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Abstract—Hardware verification is traditionally done using 

simulation software, which is notoriously slow. Our project aims 

to speed up this process by synthesizing the design under test 

(DUT) and running tests on an FPGA instead, taking advantage of 

its fast hardware clock and reconfigurability. To test our method, 

we are creating a simple single-cycle processor as our DUT on the 

FPGA. The goal is for our method to achieve 3x speedup relative 

to simulation, and our end system is able to achieve at least 2.2x 

speedup over the range of test case sizes that we support.  

 
Index Terms—FPGA, Hardware acceleration, Simulation, SoC, 

SystemVerilog, Verification 

I. INTRODUCTION 

Before today’s SoC chips are manufactured and shipped, the 

design needs to be extensively tested using simulation software 

to verify functionality. This step, known as verification, is 

crucial because a bug that makes its way into a released chip 

could lead to recalls, potentially costing a company in the 

billions [1]. At the same time, verification also tends to be the 

bottleneck of the chip design process due to simulation often 

taking weeks or even months total to run [2]. Verification 

therefore takes up both significant compute resources and man-

hours, not to mention the increasing complexity of designs only 

exacerbates the problem. 

Our project aims to speed up verification by using custom 

hardware, instead of simulation software, to run tests. More 

specifically, we will be using the DE2-115 FPGA, which is a 

reconfigurable and relatively cheap integrated circuit. The 

benefits of this approach are two-fold: by leveraging the fast 

hardware clock of the FPGA, tests can complete in shorter times 

than they would in simulation, and the design is tested on actual 

hardware. For our project, the goal is to achieve runtime 

speedup of 3x over VCS simulation for test cases of various 

sizes (ranging from one instruction to 20,000 instructions). The 

test cases will be randomizable and customizable by the user. 

II. DESIGN REQUIREMENTS 

For our system to be useful, there are numerous requirements 

we need to satisfy. We divide the requirements into three 

categories: performance, input end, and output end. 

A. Performance 

The most critical of our requirements is about performance, 

prompted directly by the problem at hand. As mentioned in the 

introduction, our goal is to achieve 3x speedup in comparison 

to the traditional method of verification: simulation. This goal 

is motivated by the fact that many tests in industry take 24 hours 

to complete. Reducing the runtime to 8 hours allows tests to run 

overnight, meaning a verification engineer can analyze the 

results when they come to work next morning. 

We’d like to note that while simulation runtime consists only 

of processing time by the simulator, runtime for our approach 

consists of communication time from to the FPGA and back, in 

addition to computation time on the FPGA (see section III for 

system dataflow). Communication is the bottleneck of our 

system and is where we spent the majority of planning and 

development effort (see section V for communication tradeoff 

studies). 

B. Input end 

Our next set of requirements deals with the input end of our 

system. First, we will support running test cases of any size 

ranging from one to 20,000 instructions. Every instruction is a 

command that will be sent to our own design under test (see 

section IV for DUT details). Users can use small test sizes to 

isolate bugs, while large test sizes can be used to stress the 

design.  

Furthermore, our users will be able to both customize and 

randomize the test cases being fed to the DUT. This method of 

combining direct and indirect testing is known as constrained 

random verification. It is widely used in simulation-based 

approaches for its effectiveness at discovering both anticipated 

and unanticipated bugs. Therefore, we would like to provide the 

same functionality in our framework. More specifically, we will 

allow the user to choose the number of instructions per test, 

which instructions to test, and which registers to write to, while 

unspecified parameters are randomized. 

C. Output end 

Our last set of requirements is about the output end of our 

system. At the end of our system flow, we will perform an 

instruction-by-instruction correctness check of the DUT’s 

output against that of a golden model (a C model of the design). 

This gives the user an exact pinpoint of which instruction the 

DUT begins faulting at, thereby easing their debugging effort, 

in contrast to offering only final output comparisons (which will 

require the user to trace through the test themselves to discover 

the divergence point).  

We would also like to implement a GUI that displays to the 

user results from the correctness check in a readable function. 

This is again to help the verification engineer save time by 

making information easier to parse. Statistics about the test case 

will also be displayed here to help the engineer gauge the 

quality of the test case. 
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III. ARCHITECTURE OF SYSTEM 

As shown in Fig. 1, our project consists of two subsystems: 

the Raspberry Pi 4 and the FPGA (DE2-115 Altera board). The 

two subsystems communicate serially with the UART protocol. 

In this section, we will describe how data flows through our 

system at a high level. In section IV, we will describe the DUT, 

the GUIs, and the UART interfaces in more detail.  

The information entry point of our system—the test case 

generator—is a form that asks the user to answer a series of 

questions regarding how they would like to customize the test 

case. It then creates a test adhering to the user’s needs and 

outputs the test as a text file containing line-separated 

instructions.  

