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Abstract—Hardware verification is traditionally done using 
simulation software, which is notoriously slow. Our project aims 
to speed up this process by synthesizing the design under test 
(DUT) and running tests on an FPGA instead, taking advantage of 
its fast hardware clock and reconfigurability. The goal is for our 
method to achieve 3x speedup over simulation. To test our method, 
we are creating a simple single-cycle processor as our DUT on the 
FPGA.  
 

Index Terms—FPGA, Hardware acceleration, Simulation, SoC, 
SystemVerilog, Verification 

I. INTRODUCTION 
Before today’s SoC chips are manufactured and shipped, the 

design needs to be extensively tested using simulation software 
to verify functionality. This step, known as verification, is 
crucial because a bug that makes its way into a released chip 
could lead to recalls, potentially costing a company in the 
billions [1]. At the same time, verification also tends to be the 
bottleneck of the chip design process due to simulation often 
taking weeks or even months total to run [2]. Verification 
therefore takes up both significant compute resources and man-
hours, not to mention the increasing complexity of designs only 
exacerbates the problem. 

Our project aims to speed up verification by using custom 
hardware, instead of simulation software, to run tests. More 
specifically, we will be using the DE2-115 FPGA, which is a 
reconfigurable and relatively cheap integrated circuit. The 
benefits of this approach are two-fold: by leveraging the fast 
hardware clock of the FPGA, tests can complete in shorter times 
than they would in simulation, and the design is tested on actual 
hardware. For our project, the goal is to achieve runtime 
speedup of 3x over VCS simulation for test cases of various 
sizes (ranging from one instruction to 20,000 instructions). The 
test cases will be randomizable and customizable by the user. 

II. DESIGN REQUIREMENTS 
For our system to be useful, there are numerous requirements 

we need to satisfy. We divide the requirements into three 
categories: performance, functionality, and ease of use. 

A. Performance 
The most critical of our requirements is about performance, 

prompted directly by the problem at hand. As mentioned in the 
introduction, our goal is to achieve 3x speedup in comparison 
to the traditional method of verification: simulation. This goal 
is motivated by the fact that many tests in industry take 24 hours 
to complete. Reducing the runtime to 8 hours allows tests to run 

overnight, meaning a verification engineer can analyze the 
results when they come to work next morning. 

We’d like to note that while simulation runtime consists only 
of processing time by the simulator, runtime for our approach 
consists of communication time from a PC to the FPGA and 
back, in addition to computation time on the FPGA (see section 
III for system dataflow). Communication is the bottleneck of 
our system, and we chose to use Gigabit Ethernet as our 
communication channel to maximize our chances of meeting 
speedup (see section V for communication tradeoff studies). 

B. Functionality 
Our next set of requirements deal with the basic functionality 

of our system, a.k.a. what sort of tests we can support. We will 
create our own design under test (DUT)—a single-cycle 
processor supporting a subset of RISC-V instructions—and use 
our FPGA framework to test this DUT. (See section IV for DUT 
details). Our framework naturally must support testing all 
instructions implemented by the DUT. Furthermore, we will 
support running test cases of any size ranging from one to 
20,000 instructions. Users can use small test sizes to isolate 
bugs, while large test sizes can be used to stress the design.  

C. Ease of use 
Our last set of requirements relate to user experience while 

working with our framework. Our users will be able to both 
customize and randomize the test cases being fed to the DUT. 
This method of combining direct and indirect testing is known 
as constrained random verification. It is widely used in 
simulation-based approaches for its effectiveness at discovering 
both anticipated and unanticipated bugs. Therefore, we would 
like to provide the same experience in our framework. More 
specifically, we will allow the user to choose the number of 
instructions per test, which instructions to test, which registers 
to write to, etc., while unspecified parameters are randomized. 

Another feature we will provide is cycle by cycle correctness 
checks of the DUT’s output against that of a golden model (a C 
model of the design). This gives the user an exact pinpoint of 
which instruction the DUT begins faulting at, thereby easing 
their debugging effort, in contrast to offering only final output 
comparisons (which will require the user to trace through the 
test themselves to discover the divergence point).  

