Virtual Whiteboard

Alan Song, Andrew Huang, Brian Lane

Introduction to Project

- Control a computer with touchless gestures
- Hand and finger movements tracked by sensors

Interact with a desktop environment without direct contact.

Useful for:

- reducing eye strain by being further from a screen
- presentations or demonstrations
- interactivity with audience or environment
- sanitary

Use a limited language of gestures to perform different UX operations.

- 1. Movement of cursor
- 2. Right and left click
- 3. Holding and dragging
- 4. Scrolling

Software Systems + Signal Processing + Machine Learning

Use cases cont.

Closed fist (o fingers) should not update cursor position, used to reposition hand

1 finger for left clicking

Keep it held up for left click hold

2 fingers for right clicking

Open palm (5 fingers) to move cursor around

Smooth user experience

Recognize gestures from a distance of between 3 feet and 15 feet.

Recognize gestures with at most 33 ms latency.

Accuracy of clicking gesture recognition approaching 99%.

Accuracy of cursor motion within 30x30 pixel

Technical Challenges

- Integration of external camera data with UI/OS
- Accurate detection of user movement at (variable) distance.
- Accurate detection of small hand movements.
- Speed of calculation.
- **Risk mitigation**
 - Setting aside a lot of time in schedule for experimenting with different options for integration with hand position and gestures

Solution approaches comparison

IMU

• Low accuracy compounds over time¹

Infrared

- Resolution: $0.2 \text{ mm}^2 5.3 \text{ mm}^2$
- Only gets location of sensors, need more complex algorithms to determine gestures

Ultrasonic

- Resolution: ~1cm²
- No sensors needed, complex calculations
- 3D

Computer vision

- Resolution scales with camera & distance
- Accuracy approaches >95%
- Speed dependant on model complexity
- Lots of previous work done, intersects most with our experience as a group

Computer Vision

- Hand location tracking in real time with pose estimation¹
- Gesture recognition with Deep CNN
 - <u>Dataset</u>
- MediaPipe library for hand detection and labeling

0. WRIST 1. THUMB_CMC 2. THUMB_MCP 3. THUMB_IP 4. THUMB_IP 5. INDEX_FINGER_MCP 6. INDEX_FINGER_PIP 7. INDEX_FINGER_DIP 8. INDEX_FINGER_TIP 9. MIDDLE_FINGER_MCP 10. MIDDLE_FINGER_PIP

11. MIDDLE_FINGER_DIP 12. MIDDLE_FINGER_TIP 13. RING_FINGER_MCP 14. RING_FINGER_PIP 15. RING_FINGER_DIP 16. RING_FINGER_TIP 17. PINKY_MCP 18. PINKY_PIP 19. PINKY_DIP 20. PINKY_TIP

Implementation Specifics

- Use Windows features:
 - Middle mouse scrolling
 - Click detection
 - Mouse movement

• Python libraries

- mouse
- o <u>win32api</u>
- Win32con
- Range of motion and distance through bounding box

Testing/verification of requirements

Testing of device from many locations within range of distance (and outside) A set pattern of motion and gestures, test for gesture accuracy and latency Test on a page of shapes of different sizes to measure pixel accuracy

Division of Labor

Alan

Windows Cursor API

- Mouse library for mouse functions (positioning, clicking, etc.)
- Translating coordinates from hand detection to cursor movement in Windows OS
- Incorporating gesture data to program cursor functionality (clicking, scrolling)
- Helping others with the detection tasks

Andrew

Hand detection

- OpenCV and MediaPipe libraries for detection
- Range of motion detection for operator and translation onto on screen coordinates
- Readjustment and calculation of range of motion bounding box given operator movement
- Filtering of important image data given operator

Brian

Gesture Detection

- Pytorch for model implementation.
- Design model architecture.
- Find and adapt existing gesture datasets
- Develop and train model.
- Implement use of hand location data to select image portions for gesture inference.

<mark>Schedule</mark>

	9/19 - 9/25	9/26 - 10/2	10/3 - 10/9	10/10 - 10/16	10/17 - 10/23	10/24 - 10/30	10/31 - 11/6	11/14 - 11/20	11/21 - 11/27
Gesture Model Design									
Find Gesture Dataset									
Gesture Dataset Adaptation									
Gesture Model Implementation									
Gesture Model Training									
Model Evaluation with dataset									
Model testing with hand detection									
	-								
Hand Detection Library/Planning									
Implementation on Latop Webcam	-								
Translation from Webcam to Mount					<u> </u>		100		
Algorithm for Range of Motion									
ROM onto Screen Location						1			
	-								
Look for equipment									
Equipment acquisition									
Read library documentation					-				
Begin using mouse/cursor libraries									
Translate hand position data									
Translate gesture model data							S		
Finish cursor implementation									
Integration/Testing									
	S								
Brian									
Andrew									
Alan	<u></u>								
All									