This test file will then be sent to both the golden model and 

the DUT on the FPGA. They will both execute the instructions 

in the test and write to separate files the results after each 

instruction. The golden model, which serves as the reference for 

checking the DUT’s functionality, is a simple C program 

executed on the Raspberry Pi that parses the input file and 

computes the needed arithmetic. We have chosen to write the 

golden model in a fourth-generation language for simplicity, 

speed, and ease of ensuring correctness. The DUT, on the other 

hand, is written in SystemVerilog and synthesized onto the 

FPGA.  

Because the DUT is on the FPGA, not the Raspberry Pi, we 

need a communication protocol to send the test to it and obtain 

the results back. This communication protocol is UART 

(Universal Asynchronous Receiver-Transmitter). Both the 

Raspberry Pi and the FPGA have serial ports, and we use a 

cable to physically connect the two components. 

After the test completes on both the golden model and the 

DUT, we will have two files on the Raspberry Pi containing 

outputs from each execution. We then upload these two files to 

the result analyzer. The analyzer is responsible for detecting 

that either the outputs are the same after every instruction 

(meaning the DUT passed the test) or, in the case of a 

discrepancy (meaning the DUT failed the test), the exact 

instruction at which the discrepancy began.  

In a traditional simulation-based system (shown in Fig. 2), 

the test case is sent to the simulator (and the simulator only), 

which runs the test case and outputs the result. For our project, 

the core idea is then to replace the simulation part with a 

combination of the golden model and the DUT on the FPGA. 

The speedup of this approach comes from the golden model and 

the FPGA being able to run faster than the simulator can, 

although we must incur the overhead of communication. 

We’d also like to note two changes that we have made to the 

overall architecture since the Design Review. The first is that 

we originally planned to use Ethernet for communication to and 

from the FPGA, but have since switched to UART due to 

implementation difficulties. This change was significant, and 

we explain why the change was made and what it entails with 

regards to meeting our requirements in sections V and VI, 

respectively. The second change was that we are now 

communicating to the FPGA from a Raspberry Pi, not a PC. 

This is simply because we discovered that a Raspberry Pi is able 

to handle data transfer at a higher rate than the PC we were 

using (i.e., it allows us to obtain higher performance). 

 

Fig. 1: Our system overview Fig. 2: Traditional system overview 
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IV. SYSTEM DESCRIPTION 

The DUT, GUIs, and the UART interfaces, mentioned in the 

previous section, warrant more explanation because of their 

complexities. In this section, we will describe those modules in 

greater detail. Then in section V, we will describe the design 

choices we made regarding the DUT and the communication 

protocol. 

A. DUT 

Our DUT implements a single-cycle processor capable of 

executing some 16-bit ALU instructions inspired mainly by 

RISC-V. Each instruction is 16 bits, while our register file is 

also 16 registers by 16 bits. Note that we do not support memory 

operations or control flow, so each register is general purpose. 

The instruction format is as follows in Fig. 2. 

The instruction bits are evenly divided into four components. 

At a high level, the instruction takes the two sources, applies 

the opcode on the sources (performs some computation), then 

writes the result to the destination. Source 1 must be a register, 

while source 2 may be a register (for a register-register 

instruction), a direct value (for a register-immediate 

instruction), or not used (for MOV). The destination can only 

be a register. We’d like to note two caveats here. The first is 

that register 0 is always 0 (a value written to it will simply be 

disregarded). The second is that for immediate instructions, the 

4-bit immediate in the instruction will be sign-extended to 16 

bits before the computation is performed. Both of those features 

are taken from RISC-V.  

Table 1 outlines the full instruction set that we support. Each 

line in our test cases will be one instruction in hex (e.g., 9325 

means r3 = r2 + 0x5). 

Table 1: Supported instruction set 

 

Fig. 3 shows the block diagram for our DUT implementation 

in SystemVerilog. On each clock, the DUT takes a 16-bit 

instruction from the UART interface. We have an instr_valid 

signal to indicate whether the instruction is ready to be executed 

(has fully propagated through UART). The instruction then 

goes through a decoder, which outputs the four components of 

the instruction in Fig. 2, along with some other control signals 

that will be passed along to the register file and/or ALU (e.g., 

whether this is a register-immediate instruction). 

We then access the operands from the register file. The 

register file will be asynchronous read, synchronous write, 

meaning the operand values will be available in the same clock 

cycle. After obtaining the operands, they are passed along to the 

ALU. On the next clock cycle, the ALU’s output will be written 

back to the destination register in the register file. 