Finally, if we have time at the end, we would like to 
implement a GUI to display to the user statistics about tests they 
have run (how many times each instruction has been tested, 
failure rates, etc.). This is to help with coverage closure—
determining if enough tests that exercise different portions of 
the DUT have been run. 
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III. ARCHITECTURE OF SYSTEM 
As shown in Fig. 1, our project consists of two subsystems: 

the PC (a machine with Quartus installed and with an Ethernet 
port) and the FPGA (a DE2-115 Altera board). The two 
subsystems communicate through Ethernet. In this section, we 
will describe how data flows through our system at a high level. 
In section IV, we will describe the DUT and the Ethernet 
interfaces in more detail. 

The information entry point of our project is the test case 
generator, which will be a Python script that takes user input 
and outputs a test case. User input will be obtained by 
prompting the user with a series of questions on the command 
line (e.g., “How many instructions would you like to have in 
this test?”, “Which instructions would you like to test?”), to 
which the user may either respond with the desired 
customization or ask the system to randomize. The test case 
generator will then create a test adhering to the user’s needs and 
output the test as a text file containing line-separated 
instructions. 

This test file will then be sent to both the golden model and 
the DUT on the FPGA. They will both execute the instructions 
in the test and write to separate files register dumps after each 
cycle. The golden model, which serves as the reference for 
checking the DUT’s functionality, is a simple C program 
executed on the PC that parses the input file and computes the 
needed arithmetic. We have chosen to write the golden model 
in a fourth-generation language for simplicity, speed, and ease 
of ensuring correctness. The DUT, on the other hand, is written 

in SystemVerilog and synthesized onto the FPGA.  
Because the DUT is on the FPGA, not the PC, we need a 

communication protocol to send the test to it and obtain the 
register dumps back. This communication protocol will be 
implemented using Gigabit Ethernet. The FPGA board has two 
Ethernet ports, but we will only need one of these ports to send 
all of our data (instruction bytes streaming to the FPGA and 
register dump bytes streaming out). We will elaborate on both 
the DUT and the communication protocol in the next section. 

After the test completes on both the golden model and the 
DUT, we will have two files on the PC containing register 
dumps from each execution. Those two files will then be sent 
to an output comparator, again a Python script. The comparator 
is responsible for detecting that either the register dumps are the 
same for every cycle (meaning the DUT passed the test) or, in 
the case of a discrepancy (meaning the DUT failed the test), the 
exact cycle at which the discrepancy began.  

We will then take the result and display it to the user. The 
scope of this part of the project is not yet clear due to time 
constraints. For the simplest implementation, we will just 
output, to standard out or to a text file, if the test passed or 
failed, and which cycle the failure occurred if there’s any. If 
time permits, however, we will develop a GUI that displays 
additional statistics about the test (e.g., graphs of the instruction 
distribution in the test), to help the user make better sense of 
what they had tested. For now, we are not prioritizing this part 
of the project because it is not a part of the core functionalities 
of our system. 
 

Fig. 1: System overview 
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IV. SYSTEM DESCRIPTION 
The DUT and the Ethernet interfaces, briefly mentioned in 

the previous section, are the most complex modules in our 
project and the modules with the most design choices. In this 
section, we will describe those modules in greater detail. In 
section V, we will describe the design choices we made 
regarding those modules. 

A. DUT 
Our DUT implements a single-cycle processor capable of 

executing some 16-bit ALU instructions inspired mainly by 
RISC-V. Each instruction is 16 bits, while our register file is 
also 16 registers by 16 bits. Note that we do not support memory 
operations or control flow, so each register is general purpose. 
The instruction format is as follows in Fig. 2. 

The instruction bits are evenly divided into four components. 
At a high level, the instruction takes the two sources, applies 
the opcode on the sources (performs some computation), then 
writes the result to the destination. Source 1 must be a register, 
while source 2 may be a register (for a register-register 
instruction), a direct value (for a register-immediate 
instruction), or not used (for MOV). The destination can only 
be a register. We’d like to note two caveats here. The first is 
that register 0 is always 0 (a value written to it will simply be 
disregarded). The second is that for immediate instructions, the 
4-bit immediate in the instruction will be sign-extended to 16 
bits before the computation is performed. Both of those features 
are taken from RISC-V.  

