting the average position

ever so slightly, which translates to bigger movements of the

cursor. We wanted to try and lower this value and eliminate any

jitter if we could, since jittering of the mouse on screen while

the user’s hand is stationary does not make the system seem

very stable. After we made changes to our system, we ended up

re-doing our cursor precision tests and ended up with virtually

no jitter across 20 more trials of the test. In the end, our system

has no observable cursor jitter, especially during use where the

user corrects their own movement as they use the system.

D. New User Testing and Feedback

We originally planned on issuing a formal user survey for

new users who tried out our system, including a somewhat

quantitative rating between 1-10 of how easy to use and smooth

our system was. However, we instead opted to go for a more

qualitative approach in evaluating new user testing, since we

noticed there was a lot of variability in our new user testing.

Starting from Thanksgiving break and through the final

minutes of the Final Demo, our group had many friends, family

members, students, faculty, and strangers test out our system.

In total, we had around 25 new users try out our system either

on our home setups or during the TechSpark and final demos.

These new users covered a vast range of age groups and

familiarity with engineering and computer vision technology.

Every single user seemed to be comfortable with the mouse

movement immediately. Several users commented on how

accurate and precise the mouse movement was. There was little

to no trouble for new users to navigate their cursors to locations

that they wanted to interact with. However, when it came to

executing mouse commands with different gestures, there was

a lot of mixed results.

Upon very first use of the system, around 20 of the 25 new

users struggled to execute mouse commands immediately. We

first gave them vague instructions such as “make an ok sign to

click” or “make a fist to hold and drag.” There were 5 users who

were immediately able to use our system almost flawlessly and

continued to do so during their time with our system. These

users all said something along the lines of, “This thing is so

intuitive and easy to use.” There were around 12 users who were

able to execute clicks and holds after a few tries. After they got

the hang of it, a few of them also commented on how it was

easy to use after they had some practice with it. Unfortunately

for the remaining 8 users, but fortunately for us, they continued

to struggle with executing mouse commands for a while, but we

were able to gain insight into how to best use our system.

For these 8 users, we gave more specific details in how to use

the system. An important aspect is keeping the hand in an open

palm state that faces the camera when moving the mouse

around. This way, the camera can pick up on the changes in

gestures and execute the correct commands. Another thing is

stay aware of where in the camera frame the user’s hand is.

Users that kept their hand near the center of the camera’s view

had greater success than those that ended up on the edge of the

frame. Additionally, there were a lot of small intricacies to

executing some of the commands that the team members had

not realized, since we were so used to using the system. A big

part of using the system is to exaggerate the hand gestures as

much as possible, such as extending the thumb as far out as

possible when trying to right click, or to really make the “o”

18-500 Final Project Report: 12/14/21

9

part of the “ok sign” visible when executing a left click. By the

end, we were able to get every user who tried our system to

successfully execute a few clicks and holds.

The qualitative data we collected was a bit disappointing, as

we had hoped that all users could have had a smooth experience

right off the bat. However, the new user testing was very

informative in showing us what we might want to improve on

if we had more time, and how we would show our system off in

the future. The experiences we gained during the TechSpark

demo allowed us to have smoother demonstrations and new

user success for the final demo.

As an aside, nearly every user was impressed and commented

that the project was very cool!

VII. PROJECT MANAGEMENT

A. Schedule

Our schedule was designed based on team member

responsibility and how our different modules connect. The hand

detection module and the gesture recognition module can be

developed in parallel before needing to be tested together before

overall system integration. The OS interface can also largely be

worked on in parallel and would just need to change the

potential inputs based on modifications that are made to the

hand detection and gesture recognition outputs. The schedule

also leaves a lot of time near the end of the class to focus on

integration and getting all our modules to work together. This

time at the end also allows for lots of time to verify and test our

system.

Our schedule was updated extensively right after our design

report. Firstly, we were able to highlight more specific and

relevant tasks now that we knew what exactly our project was

and what would go into completing it. We also scheduled much

more integration earlier on instead of working purely in parallel

until the final few weeks. Our project’s submodules were much

more connected than we initially thought, and our new modified

schedule allowed us to work out issues together much sooner.

Our new schedule is shown on a separate page at the end of the

report.

B. Team Member Responsibilities

Alan’s main responsibility is to develop the OS interface

module. He will develop most of the code in Python to interface

with the OS and cursor. Since Alan’s part largely relies on

receiving inputs from the other modules, he will be designated

some lighter tasks in earlier weeks to help the other team

members with getting their components up and running.

Although not explicitly depicted on the schedule, Alan’s

secondary responsibility will be to aid both Andrew and Brian

with the hand detection and gesture recognition modules

respectively, especially in the first weeks. In the last few weeks,

he will work with the whole team on integration and testing of

the entire system.

Andrew’s main responsibility will be to develop the hand

detection module. He will be responsible for turning the image

data received from the camera into hand position data for the

OS interface as well as sending enhanced and cropped hand

image data to the gesture detection algorithm. Since his

responsibilities overlap with the gesture detection, his

secondary responsibility will be to work with Brian and

ensuring that images are properly sent from the hand detection

module into the gesture detection module. In the last few weeks,

he will work with the whole team on integration and testing of

the entire system.

Brian’s main responsibility will be to develop the gesture

detection module. He will be responsible for training our neural

network model to receive image input and produce gesture

classification output. Since the gesture detection module is

largely dependent on the hand detection module, Brian’s

secondary responsibility will be to work with Andrew and

ensure that the proper images are sent into the gesture detection

module. In the last few weeks, he will work with the whole team

on integration and testing of the entire system.

The division of labor above was essentially what happened

while we developed our system, however there was a lot more

overlap where every team member was involved in making

improvements to every submodule and the system together. The

main developments of the submodules were an individual task

but bringing the whole system together and improving

performance based on collected metrics was a job that

everybody contributed to.

Budget

As shown in table 1 below, our budget is only used for our

cameras to capture image data and AWS credits that we planned

to use to train and run the gesture recognition model but ended

up not using.

Description Model Manufacturer Quantity Cost

Camera C922x Logitech 1 $99.99

Camera BRIO Logitech 1 $199.99

AWS

Credits

N/A Amazon 1 $50

Laptop Varies Varies 1 $0
Table 4. Bill of Materials

C. Risk Management

The biggest risk in our project is the integration of all our

individual components and the final product meeting all our

design requirements. We foresee that integration will likely be

a tough challenge, and so we have allocated sufficient time in

our schedule to focus on this aspect. We decided to do a lot of

our individual development in parallel so we could all come

together at the end to sort out problems that came up during

integration and testing. The risk of not meeting design

requirements is also largely present since we are developing our

modules in parallel, so even if individual testing and

verification passes, once the entire system comes together, we

may run into additional issues with meeting our requirements.

Our resources should not be a point of risk at all since we chose

a project that requires simple resources. However, this means

that a lot of the success of the project will fall onto our

individual responsibilities of developing the proper software.

By following the proper process that we were taught to in this

18-500 Final Project Report: 12/14/21

10

course, starting from the proposal to the design review, we can

think about all these risks ahead of time and plan/schedule

accordingly.

VIII. ETHICAL ISSUES

There are always potential ethical issues that arise when it

comes to any new product. Our Virtual Whiteboard is no

exception to this fact, but we have carefully considered these

issues. One ethical issue is accessibility for who can use our

system. There was some discussion at the demos about how our

system could also help those with physical disability who

cannot use a mouse, and that we could potentially customize

gestures for those that can only make certain gestures.

However, as our system is now, many of our gestures are still

difficult to make for those with physical disabilities such as

carpal tunnel. Those with these types of disabilities would still

not be able to interact with their desktop environment using our

system.

Another concern is that our project relies heavily on camera

usage to feed image data into our system. Any product that uses

a camera has some privacy concern attached to it, whether it be

camera data collected or a possible hack that steals camera data.

Our system only uses the camera to move the mouse, but a

malicious party may take advantage of the camera part of our

system to invade privacy of our users. Additionally, if our

system were to be used extensively, many users may become

used to having their camera constantly on since they would

need it to control their computer. This may lead to user’s being

unaware that their camera is currently on, and users may not be

aware that their image data is being captured and could

potentially be used by malicious attackers.

In terms of accessibility, there are other potential hand

gestures or even body parts that users can use to control their

mouse. Our development of a system that uses hands is just a

start, but the technology may be there for users to control their

desktop using something like just their eyes. As for the camera

aspect of our project, we can only warn the user about the

possible dangers of keeping their camera on all the time and tell

them that even though we are not invading their privacy through

camera usage, there is always a risk of being hacked.

IX. RELATED WORK

Basically any product in the field of Virtual Reality could

potentially be extended to do the same thing that our Virtual

Whiteboard does. VR systems such as the Oculus can be used

to interact with the cursor. These systems that allow users to

interact with a virtual world using their hands can probably also

have their application extended to using a web browser with just

their hands. Additionally, touchless touchscreen technology in

products such as kiosks are like our system and could

potentially be extended to work with users at further distances.

The standard of touchless touchscreen is very short range but

accurate detection, but it is only a matter of time before the

range and accuracy continue to increase. There are also other

ECE capstone projects from previous semesters that are like our

project, such as the Gesture Glove from this semester, which

uses similar machine learning techniques to classify hand

gestures for sign language applications, and the AR FruitNinja

project from a previous semester that utilizes hand tracking for

more of a game application.

X. SUMMARY

Overall, our system was able to meet our design

specifications. Our system latency and cursor precision were

easily within our requirements and allowed for very smooth

operation of certain aspects of our system. As for gesture

recognition, left clicking and left button holding work

fantastically and are as reliable as a mouse for users who get

used to the system, however there is still room for improvement

in incorporating other gestures and mouse commands. Right

now, the system works super well just for using the left mouse

button, which is frankly enough for using a web browser and a

lot of activities on the computer. However, there are

improvements that could be made to the system. If we had more

time, we would have experimented more with the options

outlined in our design trade studies. If we could combine our

computer vision approach with an IMU to possibly get more

accurate detection of gestures in a 3D space, or if we were able

to develop several different complete machine learning models

for classifying gestures, our system accuracy and extendibility

could be improved greatly.

While we obviously learned a lot about working with

computer vision and machine learning models during our time

working with our project, but we learned that it is worth looking

into all your options and experimenting with a lot of ideas early

on before you must commit to something. We decided on using

computer vision and simple neural net earlier, but I would say

that weighing all your options and doing more work earlier,

even if you might have to abandon most of your options to focus

on one, is worth it to get the best result as possible in the end.

On the project management side, it is very important to pay

attention to all the early semester assignments, especially the

design review report, and to really listen to the feedback from

professors and TA’s.

XI. AWS

For this project we were fortunate enough to have access to

AWS credits for cloud computing, which we used to develop

and train our gesture recognition model. Our AWS credit usage

only tallied up to about $15, using up only one $50 credit. Due

to the relatively simple design of our model, a large amount of

computational power was not required, and we were able to use

the low priced “a” instances. The access to cloud computing

was extremely valuable to the development of the machine

learning portion of this project, and we would like to thank

Amazon for providing us with these credits.

18-500 Final Project Report: 12/14/21

11

GLOSSARY OF ACRONYMS

CMU – Carnegie Mellon University

IMU – Inertial Measurement Unit

OS – Operating System

RPi – Raspberry Pi

VR – Virtual Reality

REFERENCES

[1] MediaPipe Hands

https://google.github.io/mediapipe/solutions/hands.html

[2] mouse https://pypi.org/project/mouse/

[3] pywin32 https://pypi.org/project/pywin32/

[4] PyAutoGUI https://pyautogui.readthedocs.io/en/latest/

[5] HANDS: an RGB-D dataset of static hand gestures for human-

robot interaction https://doi.org/10.1016/j.rcim.2020.102085

[6] MEGURU: a gesture-based robot program builder for Meta-

Collaborative workstations

https://doi.org/10.1016/j.rcim.2020.102085

https://google.github.io/mediapipe/solutions/hands.html
https://pypi.org/project/mouse/
https://pypi.org/project/pywin32/
https://pyautogui.readthedocs.io/en/latest/
https://doi.org/10.1016/j.rcim.2020.102085
https://doi.org/10.1016/j.rcim.2020.102085

18-500 Final Project Report: 12/14/21

12

Fig. 9. Detailed schedule