 

Instr Opcode Type Description 

MOV 0x0 Reg-Mov Register move 

ADD 0x1 Reg-Reg Register add 

SUB 0x2 Reg-Reg Register subtract 

AND 0x3 Reg-Reg Register bitwise and 

OR 0x4 Reg-Reg Register bitwise or 

XOR 0x5 Reg-Reg Register bitwise xor 

SLL 0x6 Reg-Reg Reg. shift left logical 

SRL 0x7 Reg-Reg Reg. shift right logical 

SRA 0x8 Reg-Reg Reg. shift right arith. 

ADDI 0x9 Reg-Imm Imm. add 

ANDI 0xa Reg-Imm Imm. bitwise and 

ORI 0xb Reg-Imm Imm. bitwise or 

XORI 0xc Reg-Imm Imm. bitwise xor 

SLLI 0xd Reg-Imm Imm. shift left logical 

SRLI 0xe Reg-Imm Imm. shift right logical 

SRAI 0xf Reg-Imm Imm. shift right arith. 

Fig. 3: Instruction format 

Fig. 4: DUT datapath 
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B. GUIs 

The information entry and exit GUIs in our system (the test 

case generator and the result analyzer) are implemented as a 

web app. To obtain a test case, the user fills out the above form 

in the web app and clicks on the “Generate test case” button. 

The form allows the user to customize how many instructions 

to include in the test case, as well as what types of instructions 

and destination registers to test for. The size customization is to 

allow the user to choose whether they are performing small or 

stress testing. The type customization is for testing individual 

features. 

 As for the output end, after the golden model’s output and 

the FPGA’s output are uploaded to the result analyzer, it will 

detect errors and present the earliest discrepancy as shown in 

Fig. 6. We see a progress bar of how far the DUT made before 

failing and a register value comparison table showing the 

mismatches at the failed instruction. 

 One more important note regarding the GUIs is that the web 

app is made using a web app builder called Anvil. We chose to 

use a framework instead of building the app from scratch due 

to ease of implementation. However, relying on a third-party 

host does come with security concerns, which we explore in 

section VIII. 

 

C. UART interfaces 

 Recall from Fig. 1 that our system requires a method of 

sending input and output data to and from the FPGA board. Our 

final system uses the UART (Universal Asynchronous 

Receiver-Transmitter) protocol. We made this choice mainly 

because the protocol is simple to implement and has ample 

documentation. This is in contrast to another protocol that we 

were experimenting with—Ethernet—which we ultimately 

abandoned due to lack of documentation (we touch more on this 

in section V). 

 UART sends data at the granularity of packets. Every packet 

contains a start bit at the beginning, followed by data bits, 

followed by a stop bit at the end. For our implementation of the 

protocol, the start bit is an active low bit and the stop bit is an 

active high bit. We send 8 data bits per packet, for a total of 10 

bits per packet (Fig. 7). Although the start and stop bits are 

overhead, they allow us to send packets without having to obey 

fixed idle periods (the packets can start whenever). This is 

important because setting up precise timing is quite tricky. 

In the first part of our communication, we send data from the 

Raspberry Pi to the FPGA board. More specifically, we want to 

send instructions from the test case generator to the DUT, one 

instruction at a time. Again, in our system, each instruction is 

16 bits. After the DUT processes the instruction, the Raspberry 

Pi needs to receive the output back. This output consists of 

which destination register was written to (4 bits) and the value 

in that register after the instruction completes (16 bits) for 20 

data bits total. Note that we pipeline the transmit and receive 

directions (i.e., transmit and receive happen at the same time for 

different instructions). 

Unfortunately, 20 data bits cannot be broken up into whole 

packets. Our solution is to add 4 bits of padding to the output, 

so every output ends up being 3 packets, while every input is 2 

packets. However, we still have a problem because with the 

input and output directions being different lengths, our pipeline 

stages would have misaligned timing. We therefore pad another 

packet to the input direction to make it 3 packets as well. We 

can reduce the need for padding by merging data. Although we 

did not have time for this optimization, we briefly mention its 

performance effects in section VI. 

Performance is tied to how much overhead our protocol 

incurs and also to the rate at which we can send bits. This rate, 

known as the baud rate, is configurable depending on what the 

equipments can support, and it is 576,000 bits per second in our 

system. The limiting factor here is the cable speed, and we 

touch more on the performance effects again in section VI. 

 

   

 

 
Fig. 6: Example output analysis 

 

Fig. 5: Input GUI 

Fig. 7: UART packet 
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V. DESIGN TRADE STUDIES 

Throughout our project, we made decisions to balance 

implementation complexity, meeting our requirements, and the 

usefulness of our system. Those design decisions can be divided 

into three categories: regarding the hardware platform for our 

project, regarding the DUT, and regarding the communication 

protocol.  

A. Hardware platform 

With our goal being accelerating simulation by leveraging 

the fast clocks of hardware, we first needed to choose what 

hardware platform to use. 

1) FPGA vs. ASIC 

FPGAs and ASICs are both commonly used as hardware 

accelerators. We chose to use a FPGA for the reconfigurability 

and low cost. Verification, fundamentally, is the process of 

discovering bugs and fixing the design to be bug free. Our 

platform therefore needs to accommodate changes in the 

design, making an ASIC—a static design—not suitable for our 

use case. In addition, the cost of manufacturing an ASIC is well 

beyond our budget, while FPGAs are much cheaper in 

comparison, and the ECE department has some readily 

available. 

2) Altera vs. Xilinx 

We could use either an Altera or a Xilinx FPGA owned by 

the ECE department. While the Xilinx FPGAs available have a 

built-in SoC on the board (which makes communicating data to 

and back from the FPGA chip simple), none of us have 

experience programming such a FPGA using the necessary 

toolchains. After several people who do have experience with 

Xilinx FPGAs informed us that learning how to use said 

toolchains in the time frame we have is incredibly difficult, we 

decided to use an Altera FPGA instead. However, the lack of 

an on-board SoC means we need to generate the test cases on a 

PC and send data to and from the FPGA through a 

communication protocol we develop. 

3) DE2-115 vs. Cyclone V 

As for which Altera board to use specifically, we again have 

two options: the DE2-115 board and the Cyclone V board. The 

Cyclone V is overall more powerful (it has more memory and 

more logic elements), while the DE2-115 support more I/O 

types. Keeping in mind the need for a communication protocol, 

we chose the DE2-115 because more I/O types give us more 

options (and fallbacks) for how to send/receive data. The 

downside of having limited memory and logic elements then 

influenced the design of our DUT. 

B. DUT 

We chose to implement a processor for our DUT because the 

project arose from our shared struggles in trying to verify a CPU 

core. However, the limited amounts of memory and logic 

elements on the DE2-115 FPGA dictate that we cannot create a 

very complex DUT. The challenge here is then to limit the 

scope of the DUT while keeping it realistic and interesting. 

First, we ruled out making a pipelined processor our DUT 

out of concerns for complexity and the design not fitting on the 

board. A non-pipelined design is expected to fit because we 

have experience synthesizing, in 18-240, such a design onto the 

same board. Next, we need to determine what instructions our 

DUT could support.  

1) Instruction size 

Modern processors typically have 32-bit or 64-bit ISAs. 

Having such large bit widths though would mean having high 

communication cost in our system (since for each instruction, 

we need to send the instruction to the FPGA and obtain register 

information back). Moreover, having a large register file raises 

the chances of the design not fitting on the board. In the end, we 

settled for 16 bits to lower those risks, while keeping the ISA 

large enough that it does not become a toy example. 

2) Instruction format 

To keep the instruction decoder simple, we chose the 

simplest scheme possible for the instruction format, illustrated 

in Fig. 2. 

3) Instruction set 

A typical ISA consists of compute, memory, and control flow 

operations. However, in the interest of making our 

communication protocol simple and again due to FPGA size 

limitations, it is not feasible for us to support changes in control 

flow or maintain a large memory. Our instruction set is thus 

comprised solely of compute instructions. 

The instructions themselves are chosen after studying three 

ISAs: RISC-V, ARM, and x86. While our instruction set is 

mainly inspired by RISC-V, we wanted to look at others in 

order to determine what instructions are important and 

essential. We ended up choosing the most common instructions 

across these ISAs. 

C. Communication (pre–Design Review) 

Although the FPGA has a fast clock, communication to off-

board is time-consuming and is the bottleneck of our system. 

To meet 3x speedup despite this challenge, we designed various 

ways to reduce/hide the communication latency and calculated 

which channel would allow us to meet our requirement. 

1) Reducing latency 

We can reduce latency by reducing the number of bits sent to 

and from and FPGA. For every instruction processed, the DUT 

needs to receive the instruction and send the register dump (in 

order to perform instruction-by-instruction correctness checks). 

In a naïve approach, this would mean a total of 272 bits (16 

instruction bits + 16 registers * 16 bits) of communication per 

instruction processed. 

 However, we observed that it is not necessary to send the 

entire register dump after each instruction; we can instead send 

the delta (which register changed to what value) and reconstruct 

the dump at the end. This reduces the number of communication 

bits to 36 bits per instruction processed (16 instruction bits + 4 

bits for register index + 16 bits for register value), not taking 

into account any overhead. 

2)  Hiding latency 

 In addition to reducing latency, we can also hide latency 

through pipelining. In contrast to the serial approach of waiting 

for one instruction to finish propagating through our system (to 

the FPGA, then computed, then back from the FPGA) before 

processing the next instruction, we can overlap processing of 

multiple instructions.  
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Table 2 illustrates this pipeline. Each row represents a 

different instruction, and the pipeline consists of three stages: 

TO is sending data to the FPGA, COMP is the computation on 

the FPGA, and BACK is sending data from the FPGA back.  

In a pipelined system, throughout is bounded by the latency 

of the slowest stage, which is BACK in our case. Whereas in 

the serial approach, we have one instruction processed after the 

latency of TO + COMP + BACK, in our pipelined system, we 

have one instruction processed after only the latency of BACK. 

 We recognize that while the pipelined approach offers 

speedup gains, it will also complicate the communication 

protocol significantly. Therefore, we decided we will start with 

the serial approach, then implement the pipelined approach if 

time permits. Calculations in the immediate following section 

assume we are communicating a reduced number of bits per 

instruction (36 bits) as explained in C1), but without pipelining. 

3) Communication channel 

After exploring ways to reduce the communication cost, we 

needed to determine which communication channel to use to 

meet our speedup requirement. The Altera DE2-115 board has 

three types of I/O that we could use: JTAG, USB, and triple 

speed Ethernet. Table 3 gives the speed for each of these options 

(found in the DE2-115 User Manual [3]). 

 With the values in Table 3, we can calculate, for each 

channel, how much time it takes to transmit 36 bits: 

 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑖𝑛𝑠𝑡𝑟 =
36 𝑏𝑖𝑡𝑠

# 𝑏𝑖𝑡𝑠/𝑠
 (1) 

 We also know the FPGA clock is 50 MHz (again from the 

User Manual). We can then obtain the total time per instruction 

by adding communication time and FPGA compute time. 

Because of our DUT’s single-cycle microarchitecture, each 

instruction takes one cycle on the FPGA: 

 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑝𝑒𝑟 𝑖𝑛𝑠𝑡𝑟 = 𝑐𝑜𝑚𝑚. 𝑡𝑖𝑚𝑒 +
1

50 𝑀𝐻𝑧
 (2) 

 Table 4 gives the results of these calculations. 

 The next step was to find how much time it would take to 

simulate one instruction so we could choose a communication 

protocol that meets speedup. Unfortunately, this metric is 

difficult to determine. Simulation runtime varies significantly 

across different designs, making it impossible for us to have an 

exact number of how long our design would take before we 

have the design ready. However, we do know that simulation 

time grows as design complexity grows, so we can obtain a 

lower bound time by simulating a smaller design. 

We ended up creating an adder and simulating its execution. 

Our benchmarks show that it takes roughly 2 s to simulate a 

single add operation. This means in order to attain 3x speedup, 

each instruction in our approach must be processed in less than 

2 s/3 ≈ 666 ns. We can achieve this using either 100 Mbit/s or 

1000 Mbit/s Ethernet. We are planning on using 1000 Mbit/s 

Ethernet (also called Gigabit Ethernet) to give us the most 

speedup we can get and to leave room for spending bits not 

taken into account in this calculation for handshaking. 

D. Communication (post Design Review) 

However, as mentioned previously, despite our original plan 

to use Ethernet as our communication protocol, we ultimately 

switched to using UART instead. While the FPGA’s user 

manual has instructions for setting up Ethernet communication 

with the board, those instructions require us to use the NIOS II 

soft processor: a proprietary processor developed by Altera that 

we can instantiate on the FPGA. Unfortunately, this processor 

has both extremely limited documentation and compatibility 

issues. Given that it is proprietary, we also have no way to 

figure out its inner workings on our own. 

After spending the majority of the semester attempting to use 

the NIOS II processor to limited success, we decided to forgo 

relying on proprietary components to instead implement our 

own end-to-end protocol. UART came to be the choice here 

given its simplicity. Note that using either the USB or JTAG 

protocols would have likely put us in the same situation as using 

Ethernet, given that the user manual says to use special 

components for those protocols as well. 

After we finished implementing the UART interfaces and 

began integrating, we discovered that the PC we were using 

could not handle baud rates of above 512,000 bits/second 

without losing data. We then made the second design change to 

our system since the Design Review: communicate to the FPGA 

from a Raspberry Pi instead, since the Raspberry Pi supports 

baud rates of up to 4,000,000 bits/second. Once we made this 

change, however, the bottleneck became the physical cable 

connecting the Raspberry Pi and the FPGA, as the cable begins 

losing data for baud rates higher than 576,000 bits/second. We 

did not have time to obtain a better cable, so this is the data rate 

used in our final system. 

In the next section, we will further quantify the performance 

of our final system. 

 

 

 

 

 

 

 

 

 

 

Table 2: Communication pipeline illustration for 4 instructions 

TO COMP BACK    

 TO COMP BACK   

  TO COMP BACK  

   TO COMP BACK 

Table 3: Time per instruction for each channel 

Communication 

channel 

Comm. time per 

instr. 

Total time per 

instr. 

JTAG 9 s 9.02 s 

USB 3 s 3.02 s 

Triple speed 

Ethernet 

3.6 s, 360 ns,  

or 36 ns 

3.62 s, 380 ns, 

or 56 ns 

Table 4: DE2-115 communication channels and speeds 

Communication 

channel 

Data transmission speed  

(# bits/s) 

JTAG 4 Mbit/s 

USB 12 Mbit/s 

Triple speed Ethernet 10, 100, or 1000 Mbit/s 
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VI. TEST AND VALIDATION 

Recall that our requirements are divided into three 

categories: performance, input end, and output end. While we 

were not able to meet our performance requirement, we do meet 

all other requirements. We also briefly talk about some ways to 

improve performance if we had more time. 

A. Performance 

Our 3x performance speedup requirement is tested by 

measuring simulation runtime and runtime of our solution. 

Speedup is defined as: 

 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 / 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒  (3) 

For simulation runtime, we used elapsed time outputted by 

VCS at the end of simulation. For the runtime of our solution, 

we both calculated the expected runtime and confirmed the 

number with time() calls at the beginning and end of our scripts. 

Since we implemented pipelining (recall Table 2), the runtime 

is: 

 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 𝑇𝑂 + 𝐶𝑂𝑀𝑃 + (# 𝑖𝑛𝑠𝑡𝑟𝑠) ∗ 𝐵𝐴𝐶𝐾  (3) 

 COMP is simply one FPGA cycle. TO and BACK are both 

UART transfers of 30 bits at a rate of 576,000 bits/second (aka 

TO = BACK = 30/576,000 s).  

Fig. 7 shows the comparison between simulation time and 

solution time for the range of test case sizes we support. For the 

smallest size (1 instruction), we have speedup of about 20,000x. 

However, since simulation scales better than our current 

communication method, speedup diminishes as test case size 

grows, landing at about 2.3x at 20,000 instructions. We also 

eventually hit a crossover point at 50,000 instructions, where 

we have no speedup (see Fig. 8). 

Given that we are not able to meet our speedup requirement 

(and we recognize that scaling is a significant issue), in the next 

section, we propose ways to improve performance that we did 

not have time to carry out.   

B. Performance improvement proposals 

1) Use cable that supports higher data rate 

As mentioned in section V, the Raspberry Pi supports baud 

rates of up to 4,000,000 bits/second, but our cable experiences 

data loss at baud rates higher than 576,000 bits/second. Using a 

cable that supports a higher data rate is then one way to improve 

performance.  

Runtime of this improved system with a better cable, 

assuming we are able to reach the 4,000,000 bits/second upper 

bound, is plotted in Fig. 8. Note that while our current system 

has a crossover point due to poor scaling, the improved system 

scales at an about even rate as simulation. 

2) Reduce padding 

In addition to improving the rate of data transfer, we can also 

reduce the number of bits we send to further reduce runtime. As 

mentioned in section IV, our UART interface requires us to 

send data at the granularity of whole packets. When we do not 

have enough data to fill a packet, we must add padding. 

However, we can merge data from different instructions to form 

whole packets, thereby reducing the need for padding. This 

added complexity of merging and unmerging at the other end 

will bring us a relatively small but still noticeable performance 

gain, as shown in Fig. 9. 

Lastly, we also plot the theoretical performance of using 

Ethernet in our system. Ethernet provides extraordinary scaling 

due to its fast speed. 

C. Input end 

We now move to testing the input end of our system—the 

test case generator. Testing this component involves ensuring 

that the customization or randomization request the user makes 

through the web app form, we generate a test that adheres to 

those requests. More specifically, the customizations must not 

be violated (the test case size, if given, must match, and any 

unspecified instruction or destination register cannot show up 

in the test case). Furthermore, if the test case is large (greater 

than 500 instructions), any randomized parameter must have an 

about uniform distribution. 

We emphasize the uniform distribution because 

randomization failures (always returns the same result) are a 

major cause of bugs; some parts of the design may in fact never 

be tested, while the verification engineer thinks they are tested. 

Testing that the aforementioned conditions hold is relatively 

straightforward. We simply give the test case generator 

different requests (e.g., 10 instructions, only ADD and ADDI, 

only r1), and observe (both manually and by analyzing the test 

case’s distribution) whether the outputted test case fulfills the 

conditions. We have tested with 20 such requests, and our test 

case generator passed all of them. 

Fig. 8: Simulation time and solution time comparison Fig. 9: Potential runtime improvements 
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D. Output end 

To test our last requirement (that is, instruction-by-

instruction correctness check), we created 8 buggy versions of 

our DUT and ran two crafted test cases through each version. 

One of the test cases exposes the bug, while the other one does 

not. For the test case that exposes the bug, the result analyzer 

must report the failure at exactly the location we expect (given 

that we know both the bug and the test case, we know where the 

failure should be too). For the test case that does not expose the 

bug, the result analyzer must report no failures. 

The 8 bugs we inserted into our DUT are outlined in Table 5. 

These are all bugs that we either have personally encountered 

while implementing processors (aka RTL designer bugs) or 

have heard of similar bugs existing in chips (aka hardware 

faults). For all 8 scenarios, our result analyzer behaved exactly 

as expected. Fig. 6 shown earlier is in fact the output GUI’s 

display when we fail due to bug number 8: writes to registers 8 

and 9 are flipped. 

VII. PROJECT MANAGEMENT 

A. Schedule 

Our schedule has changed significantly since the Design 

Review. The cause was that setting up communication to and 

from the FPGA took us much longer than expected. While we 

originally planned about four weeks to implement the 

communication protocol, this effort has since been stretched out 

to last the entire semester. Fortunately, because 1) we were able 

to redistribute tasks to make time for communication and 2) we 

built lots of slack into our original schedule (we originally 

planned to finish implementing all subsystems by 

Thanksgiving), we still managed to finish all components of the 

project on time. 

Please see Appendix A for the final Gantt chart. 

B. Team member responsibilities 

For the first two thirds of the semester, Ali and Grace worked 

together towards building an Ethernet protocol. Ali spent more 

time debugging issues with Ethernet-related demos, while 

Grace spent more time researching mitigation protocols. In the 

meantime, Xiran worked on implementing the golden model 

and the DUT. 

After the team decided to switch to using UART, Ali and 

Grace implemented the UART protocol together. Meanwhile, 

Xiran implemented the user GUIs. The team then integrated 

together and completed the final deliverables. 

C. Bill of materials and tools 

Please see Appendix B for a list of what equipment we 

purchased and their costs. Note that some of the equipment are 

not used in our final system. 

D. Risk management 

The biggest risk in our project was in data communication to 

and back from the FPGA. This is because communication is 

both challenging and essential: while none of us have 

experience working on FPGA communication to an offboard 

component, we must have a working communication protocol 

for our project to function. Ideally, we would also like the 

protocol to be fast enough to meet our performance 

requirement, so there are many factors to consider. 

In the beginning of the semester, we actively mitigated this 

risk by performing tradeoff studies on various protocols and 

allocating more manpower to this part of the project. We chose 

Ethernet only after studying its performance relative to various 

other protocols and after having found documentation for how 

to set it up. The communication protocol task is also the first 

task we worked on when the project began and is the only task 

with two team members responsible for it. The goal is for Ali 

and Grace to support each other and balance the workload. 

However, despite Ethernet being a great fit for our project 

performance-wise, we continued to run into difficulties once the 

implementation effort began; the documentation we found 

turned out to be quite lacking. At this point, we began 

redistributing tasks to make more time for this riskiest part of 

the project and also came up with backup plans. The backup 

plans, which we formed after consulting both online sources 

and professors, were to either switch to a simpler 

communication protocol or to forgo communication completely 

by storing testing cases and results in the FPGA’s memory. 

When issues with using Ethernet remained unresolved as we 

head into the last third of the semester, we made the decision to 

switch to using UART as our communication protocol instead. 

This turned out to be the right call; we had an incredibly fast 

turnaround and were able to implement the UART protocol in 

three weeks. Once we had a completed UART protocol, the risk 

of not having a functional project was eliminated. 

In hindsight, switching to UART earlier would have allowed 

us to spend more time improving performance. But overall, we 

are very proud of the progress we’ve made despite these 

setbacks.  

VIII. ETHICAL ISSUES 

We observe two major ethical issues that could arise from 

our project: usage by malicious parties and data leakage. 

A. Usage by malicious parties 

While the target audience for our project are verification 

engineers developing consumer electronics, our framework 

could theoretically extend to verify any silicon hardware. This, 

of course, includes malicious hardware designed with the intent 

to attack other systems or even people. To put it plainly, being 

able to verify good hardware fast means being able to verify bad 

Table 5: Intentional bugs inserted into FPGA 

Bugs 

Register-immediate instructions do not sign-extend 

immediate value. 

Register-immediate instructions decode to register-register 

instructions. 

SRA and SRAI perform logical shifts instead. 

First instruction always ignored (no effect). 

Registers reset at 10000 cycles. 

Writes to register 0 not ignored. 

Upper 2 bits of register 10 stuck at 0xf. 

Writes to registers 8 and 9 are flipped. 
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hardware fast too.  

Although we recognize the potential for misuse, it is hard to 

envision how such misuse may be prevented or regulated. 

Denying access to users detected to be verifying malicious 

systems is one way, but our system is also reproducible by 

anyone with the same equipment. 

B. Data leakage 

A somewhat more concrete problem is data leakage. Suppose 

we are offering our framework as a service to companies. 

Because our framework requires users to upload test data, other 

users (and system administrators) can potentially gain access to 

or even tamper with this data. Such vulnerabilities can result in 

many undesirable outcomes. With only access to data, users can 

gauge their competitors’ verification progress. Reverse 

engineering the DUT may even be possible depending on the 

complexity of the design. On the other hand, the ability to 

tamper with data opens up the possibility of completely 

sabotaging another’s verification work. 

The problem is exasperated by the fact that our web app, the 

component in our system that does data analysis, is hosted on a 

third-party web app builder that may not have any security 

protections in place. It is thus important for our system to be 

vetted by security experts before it is deployed to ensure data 

privacy for our clients.  

IX. RELATED WORK 

While researching the feasibility of our project in the 

beginning stages, we were surprised to learn that hardware 

acceleration of simulation is in fact a hot area of research. A 

quick Google search of “FPGA accelerated verification” or the 

like reveals a plethora of recent research papers ([4], [5], [6]). 

Common trends across these papers include the flexibility of 

the framework proposed (can move some portions of the DUT 

onto the FPGA while keeping others in simulation) and much 

greater speedup (up to two or three orders of magnitude).  

Although we cannot hope to achieve as much gains as these 

works from academia, we are encouraged by their existence (as 

they show there is clearly a problem to be solved) and excited 

by the new technology to come. 

As regards to the communication side of things, we found the 

Serial Lab from CMU ECE course 18-240 created by Professor 

Bill Nace very helpful. This lab had students use UART to send 

data between two different FPGA boards. We worked through 

the lab to get a better understanding of the protocol flow, before 

we implemented our own version. 

 

 

 

 

 

 

 

 

 

 

 

 

X. SUMMARY 

Our project aims to make the verification of RTL designs 

more efficient by speeding up test case runtime and providing 

features to ease debugging effort. While we came short of our 

performance requirement, our project meets all other 

requirements. In section VI, we explored several ways to 

improve the performance of our final system.  

To future students of capstone, we’d like to stress the 

importance of keeping a flexible mindset when it comes to 

design choices. No matter how good an idea looks on paper, it 

may not work when you try to implement it in real life! To that 

end, it is absolutely necessary to have backup plans. Upon 

recognizing that an idea is infeasible, being willing to switch to 

another idea is also important. 

GLOSSARY OF ACRONYMS 

ALU – Arithmetic Logic Unit 

DUT – Device Under Test 

FPGA – Field Programmable Gate Array 

GUI – Graphical User Interface 

ISA – Instruction Set Architecture 

PC – Personal Computer 

RTL – Register Transfer Level 

SoC – System on a Chip 
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Appendix A: Gantt chart 
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Appendix B: Bill of materials 

Item Name Quantity Used in 

final 

system 

Price Manufacturer Model 

Number 

Description 

Altera DE2-115 

FPGA 

1 Yes $675.00 Altera DE2-115 This is an FPGA that the ECE 

department had in stock. 

Cat 5 Ethernet 

Cable 

1 No $11.84 Mediabridge 31-399-25X Ethernet cable used to communicate 

between PC and FPGA. 

Dual ended 

USB cable 

1 No $6.99 UGREEN 10369 USB Male to USB Male cable to use 

to test demo project that comes with 

FPGA. 

USB to ethernet 

dongle 

1 No $16.55 Amazon 

Basics 

U3-GE-1P USB-ethernet converter used to easily 

connect ethernet cable to PC/Desktop. 

Because it uses USB 3.0, it should not 

limit the speed of ethernet. 

Raspberry Pi 4 

2GB Canakit 

1 Yes $101.05 Raspberry Pi 

& Canakit 

PI4-2GB-

STR16-C4-

CLR-RT 

Raspberry Pi 4 2GB used to access 

web application, and send serial data 

to the FPGA and process received 

data. 

Serial to Serial 

Cable 

1 No $9.28 DTECH B07B4T699J Serial to Serial cable that we were 

going to use to transmit data between 

2 FPGAs for demonstration purposes 

(we didn’t even end up doing this). 

USB to Male 

Serial Cable 

1 Yes $9.99 CableCreation B0758B6MK6 USB to Male Serial cable was used to 

send/receive data to/from the FPGA.  

SanDisk Ultra 

64GB microSD 

card with 

Adapter  

1 Yes $13.60 SanDisk SDSQUNC-

064G-

GN6MA 

MicroSD card used to store Raspberry 

Pi OS and data. 

 