Table 1 outlines the full instruction set that we support. Each 
line in our test cases will be one instruction in hex (e.g., 9325 
means r3 = r2 + 0x5). 

Table 1: Supported instruction set 

 
Fig. 3 shows the block diagram for our DUT implementation 

in SystemVerilog. On each clock, the DUT takes a 16-bit 
instruction from the Ethernet interface. We have an instr_valid 
signal to indicate whether the instruction is ready to be executed 
(has fully propagated through Ethernet). The instruction then 
goes through a decoder, which outputs the four components of 
the instruction in Fig. 2, along with some other control signals 
that will be passed along to the register file and/or ALU (e.g., 
whether this is a register-immediate instruction). 

We then access the operands from the register file. The 
register file will be asynchronous read, synchronous write, 
meaning the operand values will be available in the same clock 
cycle. After obtaining the operands, they are passed along to the 
ALU. On the next clock cycle, the ALU’s output will be written 
back to the destination register in the register file. 

 

Instr Opcode Type Description 
MOV 0x0 Reg-Mov Register move 
ADD 0x1 Reg-Reg Register add 
SUB 0x2 Reg-Reg Register subtract 
AND 0x3 Reg-Reg Register bitwise and 
OR 0x4 Reg-Reg Register bitwise or 
XOR 0x5 Reg-Reg Register bitwise xor 
SLL 0x6 Reg-Reg Reg. shift left logical 
SRL 0x7 Reg-Reg Reg. shift right logical 
SRA 0x8 Reg-Reg Reg. shift right arith. 
ADDI 0x9 Reg-Imm Imm. add 
ANDI 0xa Reg-Imm Imm. bitwise and 
ORI 0xb Reg-Imm Imm. bitwise or 
XORI 0xc Reg-Imm Imm. bitwise xor 
SLLI 0xd Reg-Imm Imm. shift left logical 
SRLI 0xe Reg-Imm Imm. shift right logical 
SRAI 0xf Reg-Imm Imm. shift right arith. 

Fig. 2: Instruction format 

Fig. 3: DUT datapath 
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B. Ethernet interfaces 
As mentioned in section III, the two subsystems of our 

project—the PC and the FPGA—will be connected using 
Gigabit Ethernet, with the PC sending the FPGA instructions to 
execute, and the FPGA sending the PC register values back. 

Most of the communication will be controlled on the low-
level by Ethernet directly. However, we will need to handle the 
end points of communication: that is, choosing where the data 
is being read from / written to. On the PC, we will simply use 
files for reading/writing. On the FPGA, we will be using the 
NIOS II/e to place Ethernet data in memory. The NIOS II/e is 
an off-the-shelf soft processor developed by Altera, which we 
can configure and then instantiate on the FPGA board along 
with the DUT. This processor will allow us to run C/C++ 
programs on the FPGA board.  

Fig. 4 is obtained from Altera’s triple speed Ethernet guide 
[3]. As shown in the figure, the Nios II Processor has a Triple 
Speed Ethernet MegaCore connected to a transmit and a receive 
Scatter-Gather Direct Memory Access (SGDMA). This 
SGDMA is a conversion point between memory and streaming 
interfaces: it converts serial data to words of data and interfaces 
with the main memory. We can therefore use main memory to 
save the data that is being received from the PC and the data 
that will be sent to the PC. To simplify the protocol, we will 
keep the memory location the same for all reads and the same 
for all writes.  
 We will be implementing a handshaking protocol for alerting 
when new data is ready to be read or sent back to the PC. The 
end goal is that at every positive clock edge, the DUT can 
assume that it is getting a new instruction unless the signal 

telling it to wait is asserted. As we develop the protocol, we 
anticipate having to add more signals to the DUT to indicate 
different events. 

V. DESIGN TRADE STUDIES 
Throughout the design phase of our project, we made design 

decisions to balance implementation complexity, meeting our 
requirements, and the usefulness of our system. Those design 
decisions can be divided into three categories: regarding the 
hardware platform for our project, regarding the DUT, and 
regarding the communication protocol. 

A. Hardware platform 
With our goal being accelerating simulation by leveraging 

the fast clocks of hardware, we first needed to choose what 
hardware platform to use. 

1) FPGA vs. ASIC 
FPGAs and ASICs are both commonly used as hardware 

accelerators. We chose to use a FPGA for the reconfigurability 
and low cost. Verification, fundamentally, is the process of 
discovering bugs and fixing the design to be bug free. Our 
platform therefore needs to accommodate changes in the 
design, making an ASIC—a static design—not suitable for our 
use case. In addition, the cost of manufacturing an ASIC is well 
beyond our budget, while FPGAs are much cheaper in 
comparison, and the ECE department has some readily 
available. 

2) Altera vs. Xilinx 
We could use either an Altera or a Xilinx FPGA owned by 

the ECE department. While the Xilinx FPGAs available have a 
built-in SoC on the board (which makes communicating data to 
and back from the FPGA chip simple), none of us have 
experience programming such a FPGA using the necessary 
toolchains. After several people who do have experience with 
Xilinx FPGAs informed us that learning how to use said 
toolchains in the time frame we have is incredibly difficult, we 
decided to use an Altera FPGA instead. However, the lack of 
an on-board SoC means we need to generate the test cases on a 
PC and send data between the PC and the FPGA through a 
communication protocol we develop. 

3) DE2-115 vs. Cyclone V 
As for which Altera board to use specifically, we again have 

two options: the DE2-115 board and the Cyclone V board. The 
Cyclone V is overall more powerful (it has more memory and 
more logic elements), while the DE2-115 has more I/O ports. 
Keeping in mind the need for a communication protocol, we 
chose the DE2-115 because more I/O ports give us more 
options (and fallbacks) for how to send/receive data. The 
downside of having limited memory and logic elements then 
influenced the design of our DUT. 

B. DUT 
We chose to implement a processor for our DUT because the 

project arose from our shared struggles in trying to verify a CPU 
core. However, the limited amounts of memory and logic 
elements on the DE2-115 FPGA dictate that we cannot create a 
very complex DUT. The challenge here is then to limit the 
scope of the DUT while keeping it realistic and interesting. 

Fig. 4: General Nios II Processor diagram 
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First, we ruled out making a pipelined processor our DUT 
out of concerns for complexity and the design not fitting on the 
board. A non-pipelined design is expected to fit because we 
have experience synthesizing, in 18-240, such a design onto the 
same board. Next, we need to determine what instructions our 
DUT could support.  

1) Instruction size 
Modern processors typically have 32-bit or 64-bit ISAs. 

Having such large bit widths though would mean having high 
communication cost in our system (since for each instruction, 
we need to send the instruction to the FPGA and obtain register 
information back). Moreover, having a large register file raises 
the chances of the design not fitting on the board. In the end, we 
settled for 16 bits to lower those risks, while keeping the ISA 
large enough that it does not become a toy example. 

2) Instruction format 
To keep the instruction decoder simple, we chose the 

simplest scheme possible for the instruction format, illustrated 
in Fig. 2. 

3) Instruction set 
A typical ISA consists of compute, memory, and control flow 

operations. However, in the interest of making our 
communication protocol simple and again due to FPGA size 
limitations, it is not feasible for us to support changes in control 
flow or maintain a large memory. Our instruction set is thus 
comprised solely of compute instructions. 

The instructions themselves are chosen after studying three 
ISAs: RISC-V, ARM, and x86. While our instruction set is 
mainly inspired by RISC-V, we wanted to look at others in 
order to determine what instructions are important and 
essential. We ended up choosing the most common instructions 
across these ISAs. 

C. Communication 
Although the FPGA has a fast clock, communication to off-

board is time-consuming and is the bottleneck of our system. 
To meet 3x speedup despite this challenge, we designed various 
ways to reduce/hide the communication latency and calculated 
which channel would allow us to meet our requirement. 

1) