
1

18-500 Design Report: 12/14/2021

Abstract—Hardware verification is traditionally done using

simulation software, which is notoriously slow. Our project aims

to speed up this process by synthesizing the design under test

(DUT) and running tests on an FPGA instead, taking advantage of

its fast hardware clock and reconfigurability. To test our method,

we are creating a simple single-cycle processor as our DUT on the

FPGA. The goal is for our method to achieve 3x speedup relative

to simulation, and our end system is able to achieve at least 2.2x

speedup over the range of test case sizes that we support.

Index Terms—FPGA, Hardware acceleration, Simulation, SoC,

SystemVerilog, Verification

I. INTRODUCTION

Before today’s SoC chips are manufactured and shipped, the

design needs to be extensively tested using simulation software

to verify functionality. This step, known as verification, is

crucial because a bug that makes its way into a released chip

could lead to recalls, potentially costing a company in the

billions [1]. At the same time, verification also tends to be the

bottleneck of the chip design process due to simulation often

taking weeks or even months total to run [2]. Verification

therefore takes up both significant compute resources and man-

hours, not to mention the increasing complexity of designs only

exacerbates the problem.

Our project aims to speed up verification by using custom

hardware, instead of simulation software, to run tests. More

specifically, we will be using the DE2-115 FPGA, which is a

reconfigurable and relatively cheap integrated circuit. The

benefits of this approach are two-fold: by leveraging the fast

hardware clock of the FPGA, tests can complete in shorter times

than they would in simulation, and the design is tested on actual

hardware. For our project, the goal is to achieve runtime

speedup of 3x over VCS simulation for test cases of various

sizes (ranging from one instruction to 20,000 instructions). The

test cases will be randomizable and customizable by the user.

II. DESIGN REQUIREMENTS

For our system to be useful, there are numerous requirements

we need to satisfy. We divide the requirements into three

categories: performance, input end, and output end.

A. Performance

The most critical of our requirements is about performance,

prompted directly by the problem at hand. As mentioned in the

introduction, our goal is to achieve 3x speedup in comparison

to the traditional method of verification: simulation. This goal

is motivated by the fact that many tests in industry take 24 hours

to complete. Reducing the runtime to 8 hours allows tests to run

overnight, meaning a verification engineer can analyze the

results when they come to work next morning.

We’d like to note that while simulation runtime consists only

of processing time by the simulator, runtime for our approach

consists of communication time from to the FPGA and back, in

addition to computation time on the FPGA (see section III for

system dataflow). Communication is the bottleneck of our

system and is where we spent the majority of planning and

development effort (see section V for communication tradeoff

studies).

B. Input end

Our next set of requirements deals with the input end of our

system. First, we will support running test cases of any size

ranging from one to 20,000 instructions. Every instruction is a

command that will be sent to our own design under test (see

section IV for DUT details). Users can use small test sizes to

isolate bugs, while large test sizes can be used to stress the

design.

Furthermore, our users will be able to both customize and

randomize the test cases being fed to the DUT. This method of

combining direct and indirect testing is known as constrained

random verification. It is widely used in simulation-based

approaches for its effectiveness at discovering both anticipated

and unanticipated bugs. Therefore, we would like to provide the

same functionality in our framework. More specifically, we will

allow the user to choose the number of instructions per test,

which instructions to test, and which registers to write to, while

unspecified parameters are randomized.

C. Output end

Our last set of requirements is about the output end of our

system. At the end of our system flow, we will perform an

instruction-by-instruction correctness check of the DUT’s

output against that of a golden model (a C model of the design).

This gives the user an exact pinpoint of which instruction the

DUT begins faulting at, thereby easing their debugging effort,

in contrast to offering only final output comparisons (which will

require the user to trace through the test themselves to discover

the divergence point).

We would also like to implement a GUI that displays to the

user results from the correctness check in a readable function.

This is again to help the verification engineer save time by

making information easier to parse. Statistics about the test case

will also be displayed here to help the engineer gauge the

quality of the test case.

Authors: Ali Hoffmann, Grace Fieni, Xiran Wang

Electrical and Computer Engineering, Carnegie Mellon University

FPGA-Assisted Verification

2

18-500 Design Report: 12/14/2021

III. ARCHITECTURE OF SYSTEM

As shown in Fig. 1, our project consists of two subsystems:

the Raspberry Pi 4 and the FPGA (DE2-115 Altera board). The

two subsystems communicate serially with the UART protocol.

In this section, we will describe how data flows through our

system at a high level. In section IV, we will describe the DUT,

the GUIs, and the UART interfaces in more detail.

The information entry point of our system—the test case

generator—is a form that asks the user to answer a series of

questions regarding how they would like to customize the test

case. It then creates a test adhering to the user’s needs and

outputs the test as a text file containing line-separated

instructions.

This test file will then be sent to both the golden model and

the DUT on the FPGA. They will both execute the instructions

in the test and write to separate files the results after each

instruction. The golden model, which serves as the reference for

checking the DUT’s functionality, is a simple C program

executed on the Raspberry Pi that parses the input file and

computes the needed arithmetic. We have chosen to write the

golden model in a fourth-generation language for simplicity,

speed, and ease of ensuring correctness. The DUT, on the other

hand, is written in SystemVerilog and synthesized onto the

FPGA.

Because the DUT is on the FPGA, not the Raspberry Pi, we

need a communication protocol to send the test to it and obtain

the results back. This communication protocol is UART

(Universal Asynchronous Receiver-Transmitter). Both the

Raspberry Pi and the FPGA have serial ports, and we use a

cable to physically connect the two components.

After the test completes on both the golden model and the

DUT, we will have two files on the Raspberry Pi containing

outputs from each execution. We then upload these two files to

the result analyzer. The analyzer is responsible for detecting

that either the outputs are the same after every instruction

(meaning the DUT passed the test) or, in the case of a

discrepancy (meaning the DUT failed the test), the exact

instruction at which the discrepancy began.

In a traditional simulation-based system (shown in Fig. 2),

the test case is sent to the simulator (and the simulator only),

which runs the test case and outputs the result. For our project,

the core idea is then to replace the simulation part with a

combination of the golden model and the DUT on the FPGA.

The speedup of this approach comes from the golden model and

the FPGA being able to run faster than the simulator can,

although we must incur the overhead of communication.

We’d also like to note two changes that we have made to the

overall architecture since the Design Review. The first is that

we originally planned to use Ethernet for communication to and

from the FPGA, but have since switched to UART due to

implementation difficulties. This change was significant, and

we explain why the change was made and what it entails with

regards to meeting our requirements in sections V and VI,

respectively. The second change was that we are now

communicating to the FPGA from a Raspberry Pi, not a PC.

This is simply because we discovered that a Raspberry Pi is able

to handle data transfer at a higher rate than the PC we were

using (i.e., it allows us to obtain higher performance).

Fig. 1: Our system overview Fig. 2: Traditional system overview

3

18-500 Design Report: 12/14/2021

IV. SYSTEM DESCRIPTION

The DUT, GUIs, and the UART interfaces, mentioned in the

previous section, warrant more explanation because of their

complexities. In this section, we will describe those modules in

greater detail. Then in section V, we will describe the design

choices we made regarding the DUT and the communication

protocol.

A. DUT

Our DUT implements a single-cycle processor capable of

executing some 16-bit ALU instructions inspired mainly by

RISC-V. Each instruction is 16 bits, while our register file is

also 16 registers by 16 bits. Note that we do not support memory

operations or control flow, so each register is general purpose.

The instruction format is as follows in Fig. 2.

The instruction bits are evenly divided into four components.

At a high level, the instruction takes the two sources, applies

the opcode on the sources (performs some computation), then

writes the result to the destination. Source 1 must be a register,

while source 2 may be a register (for a register-register

instruction), a direct value (for a register-immediate

instruction), or not used (for MOV). The destination can only

be a register. We’d like to note two caveats here. The first is

that register 0 is always 0 (a value written to it will simply be

disregarded). The second is that for immediate instructions, the

4-bit immediate in the instruction will be sign-extended to 16

bits before the computation is performed. Both of those features

are taken from RISC-V.

Table 1 outlines the full instruction set that we support. Each

line in our test cases will be one instruction in hex (e.g., 9325

means r3 = r2 + 0x5).

Table 1: Supported instruction set

Fig. 3 shows the block diagram for our DUT implementation

in SystemVerilog. On each clock, the DUT takes a 16-bit

instruction from the UART interface. We have an instr_valid

signal to indicate whether the instruction is ready to be executed

(has fully propagated through UART). The instruction then

goes through a decoder, which outputs the four components of

the instruction in Fig. 2, along with some other control signals

that will be passed along to the register file and/or ALU (e.g.,

whether this is a register-immediate instruction).

We then access the operands from the register file. The

register file will be asynchronous read, synchronous write,

meaning the operand values will be available in the same clock

cycle. After obtaining the operands, they are passed along to the

ALU. On the next clock cycle, the ALU’s output will be written

back to the destination register in the register file.

Instr Opcode Type Description

MOV 0x0 Reg-Mov Register move

ADD 0x1 Reg-Reg Register add

SUB 0x2 Reg-Reg Register subtract

AND 0x3 Reg-Reg Register bitwise and

OR 0x4 Reg-Reg Register bitwise or

XOR 0x5 Reg-Reg Register bitwise xor

SLL 0x6 Reg-Reg Reg. shift left logical

SRL 0x7 Reg-Reg Reg. shift right logical

SRA 0x8 Reg-Reg Reg. shift right arith.

