
18-500 Design Review Report: 10/15/21

1

Abstract—A system capable of allowing a user to control their

computer cursor from a distance to access a web browser and

navigate to several different pages in an office or classroom

environment. The system will allow for a touchless touchscreen

experience where a user can use just their hands. State of the art

systems are either too expensive or require the user to be very close

to the screen for functionality. Our system will allow for a user to

control their device from across a standard classroom using just a

camera and code that can run on their computer.

Index Terms—Hand Detection, Computer Vision, Gesture

Recognition, Neural Network, OS Interface, Calibration, Pose

Detection, Cursor Location Transform

I. INTRODUCTION

HE Virtual Whiteboard originated from the initial idea of

developing something similar to Tony Stark’s Iron Man

Suit user interface, where he just uses his hands to control a

bunch of different things on his user interface without direct

contact. However, we expanded on this idea of a touchless

touchscreen and thought of how it might be practical in the real

world. As students who likely spend lots of time on computers,

there are a lot of downsides with prolonged computer usage

including damage to the eyes from being too close to the screen

and harm to the body from sitting too long. The Virtual

Whiteboard which allows for a user to control their computer

cursor from a distance with hand motion and gestures would

allow for these problems to be mitigated since they can now

stay standing and will not be close to their screens. The

touchless aspect also has a sanitary benefit in this time where

the pandemic is still an issue, since people who might have to

use the same public computer can do so without transmitting

germs. Additionally, this system would allow for students or

teachers to give presentations or lectures naturally in a

classroom environment while making the experience more

interactive and engaging.

The most important requirements for this system are the

distance at which the system is functional and making the entire

experience very smooth for the user. The first requirement can

be directly quantified, and we have decided on trying to make

our system functional for users that are between 3 feet and 15

feet from their screen. The 3 feet minimum distance is because

the average arm length is around 3 feet, so if a user is within

this distance they could just reach out and use a normal

touchscreen. The 15 feet maximum distance is the length of an

average classroom at CMU (not lecture hall), and this would be

for allowing students or teachers to give presentations from

across the classroom. The smooth user experience will be

expanded more upon in the design requirements, but we want

to enable the user to simulate the capabilities of a mouse with

their hands by using different gestures for mouse clicks and

scrolling.

II. DESIGN REQUIREMENTS

The smooth user experience can be broken up into three

quantitative categories.

A. Latency

One of the key aspects of a smooth experience is a user

making a gesture or a motion and seeing the result of it shown

immediately on screen. This will be accomplished by making

our design meet as low of a latency as possible. We have

decided to strive for achieving a 50 ms latency for our system.

This corresponds to 20 frames per second, which means the

cursor on screen should update its position 20 times each

second while following user input. This latency will not be

noticeable to the average human and should make the system

feel like it is instantly responsive.

B. Gesture recognition accuracy

When using a mouse or a touchscreen, a user wants a click to

be registered as a click 100% of the time. When using any

device, the user would desire that their inputs are properly

detected all the time. However even then, it is natural for users

to have to click multiple times with a mouse or to tap repeatedly

on a touchscreen to guarantee their input goes through. We have

decided to aim for less than 10% gesture recognition error in

our system. To put this into perspective, for every 10 clicks a

user tries to input through hand gestures, we would guarantee

that they must possibly repeat a gesture only one time for

successful detection.

C. Cursor precision

Our system ultimately controls the computer’s cursor, which

allows for the user to interact with objects on the screen. For a

standard screen size of 1920 pixels by 1080 pixels, the smallest

area that a user would have to click on is 30 pixels by 40 pixels,

which is the “exit” button at the top right of a browser. For all

other objects on screen, there is a larger area where if the cursor

is anywhere within, the object will be interacted with. We want

our system to be able to track user hand motion with an error of

around 30 pixels so that the user will never misclick because of

our system, but only by human error.

Team A2 – Virtual Whiteboard

Authors: Alan Song, Andrew Huang, Brian Lane: Electrical and Computer Engineering, Carnegie

Mellon University

T

18-500 Design Review Report: 10/15/21

2

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

The block diagram in figure 1 represents the overall system

architecture. The project is largely done in software with the

two main hardware systems being a camera and a laptop. The

camera will provide the primary input to the system in the form

of image data. We purchased our camera and will not be

building our own camera for this project. The camera will

continuously feed this image data into the laptop and more

specifically the calibration and pose estimation blocks, which

are both part of a hand detection module. The rest of the system

is software that runs entirely on the laptop. The laptop is also

something that we own, and we will not be building a laptop for

this project.

A. Hand Detection

The hand detection module includes the calibration and

pose estimation blocks. The module takes in images which

include the user and possible other objects in the background

and isolates and identifies the user’s hand and arm. The hand

and arm data show up as data points in the hand detection

module and will be converted into coordinate points to be sent

to other parts of the system. In the calibration block, the user

will map out their range of motion by drawing a circle with

their arms extended to detect the largest range in which the

user’s hand can move. The range of motion will be sent into

the cursor location transform which is part of the OS interface.

The pose estimation block will continually send coordinate

information about where the hand is located into both the

cursor location transform and the gesture recognition module.

Although the pose estimation block could potentially be used

to determine gestures from the different points mapped onto

the user’s hand, we decided to just send a cropped version of

the image with landmark coordinates into the gesture

recognition module instead. The pose estimation block and

calibration block will be developed entirely by us.

B. Gesture Recognition

The gesture detection module will take in hand landmark

coordinates and the zoomed/enhanced image of the user’s

hand to determine what gesture the user is making. The

gesture recognition module uses a neural network to detect the

user’s hand gesture among a dataset of over 20 different hand

gestures, of which we only need five. The neural network will

directly convert the image input into an integer output that

represents the gesture detected. This gesture integer will be

fed directly into the OS interface. The gesture recognition

module will be developed entirely by us, although the dataset

used to train will be off-the-shelf.

C. OS Interface

The OS interface module includes both the cursor location

transform and the OS interface. The cursor location transform

is a type of calibration for the OS interface system. Since

coordinates from the hand detection module will not

correspond directly to coordinates in the OS to represent the

screen, a transformation is needed to map motion of the user

to motion of the cursor on screen. We decided not to just map

Fig. 1. Block diagram for entire system

the entire range of motion to the entire size of the screen, but

rather make the range of motion approximately 75% of the

screen size. This way for users far from the screen they will

not have to make super small and precise movements to move

the cursor onto small on-screen objects. This scaling will also

make the system’s sensitivity like a regular mouse, where the

user may have to pick up and re-adjust the mouse multiple

times while using it. Once the calibration is done, the OS

interface will move the cursor based on relative positioning,

which is taking the difference in position between two time

frames to determine how far to move. The gesture recognition

module will provide the gesture which will be converted into a

mouse action. The OS interface module will take the hand

position, calculate where to move the cursor based on current

and previous hand position, and perform certain mouse actions

based on the inputted gesture integer. These simulated mouse

movements and actions will be fed into the operating system

of the laptop, allowing for direct control of the cursor through

software.

18-500 Design Review Report: 10/15/21

3

IV. DESIGN TRADE STUDIES

A. Hand Detection

Multiple object detection methodologies have been used for

hand tracking as the problem boils down to recognizing and

sensing hand data. We considered multiple different solution

approaches for hand detection: IMU, infrared sensors,

ultrasonic sensors, computer vision, and Ultraleap Leap Motion

Controller. Ultrasonic sensors eliminate the need for external

sensors on the body, but usage of it would require complex

calculations for extracting pose and location data of hand

making it too difficult to work with for our use case especially

given its low resolution of around 1 cm. Infrared sensors obtain

sensor location with around a couple millimeters of resolution.

However, the approach only gets the location of the sensors,

and we would need to research and develop our own complex

algorithms for pose and gesture estimation. IMU

accelerometers are especially subject to drift, and small errors

in measurements are exponentially multiplied during double

integration for position estimation. We considered an external

sensor as a calibration metric for position estimation as well as

a Kalman filter, but both approaches seemed too complex given

our problem statement and the effort to implement either was

not outweighed by the benefits the IMU itself provided to our

task. We also considered the use of an external hardware sensor

called Ultraleap Leap Motion Controller that was geared

specifically towards hand pose detection for AR games. While

the accuracy was good at close distances, the most complex

sensor the company provides has a max usage distance of

around a meter; our solution statement requires around a three

to fifteen feet operation distance. Thus, we ultimately decided

on the use of computer vision for our detection algorithm for a

multitude of reasons.

First and foremost, there has been by far the most work done

in this area with regards to hand detection, so it simplifies our

solution approach as well as more easily discretizes our task for

hand recognition. Secondly, as we are using a neural network

on the hand image for gesture recognition, the computer vision

approach standardizes and feeds more seamlessly into our

system pipeline. The specific library we'll be using is the

MediaPipe body landmark recognition library. The library

includes a pretrained model that includes facial and hand

detection algorithms on images fed through a camera and

allows for us to tune parameters like detection confidence and

maximum number of hands to detect. With respect to the Leap

Motion Controller, a computer vision approach will allow us to

increase the distance with which our user can operate provided

our camera has a high enough resolution. To combat low

confidence detection due to motion blur when a user moves

their hand in the camera view, a camera with a higher frame rate

refresh will be used as well. The high frame rate camera (60

frames per second) will also meet our requirement for 50 ms

latency. We also decided on a webcam because it is likely that

our users will have access to their own webcam that they can

use with their own laptop to run our system. Practically, it is

unlikely that users have professional or super expensive

cameras handy to use to get our system working on their

computer.

B. Gesture Recognition

Classification of user hand gestures from image data is a

perfect fit for a machine learning approach. Finding a function

to discriminate between the number of hand gestures required

to meet user product specifications would not be feasible by

hand. The requirements for this users’ product specifications of

this gesture recognition include quick training of our model and

low inference computational latency, as well as high accuracy.

Considered approaches included deep learning in the form of a

deep convolutional neural network applied to raw image data or

a simpler architecture neural network that would be provided

feature data in the form of landmark coordinates output by our

hand pose estimation. Both approaches would be implemented

with a simple supervised learning approach employing

stochastic gradient descent on a multiclass cross-entropy loss

function. Unsupervised learning approaches were found unfit

for this product, due to the extended learning time required, as

well as the saturation of available appropriate datasets including

images of various hand gestures.
The final design selected is the latter of the two options: the

simple neural network trained on pose estimation data. This

selection was made because the simplicity of the model would

allow for a much shorter inference time, as well as a predicted

higher accuracy than what could be achieved from raw image

data that would include background pixels, pixel alpha

differences from lighting, as well as overall higher noise. This

meets the requirements for a smooth user experience by

lessening overhead for latency and improving classification

accuracy for gesture recognition accuracy.

C. OS Interface

The OS interface and cursor location transform will be

implemented in Python. Python will allow for easy connections

between our design components and easy transfer of

information between modules. The control of the mouse

through the OS will be done using the mouse library in Python.

Other libraries that could accomplish the same task of

controlling the cursor include pywin32 and pyautogui. All these

libraries would fit the user product requirements since they

would all be able to interface with and control all aspects of the

cursor with minimal overhead. However, the mouse library has

excellent user-friendly wrappers that are much easier to work

with than the functions in the other libraries.

We chose to use a laptop rather than something like an RPi

(Raspberry Pi) because we felt that this fit our user product

requirements better. The goal of our Virtual Whiteboard is to

allow the user to control their own computer from a distance

using hand gestures. Having on the system run on an RPi may

be sufficient and cheaper for demonstration purposes, but the

goal is for users to be able to run the code on their own

computers and use their own webcams to utilize the system on

their own. Therefore, ensuring that the system can function on

one of our laptops using a webcam is what we want to verify

that our system fits what we want it to do.

18-500 Design Review Report: 10/15/21

4

V. SYSTEM DESCRIPTION

A. Hand Detection

Our hand detection and pose estimation system will be

implemented in a couple discrete steps. The MediaPipe hand

landmark data structure for detection contains parameters x, y,

and z. The first two parameters, x and y, represent the on-screen

image location of the landmark wrist on the image coordinate

system. The last coordinate represents the depth of the

landmark detected which gives us a rough estimate of distance

to camera scaling. In our overall system process, we will first

have a manual calibration phase where the user will indicate

their full comfortable range of motion. Given the x and y

coordinates of the calibration phase, we will fit a bounding box

that has dimensions of the interaction screen to the person

which will serve as a mapping between the hand location in

reality to on screen coordinates where we will put the mouse.

Specifically, we will store the hand location within the

bounding box as a tuple of distance along horizontal and

vertical axes, and it is this information that we will then use in

the OS/UI interaction phase to indicate where along the

horizontal and vertical screen axes we want to put our mouse.

As our included functionality allows the user to move in both

vertical and lateral directions, we will scale the bounding box

initially calibrated to the user to follow their positional change.

A thing to note in our initial testing with the MediaPipe hand

landmark structures is that hand detection confidence can fall

off depending on distance to the camera and other conditions

like light over and undersaturation. Further testing is required

on the mounted camera we bought that should fit our specs. If

detection is not optimal at further distances, we will likely need

to preprocess our image data through methods like histogram

equalization for light exposure or implement some sort of

camera tracking/zooming functionality to our pose estimation

system to track the current user.

B. Gesture Recognition

Gesture recognition will be implemented in two stages.

Initially a pre-designed model will be slightly altered for our

purposes and trained with existing Jupyter notebook scripts to

allow for the rapid creation of a functional model that can be

used for testing and integration with other parts of the system.

Following this, the pre-designed model will be altered further

to a lower number of classified gestures and extended with two

extra layers that will be initialized by values copied from the

previous two layers. All weights and biases will be frozen save

for these final two layers, which will be more extensively

trained and tweaked to hopefully achieve higher classification

accuracy than the pre-built model. The gesture recognition will

be trained on AWS with PyTorch.

The gesture recognition module will take in enhanced hand

images from the hand detection module. The trained model will

be fed these images as frequently as possible. The outputs of the

model classification will be converted to integer output and fed

into the OS interface module.

C. OS Interface

As mentioned before, the OS interface, which includes the

cursor location transform, takes inputs from the hand detection

and gesture recognition modules, and outputs simulated cursor

actions for the OS to execute. The OS interface is

implemented in Python and mainly makes use of the Python

mouse library.

 Firstly, the cursor location transform function is

implemented by taking in hand coordinate data from the hand

detection calibration block. This calibration step will be

implemented as follows. The calibration code will be called

from the command line and executed, giving the user 10

seconds to move to the position they want to use the system

from. This code will continue to accept hand coordinate inputs

for about 15 seconds in which the user will move their hands

through their complete range of motion. The cursor location

transform function will record the maximum and minimum x

and y coordinate values received within this time frame. These

x and y values will be used to construct a rectangle that

represents the user’s range of motion. This rectangle will then

be scaled to 75% of the screen’s size. Screen resolution is

obtained using the ctypes library to directly obtain screen size

using the GetSystemMetrics() method. After the calibration,

all hand positional changes will be scaled based on this

calibrated rectangle of motion.

 While the system is running, the cursor location transform

will continue to receive hand position coordinates and convert

them to coordinates on the screen. The module will keep track

of the currently received position as well as the most recent

position. The x and y coordinates of these positions will be

subtracted, and the result put into the mouse library move

function. The function mouse.move takes in x, y, absolute, and

duration or steps_per_second as input. The absolute input tells

the function whether the x and y values represent set

coordinates on the screen or if they represent the change in x

and y that the cursor must move. This is an important

distinction because our cursor movement is all relative since

we are not scaling the range of motion to cover the entire

screen. If we were to try to implement absolute cursor

movement, the user would likely struggle to reach the corners

of the screen as they would have to extend their arms as far as

possible. The duration and steps_per_second inputs control

how frequently the movement updates happen. This will be

synced to as fast as hand coordinate inputs are received to

keep the overall system latency consistent. The cursor location

transform handles all of the cursor movement.

 The other mouse operations including clicking and scrolling

will also be implemented using the mouse library and will use

the gesture recognition output. The integer representation of

hand gesture will be cased on, and different mouse functions

will be called corresponding to what was detected. An

important distinction here is the use of mouse.press and

mouse.release instead of mouse.click. Press, release, and click

function exactly as they sound like. Since the gestures will

also be continually fed into the OS interface, there is no need

to use the mouse.click function. The act of clicking will be

done by changing the hand gesture and then quickly changing

18-500 Design Review Report: 10/15/21

5

it back, essentially flashing the hand gesture. We do this so

that clicking and holding can be implemented in a similar

manner, where clicking is just holding and releasing under a

very short timeframe. Currently this implementation choice is

envisioned to be sufficient, but there may be problems in the

future where clicks are interpreted as tiny holds and so the

user may accidentally drag things on their screen instead of

clicking. If this does happen, the mouse.click function will

also be used and a counter can be implemented that measure

the duration of the hold hand gesture in order to differentiate

between clicks and holds. Scrolling of the mouse will be

implemented with the mouse.wheel function. Any hand

motion while the scroll gesture is detected will result in

scrolling instead of mouse movement.

VI. TEST AND VALIDATION

Since this is still our design, below we have outlined the tests

we intend to carry out while we complete our implementation.

We will have a general user story test where we measure all the

metrics. This general user story will essentially walk the user

through using the system and getting them to try and open a

web browser and navigate through to the CMU website. There

will also be other more specific tests for some of the design

requirements.

A. Latency

To test latency, we will use our camera to capture both our

user and the computer screen. Since the camera captures 60

frames per second, it will be able to see if we cross the 20 frames

per second and 50 ms latency threshold. However, we will

likely not be able to get an exact measurement down to the

precise millisecond. These measurements can be done while the

user runs through the other tests.

B. Gesture Recognition Accuracy

The gesture recognition accuracy will be measured by

counting the number of gesture changes required in the user

story and recording the number of errors that we observe or

that the user reports. The number of errors divided by the total

gesture count will be our gesture recognition error rate.

Subtracting this from 100% will give us the gesture

recognition accuracy. We will accumulate this value from

many different iterations of the test with different users.

C. Cursor precision

The cursor precision will mostly be measured through an

online cursor accuracy application. The user will try to control

the cursor and hover over small red circular targets that are 30

pixels in diameter in a limited timeframe. We will record the

score of these tests and run the test with varying sizes

including smaller and larger targets. The accumulation of

these results will give us the results for our cursor precision.

D. User Survey

We will also include a small user survey after they use our

system to get a qualitative measure of how smooth the user

thinks our system is. We will tell the user to rate their

experience using our system on a scale from 1-10, with 1

being very difficult to use and 10 being perfect with no

hiccups. This validation does have a quantitative score aspect,

but it is more qualitative since it is based on user opinion and

feedback.

VII. PROJECT MANAGEMENT

A. Schedule

Our schedule was designed based on team member

responsibility and how our different modules connect. The hand

detection module and the gesture recognition module can be

developed largely in parallel before needing to be tested

together near the end. The OS interface can also largely be

worked on in parallel and would just need to change the

potential inputs based on modifications that are made to the

hand detection and gesture recognition outputs. The schedule

also leaves a lot of time near the end of the class to focus on

integration and getting all our modules to work together. This

time at the end also allows for lots of time to verify and test our

system.

B. Team Member Responsibilities

Alan’s main responsibility is to develop the OS interface

module. He will develop most of the code in Python to interface

with the OS and cursor. Since Alan’s part largely relies on

receiving inputs from the other modules, he will be designated

some lighter tasks in earlier weeks to help the other team

members with getting their components up and running.

Although not explicitly depicted on the schedule, Alan’s

secondary responsibility will be to aid both Andrew and Brian

with the hand detection and gesture recognition modules

respectively, especially in the first weeks. In the last few weeks,

he will work with the whole team on integration and testing of

the entire system.

Andrew’s main responsibility will be to develop the hand

detection module. He will be responsible for turning the image

data received from the camera into hand position data for the

OS interface as well as sending enhanced and cropped hand

image data to the gesture detection algorithm. Since his

responsibilities overlap with the gesture detection, his

secondary responsibility will be to work with Brian and

ensuring that images are properly sent from the hand detection

module into the gesture detection module. In the last few weeks,

he will work with the whole team on integration and testing of

the entire system.

Brian’s main responsibility will be to develop the gesture

detection module. He will be responsible for training our neural

network model to receive image input and produce gesture

classification output. Since the gesture detection module is

largely dependent on the hand detection module, Brian’s

secondary responsibility will be to work with Andrew and

ensure that the proper images are sent into the gesture detection

module. In the last few weeks, he will work with the whole team

on integration and testing of the entire system.

18-500 Design Review Report: 10/15/21

6

Budget

As shown in table 1 below, our budget is only used for our

camera to capture image data and our AWS credits that will be

used to train and run the neural network gesture recognition

model.

Description Model Manufacturer Quantity Cost

Camera

used to

capture

image data

C922x Logitech 1 $99.99

AWS

Credits

N/A Amazon 3 $150

Laptops for

running

software

components

Varies Varies 1 $0

Table 1. Bill of Materials

C. Risk Management

The biggest risk in our project is the integration of all of our

individual components and the final product meeting all of our

design requirements. We foresee that integration will likely be

a tough challenge, and so we have allocated sufficient time in

our schedule to focus on this aspect. We decided to do a lot of

our individual development in parallel so we could all come

together at the end to sort out problems that came up during

integration and testing. The risk of not meeting design

requirements is also largely present since we are developing our

modules in parallel, so even if individual testing and

verification passes, once the entire system comes together, we

may run into additional issues with meeting our requirements.

Our resources should not be a point of risk at all since we chose

a project that requires simple resources. However, this means

that a lot of the success of the project will fall onto our

individual responsibilities of developing the proper software.

By following the proper process that we were taught to in this

course, starting from the proposal to the design review, we can

think about all these risks ahead of time and plan/schedule

accordingly.

GLOSSARY OF ACRONYMS

OS – Operating System

RPi – Raspberry Pi

18-500 Design Review Report: 10/15/21

7

Fig. 2. Detailed schedule