ADDI 0x9 Reg-Imm Imm. add

ANDI 0xa Reg-Imm Imm. bitwise and

ORI 0xb Reg-Imm Imm. bitwise or

XORI 0xc Reg-Imm Imm. bitwise xor

SLLI 0xd Reg-Imm Imm. shift left logical

SRLI 0xe Reg-Imm Imm. shift right logical

SRAI 0xf Reg-Imm Imm. shift right arith.

Fig. 3: Instruction format

Fig. 4: DUT datapath

4

18-500 Design Report: 12/14/2021

B. GUIs

The information entry and exit GUIs in our system (the test

case generator and the result analyzer) are implemented as a

web app. To obtain a test case, the user fills out the above form

in the web app and clicks on the “Generate test case” button.

The form allows the user to customize how many instructions

to include in the test case, as well as what types of instructions

and destination registers to test for. The size customization is to

allow the user to choose whether they are performing small or

stress testing. The type customization is for testing individual

features.

 As for the output end, after the golden model’s output and

the FPGA’s output are uploaded to the result analyzer, it will

detect errors and present the earliest discrepancy as shown in

Fig. 6. We see a progress bar of how far the DUT made before

failing and a register value comparison table showing the

mismatches at the failed instruction.

 One more important note regarding the GUIs is that the web

app is made using a web app builder called Anvil. We chose to

use a framework instead of building the app from scratch due

to ease of implementation. However, relying on a third-party

host does come with security concerns, which we explore in

section VIII.

C. UART interfaces

 Recall from Fig. 1 that our system requires a method of

sending input and output data to and from the FPGA board. Our

final system uses the UART (Universal Asynchronous

Receiver-Transmitter) protocol. We made this choice mainly

because the protocol is simple to implement and has ample

documentation. This is in contrast to another protocol that we

were experimenting with—Ethernet—which we ultimately

abandoned due to lack of documentation (we touch more on this

in section V).

 UART sends data at the granularity of packets. Every packet

contains a start bit at the beginning, followed by data bits,

followed by a stop bit at the end. For our implementation of the

protocol, the start bit is an active low bit and the stop bit is an

active high bit. We send 8 data bits per packet, for a total of 10

bits per packet (Fig. 7). Although the start and stop bits are

overhead, they allow us to send packets without having to obey

fixed idle periods (the packets can start whenever). This is

important because setting up precise timing is quite tricky.

In the first part of our communication, we send data from the

Raspberry Pi to the FPGA board. More specifically, we want to

send instructions from the test case generator to the DUT, one

instruction at a time. Again, in our system, each instruction is

16 bits. After the DUT processes the instruction, the Raspberry

Pi needs to receive the output back. This output consists of

which destination register was written to (4 bits) and the value

in that register after the instruction completes (16 bits) for 20

data bits total. Note that we pipeline the transmit and receive

directions (i.e., transmit and receive happen at the same time for

different instructions).

Unfortunately, 20 data bits cannot be broken up into whole

packets. Our solution is to add 4 bits of padding to the output,

so every output ends up being 3 packets, while every input is 2

packets. However, we still have a problem because with the

input and output directions being different lengths, our pipeline

stages would have misaligned timing. We therefore pad another

packet to the input direction to make it 3 packets as well. We

can reduce the need for padding by merging data. Although we

did not have time for this optimization, we briefly mention its

performance effects in section VI.

Performance is tied to how much overhead our protocol

incurs and also to the rate at which we can send bits. This rate,

known as the baud rate, is configurable depending on what the

equipments can support, and it is 576,000 bits per second in our

system. The limiting factor here is the cable speed, and we

touch more on the performance effects again in section VI.

Fig. 6: Example output analysis

Fig. 5: Input GUI

Fig. 7: UART packet

5

18-500 Design Report: 12/14/2021

V. DESIGN TRADE STUDIES

Throughout our project, we made decisions to balance

implementation complexity, meeting our requirements, and the

usefulness of our system. Those design decisions can be divided

into three categories: regarding the hardware platform for our

project, regarding the DUT, and regarding the communication

protocol.

A. Hardware platform

With our goal being accelerating simulation by leveraging

the fast clocks of hardware, we first needed to choose what

hardware platform to use.

1) FPGA vs. ASIC

FPGAs and ASICs are both commonly used as hardware

accelerators. We chose to use a FPGA for the reconfigurability

and low cost. Verification, fundamentally, is the process of

discovering bugs and fixing the design to be bug free. Our

platform therefore needs to accommodate changes in the

design, making an ASIC—a static design—not suitable for our

use case. In addition, the cost of manufacturing an ASIC is well

beyond our budget, while FPGAs are much cheaper in

comparison, and the ECE department has some readily

available.

2) Altera vs. Xilinx

We could use either an Altera or a Xilinx FPGA owned by

the ECE department. While the Xilinx FPGAs available have a

built-in SoC on the board (which makes communicating data to

and back from the FPGA chip simple), none of us have

experience programming such a FPGA using the necessary

toolchains. After several people who do have experience with

Xilinx FPGAs informed us that learning how to use said

toolchains in the time frame we have is incredibly difficult, we

decided to use an Altera FPGA instead. However, the lack of

an on-board SoC means we need to generate the test cases on a

PC and send data to and from the FPGA through a

communication protocol we develop.

3) DE2-115 vs. Cyclone V

As for which Altera board to use specifically, we again have

two options: the DE2-115 board and the Cyclone V board. The

Cyclone V is overall more powerful (it has more memory and

more logic elements), while the DE2-115 support more I/O

types. Keeping in mind the need for a communication protocol,

we chose the DE2-115 because more I/O types give us more

options (and fallbacks) for how to send/receive data. The

downside of having limited memory and logic elements then

influenced the design of our DUT.

B. DUT

We chose to implement a processor for our DUT because the

project arose from our shared struggles in trying to verify a CPU

core. However, the limited amounts of memory and logic

elements on the DE2-115 FPGA dictate that we cannot create a

very complex DUT. The challenge here is then to limit the

scope of the DUT while keeping it realistic and interesting.

First, we ruled out making a pipelined processor our DUT

out of concerns for complexity and the design not fitting on the

board. A non-pipelined design is expected to fit because we

have experience synthesizing, in 18-240, such a design onto the

same board. Next, we need to determine what instructions our

DUT could support.

1) Instruction size

Modern processors typically have 32-bit or 64-bit ISAs.

Having such large bit widths though would mean having high

communication cost in our system (since for each instruction,

we need to send the instruction to the FPGA and obtain register

information back). Moreover, having a large register file raises

the chances of the design not fitting on the board. In the end, we

settled for 16 bits to lower those risks, while keeping the ISA

large enough that it does not become a toy example.

2) Instruction format

To keep the instruction decoder simple, we chose the

simplest scheme possible for the instruction format, illustrated

in Fig. 2.

3) Instruction set

A typical ISA consists of compute, memory, and control flow

operations. However, in the interest of making our

communication protocol simple and again due to FPGA size

limitations, it is not feasible for us to support changes in control

flow or maintain a large memory. Our instruction set is thus

comprised solely of compute instructions.

The instructions themselves are chosen after studying three

ISAs: RISC-V, ARM, and x86. While our instruction set is

mainly inspired by RISC-V, we wanted to look at others in

order to determine what instructions are important and

essential. We ended up choosing the most common instructions

across these ISAs.

C. Communication (pre–Design Review)

Although the FPGA has a fast clock, communication to off-

board is time-consuming and is the bottleneck of our system.

To meet 3x speedup despite this challenge, we designed various

ways to reduce/hide the communication latency and calculated

which channel would allow us to meet our requirement.

1) Reducing latency

We can reduce latency by reducing the number of bits sent to

and from and FPGA. For every instruction processed, the DUT

needs to receive the instruction and send the register dump (in

order to perform instruction-by-instruction correctness checks).

In a naïve approach, this would mean a total of 272 bits (16

instruction bits + 16 registers * 16 bits) of communication per

instruction processed.

 However, we observed that it is not necessary to send the

entire register dump after each instruction; we can instead send

the delta (which register changed to what value) and reconstruct

the dump at the end. This reduces the number of communication

bits to 36 bits per instruction processed (16 instruction bits + 4

bits for register index + 16 bits for register value), not taking

into account any overhead.

2) Hiding latency

 In addition to reducing latency, we can also hide latency

through pipelining. In contrast to the serial approach of waiting

for one instruction to finish propagating through our system (to

the FPGA, then computed, then back from the FPGA) before

processing the next instruction, we can overlap processing of

multiple instructions.

6

18-500 Design Report: 12/14/2021

Table 2 illustrates this pipeline. Each row represents a

different instruction, and the pipeline consists of three stages:

TO is sending data to the FPGA, COMP is the computation on

the FPGA, and BACK is sending data from the FPGA back.

In a pipelined system, throughout is bounded by the latency

of the slowest stage, which is BACK in our case. Whereas in

the serial approach, we have one instruction processed after the

latency of TO + COMP + BACK, in our pipelined system, we

have one instruction processed after only the latency of BACK.

 We recognize that while the pipelined approach offers

speedup gains, it will also complicate the communication

protocol significantly. Therefore, we decided we will start with

the serial approach, then implement the pipelined approach if

time permits. Calculations in the immediate following section

assume we are communicating a reduced number of bits per

instruction (36 bits) as explained in C1), but without pipelining.

3) Communication channel

After exploring ways to reduce the communication cost, we

needed to determine which communication channel to use to

meet our speedup requirement. The Altera DE2-115 board has

three types of I/O that we could use: JTAG, USB, and triple

speed Ethernet. Table 3 gives the speed for each of these options

(found in the DE2-115 User Manual [3]).

 With the values in Table 3, we can calculate, for each

channel, how much time it takes to transmit 36 bits:

 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑖𝑛𝑠𝑡𝑟 =
36 𝑏𝑖𝑡𝑠

𝑏𝑖𝑡𝑠/𝑠
 (1)

 We also know the FPGA clock is 50 MHz (again from the

User Manual). We can then obtain the total time per instruction

by adding communication time and FPGA compute time.

Because of our DUT’s single-cycle microarchitecture, each

instruction takes one cycle on the FPGA:

 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑖𝑛𝑠𝑡𝑟 = 𝑐𝑜𝑚𝑚. 𝑡𝑖𝑚𝑒 +
1

50 𝑀𝐻𝑧
 (2)

 Table 4 gives the results of these calculations.

 The next step was to find how much time it would take to

simulate one instruction so we could choose a communication

protocol that meets speedup. Unfortunately, this metric is

difficult to determine. Simulation runtime varies significantly

across different designs, making it impossible for us to have an

exact number of how long our design would take before we

have the design ready. However, we do know that simulation

time grows as design complexity grows, so we can obtain a

lower bound time by simulating a smaller design.

We ended up creating an adder and simulating its execution.

Our benchmarks show that it takes roughly 2 s to simulate a

single add operation. This means in order to attain 3x speedup,

each instruction in our approach must be processed in less than

2 s/3 ≈ 666 ns. We can achieve this using either 100 Mbit/s or

1000 Mbit/s Ethernet. We are planning on using 1000 Mbit/s

Ethernet (also called Gigabit Ethernet) to give us the most

speedup we can get and to leave room for spending bits not

taken into account in this calculation for handshaking.

D. Communication (post Design Review)

However, as mentioned previously, despite our original plan

to use Ethernet as our communication protocol, we ultimately

switched to using UART instead. While the FPGA’s user

manual has instructions for setting up Ethernet communication

with the board, those instructions require us to use the NIOS II

soft processor: a proprietary processor developed by Altera that

we can instantiate on the FPGA. Unfortunately, this processor

has both extremely limited documentation and compatibility

issues. Given that it is proprietary, we also have no way to

figure out its inner workings on our own.

After spending the majority of the semester attempting to use

the NIOS II processor to limited success, we decided to forgo

relying on proprietary components to instead implement our

own end-to-end protocol. UART came to be the choice here

given its simplicity. Note that using either the USB or JTAG

protocols would have likely put us in the same situation as using

Ethernet, given that the user manual says to use special

components for those protocols as well.

After we finished implementing the UART interfaces and

began integrating, we discovered that the PC we were using

could not handle baud rates of above 512,000 bits/second

without losing data. We then made the second design change to

our system since the Design Review: communicate to the FPGA

from a Raspberry Pi instead, since the Raspberry Pi supports

baud rates of up to 4,000,000 bits/second. Once we made this

change, however, the bottleneck became the physical cable

connecting the Raspberry Pi and the FPGA, as the cable begins

losing data for baud rates higher than 576,000 bits/second. We

did not have time to obtain a better cable, so this is the data rate

used in our final system.

In the next section, we will further quantify the performance

of our final system.

Table 2: Communication pipeline illustration for 4 instructions

TO COMP BACK

 TO COMP BACK

 TO COMP BACK

 TO COMP BACK

Table 3: Time per instruction for each channel

Communication

channel

Comm. time per

instr.

Total time per

instr.

JTAG 9 s 9.02 s

USB 3 s 3.02 s

Triple speed

Ethernet

3.6 s, 360 ns,

or 36 ns

3.62 s, 380 ns,

or 56 ns

Table 4: DE2-115 communication channels and speeds

Communication

channel

Data transmission speed

(# bits/s)

JTAG 4 Mbit/s

USB 12 Mbit/s

Triple speed Ethernet 10, 100, or 1000 Mbit/s

7

18-500 Design Report: 12/14/2021

VI. TEST AND VALIDATION

Recall that our requirements are divided into three

categories: performance, input end, and output end. While we

were not able to meet our performance requirement, we do meet

all other requirements. We also briefly talk about some ways to

improve performance if we had more time.

A. Performance

Our 3x performance speedup requirement is tested by

measuring simulation runtime and runtime of our solution.

Speedup is defined as:

 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 / 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (3)

For simulation runtime, we used elapsed time outputted by

VCS at the end of simulation. For the runtime of our solution,

we both calculated the expected runtime and confirmed the

number with time() calls at the beginning and end of our scripts.

Since we implemented pipelining (recall Table 2), the runtime

is:

 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 𝑇𝑂 + 𝐶𝑂𝑀𝑃 + (# 𝑖𝑛𝑠𝑡𝑟𝑠) ∗ 𝐵𝐴𝐶𝐾 (3)

 COMP is simply one FPGA cycle. TO and BACK are both

UART transfers of 30 bits at a rate of 576,000 bits/second (aka

TO = BACK = 30/576,000 s).

Fig. 7 shows the comparison between simulation time and

solution time for the range of test case sizes we support. For the

smallest size (1 instruction), we have speedup of about 20,000x.

However, since simulation scales better than our current

communication method, speedup diminishes as test case size

grows, landing at about 2.3x at 20,000 instructions. We also

eventually hit a crossover point at 50,000 instructions, where

we have no speedup (see Fig. 8).

Given that we are not able to meet our speedup requirement

(and we recognize that scaling is a significant issue), in the next

section, we propose ways to improve performance that we did

not have time to carry out.

B. Performance improvement proposals

1) Use cable that supports higher data rate

As mentioned in section V, the Raspberry Pi supports baud

rates of up to 4,000,000 bits/second, but our cable experiences

data loss at baud rates higher than 576,000 bits/second. Using a

cable that supports a higher data rate is then one way to improve

performance.

Runtime of this improved system with a better cable,

assuming we are able to reach the 4,000,000 bits/second upper

bound, is plotted in Fig. 8. Note that while our current system

has a crossover point due to poor scaling, the improved system

scales at an about even rate as simulation.

2) Reduce padding

In addition to improving the rate of data transfer, we can also

reduce the number of bits we send to further reduce runtime. As

mentioned in section IV, our UART interface requires us to

send data at the granularity of whole packets. When we do not

have enough data to fill a packet, we must add padding.

However, we can merge data from different instructions to form

whole packets, thereby reducing the need for padding. This

added complexity of merging and unmerging at the other end

will bring us a relatively small but still noticeable performance

gain, as shown in Fig. 9.

Lastly, we also plot the theoretical performance of using

Ethernet in our system. Ethernet provides extraordinary scaling

due to its fast speed.

C. Input end

We now move to testing the input end of our system—the

test case generator. Testing this component involves ensuring

that the customization or randomization request the user makes

through the web app form, we generate a test that adheres to

those requests. More specifically, the customizations must not

be violated (the test case size, if given, must match, and any

unspecified instruction or destination register cannot show up

in the test case). Furthermore, if the test case is large (greater

than 500 instructions), any randomized parameter must have an

about uniform distribution.

We emphasize the uniform distribution because

randomization failures (always returns the same result) are a

major cause of bugs; some parts of the design may in fact never

be tested, while the verification engineer thinks they are tested.

Testing that the aforementioned conditions hold is relatively

straightforward. We simply give the test case generator

different requests (e.g., 10 instructions, only ADD and ADDI,

only r1), and observe (both manually and by analyzing the test

case’s distribution) whether the outputted test case fulfills the

conditions. We have tested with 20 such requests, and our test

case generator passed all of them.

Fig. 8: Simulation time and solution time comparison Fig. 9: Potential runtime improvements

8

18-500 Design Report: 12/14/2021

D. Output end

To test our last requirement (that is, instruction-by-

instruction correctness check), we created 8 buggy versions of

our DUT and ran two crafted test cases through each version.

One of the test cases exposes the bug, while the other one does

not. For the test case that exposes the bug, the result analyzer

must report the failure at exactly the location we expect (given

that we know both the bug and the test case, we know where the

failure should be too). For the test case that does not expose the

bug, the result analyzer must report no failures.

The 8 bugs we inserted into our DUT are outlined in Table 5.

These are all bugs that we either have personally encountered

while implementing processors (aka RTL designer bugs) or

have heard of similar bugs existing in chips (aka hardware

faults). For all 8 scenarios, our result analyzer behaved exactly

as expected. Fig. 6 shown earlier is in fact the output GUI’s

display when we fail due to bug number 8: writes to registers 8

and 9 are flipped.

VII. PROJECT MANAGEMENT

A. Schedule

Our schedule has changed significantly since the Design

Review. The cause was that setting up communication to and

from the FPGA took us much longer than expected. While we

originally planned about four weeks to implement the

communication protocol, this effort has since been stretched out

to last the entire semester. Fortunately, because 1) we were able

to redistribute tasks to make time for communication and 2) we

built lots of slack into our original schedule (we originally

planned to finish implementing all subsystems by

Thanksgiving), we still managed to finish all components of the

project on time.

Please see Appendix A for the final Gantt chart.

B. Team member responsibilities

For the first two thirds of the semester, Ali and Grace worked

together towards building an Ethernet protocol. Ali spent more

time debugging issues with Ethernet-related demos, while

Grace spent more time researching mitigation protocols. In the

meantime, Xiran worked on implementing the golden model

and the DUT.

After the team decided to switch to using UART, Ali and

Grace implemented the UART protocol together. Meanwhile,

Xiran implemented the user GUIs. The team then integrated

together and completed the final deliverables.

C. Bill of materials and tools

Please see Appendix B for a list of what equipment we

purchased and their costs. Note that some of the equipment are

not used in our final system.

D. Risk management

The biggest risk in our project was in data communication to

and back from the FPGA. This is because communication is

both challenging and essential: while none of us have

experience working on FPGA communication to an offboard

component, we must have a working communication protocol

for our project to function. Ideally, we would also like the

protocol to be fast enough to meet our performance

requirement, so there are many factors to consider.

In the beginning of the semester, we actively mitigated this

risk by performing tradeoff studies on various protocols and

allocating more manpower to this part of the project. We chose

Ethernet only after studying its performance relative to various

other protocols and after having found documentation for how

to set it up. The communication protocol task is also the first

task we worked on when the project began and is the only task

with two team members responsible for it. The goal is for Ali

and Grace to support each other and balance the workload.

However, despite Ethernet being a great fit for our project

performance-wise, we continued to run into difficulties once the

implementation effort began; the documentation we found

turned out to be quite lacking. At this point, we began

redistributing tasks to make more time for this riskiest part of

the project and also came up with backup plans. The backup

plans, which we formed after consulting both online sources

and professors, were to either switch to a simpler

communication protocol or to forgo communication completely

by storing testing cases and results in the FPGA’s memory.

When issues with using Ethernet remained unresolved as we

head into the last third of the semester, we made the decision to

switch to using UART as our communication protocol instead.

This turned out to be the right call; we had an incredibly fast

turnaround and were able to implement the UART protocol in

three weeks. Once we had a completed UART protocol, the risk

of not having a functional project was eliminated.

In hindsight, switching to UART earlier would have allowed

us to spend more time improving performance. But overall, we

are very proud of the progress we’ve made despite these

setbacks.

VIII. ETHICAL ISSUES

We observe two major ethical issues that could arise from

our project: usage by malicious parties and data leakage.

A. Usage by malicious parties

While the target audience for our project are verification

engineers developing consumer electronics, our framework

could theoretically extend to verify any silicon hardware. This,

of course, includes malicious hardware designed with the intent

to attack other systems or even people. To put it plainly, being

able to verify good hardware fast means being able to verify bad

Table 5: Intentional bugs inserted into FPGA

Bugs

Register-immediate instructions do not sign-extend

immediate value.

Register-immediate instructions decode to register-register

instructions.

SRA and SRAI perform logical shifts instead.

First instruction always ignored (no effect).

Registers reset at 10000 cycles.

Writes to register 0 not ignored.

Upper 2 bits of register 10 stuck at 0xf.

Writes to registers 8 and 9 are flipped.

9

18-500 Design Report: 12/14/2021

hardware fast too.

Although we recognize the potential for misuse, it is hard to

envision how such misuse may be prevented or regulated.

Denying access to users detected to be verifying malicious

systems is one way, but our system is also reproducible by

anyone with the same equipment.

B. Data leakage

A somewhat more concrete problem is data leakage. Suppose

we are offering our framework as a service to companies.

Because our framework requires users to upload test data, other

users (and system administrators) can potentially gain access to

or even tamper with this data. Such vulnerabilities can result in

many undesirable outcomes. With only access to data, users can

gauge their competitors’ verification progress. Reverse

engineering the DUT may even be possible depending on the

complexity of the design. On the other hand, the ability to

tamper with data opens up the possibility of completely

sabotaging another’s verification work.

The problem is exasperated by the fact that our web app, the

component in our system that does data analysis, is hosted on a

third-party web app builder that may not have any security

protections in place. It is thus important for our system to be

vetted by security experts before it is deployed to ensure data

privacy for our clients.

IX. RELATED WORK

While researching the feasibility of our project in the

beginning stages, we were surprised to learn that hardware

acceleration of simulation is in fact a hot area of research. A

quick Google search of “FPGA accelerated verification” or the

like reveals a plethora of recent research papers ([4], [5], [6]).

Common trends across these papers include the flexibility of

the framework proposed (can move some portions of the DUT

onto the FPGA while keeping others in simulation) and much

greater speedup (up to two or three orders of magnitude).

Although we cannot hope to achieve as much gains as these

works from academia, we are encouraged by their existence (as

they show there is clearly a problem to be solved) and excited

by the new technology to come.

As regards to the communication side of things, we found the

Serial Lab from CMU ECE course 18-240 created by Professor

Bill Nace very helpful. This lab had students use UART to send

data between two different FPGA boards. We worked through

the lab to get a better understanding of the protocol flow, before

we implemented our own version.

X. SUMMARY

Our project aims to make the verification of RTL designs

more efficient by speeding up test case runtime and providing

features to ease debugging effort. While we came short of our

performance requirement, our project meets all other

requirements. In section VI, we explored several ways to

improve the performance of our final system.

To future students of capstone, we’d like to stress the

importance of keeping a flexible mindset when it comes to

design choices. No matter how good an idea looks on paper, it

may not work when you try to implement it in real life! To that

end, it is absolutely necessary to have backup plans. Upon

recognizing that an idea is infeasible, being willing to switch to

another idea is also important.

GLOSSARY OF ACRONYMS

ALU – Arithmetic Logic Unit

DUT – Device Under Test

FPGA – Field Programmable Gate Array

GUI – Graphical User Interface

ISA – Instruction Set Architecture

PC – Personal Computer

RTL – Register Transfer Level

SoC – System on a Chip

REFERENCES

[1] Yeraswork, Z., 2021. Intel Assesses Damage Of Cougar Point

Chipset Flaw. [online] CRN. Available at:

https://www.crn.com/news/components-

peripherals/229200131/intel-assesses-damage-of-cougar-point-

chipset-flaw.htm.

[2] WIŚNIEWSKI, R., BUKOWIEC, A. and WĘGRZYN, M.,

2001. Benefits Of Hardware Accelerated Simulation. [online]

Available at:

http://www.iie.uz.zgora.pl/iie_archiwum/desdes01/files/ref/IV-

7.pdf.

[3] 2013. DE2-115 User Manual. [online] Available at:

https://www.intel.com/content/dam/www/programmable/us/en/p

ortal/dsn/42/doc-us-dsnbk-42-1404062209-de2-115-user-

manual.pdf.

[4] Kim, D., 2019. FPGA-Accelerated Evaluation and Verification

of RTL Designs. [online] Escholarship.org. Available at:

https://escholarship.org/uc/item/0vt3c73p.

[5] Simkova, M., n.d. Acceleration of Functional Verification in the

Development Cycle of Hardware Systems. [online]

Trilobit.fai.utb.cz. Available at:

http://trilobit.fai.utb.cz/Data/Articles/PDF/fba3fd06-6222-4e25-

910c-989553226dde.pdf.

[6] Wageeh, Wahba, Salem and Sheirah, 2004. FPGA based

accelerator for functional simulation. [online]

Ieeexplore.ieee.org. Available at:

https://ieeexplore.ieee.org/document/1329526.

https://www.crn.com/news/components-peripherals/229200131/intel-assesses-damage-of-cougar-point-chipset-flaw.htm
https://www.crn.com/news/components-peripherals/229200131/intel-assesses-damage-of-cougar-point-chipset-flaw.htm
https://www.crn.com/news/components-peripherals/229200131/intel-assesses-damage-of-cougar-point-chipset-flaw.htm
http://www.iie.uz.zgora.pl/iie_archiwum/desdes01/files/ref/IV-7.pdf
http://www.iie.uz.zgora.pl/iie_archiwum/desdes01/files/ref/IV-7.pdf
https://www.intel.com/content/dam/www/programmable/us/en/portal/dsn/42/doc-us-dsnbk-42-1404062209-de2-115-user-manual.pdf
https://www.intel.com/content/dam/www/programmable/us/en/portal/dsn/42/doc-us-dsnbk-42-1404062209-de2-115-user-manual.pdf
https://www.intel.com/content/dam/www/programmable/us/en/portal/dsn/42/doc-us-dsnbk-42-1404062209-de2-115-user-manual.pdf
https://escholarship.org/uc/item/0vt3c73p
http://trilobit.fai.utb.cz/Data/Articles/PDF/fba3fd06-6222-4e25-910c-989553226dde.pdf
http://trilobit.fai.utb.cz/Data/Articles/PDF/fba3fd06-6222-4e25-910c-989553226dde.pdf
https://ieeexplore.ieee.org/document/1329526

10

18-500 Design Report: 12/14/2021

Appendix A: Gantt chart

11

18-500 Design Report: 12/14/2021

Appendix B: Bill of materials

Item Name Quantity Used in

final

system

Price Manufacturer Model

Number

Description

Altera DE2-115

FPGA

1 Yes $675.00 Altera DE2-115 This is an FPGA that the ECE

department had in stock.

Cat 5 Ethernet

Cable

1 No $11.84 Mediabridge 31-399-25X Ethernet cable used to communicate

between PC and FPGA.

Dual ended

USB cable

1 No $6.99 UGREEN 10369 USB Male to USB Male cable to use

to test demo project that comes with

FPGA.

USB to ethernet

dongle

1 No $16.55 Amazon

Basics

U3-GE-1P USB-ethernet converter used to easily

connect ethernet cable to PC/Desktop.

Because it uses USB 3.0, it should not

limit the speed of ethernet.

Raspberry Pi 4

2GB Canakit

1 Yes $101.05 Raspberry Pi

& Canakit

PI4-2GB-

STR16-C4-

CLR-RT

Raspberry Pi 4 2GB used to access

web application, and send serial data

to the FPGA and process received

data.

Serial to Serial

Cable

1 No $9.28 DTECH B07B4T699J Serial to Serial cable that we were

going to use to transmit data between

2 FPGAs for demonstration purposes

(we didn’t even end up doing this).

USB to Male

Serial Cable

1 Yes $9.99 CableCreation B0758B6MK6 USB to Male Serial cable was used to

send/receive data to/from the FPGA.

SanDisk Ultra

64GB microSD

card with

Adapter

1 Yes $13.60 SanDisk SDSQUNC-

064G-

GN6MA

MicroSD card used to store Raspberry

Pi OS and data.

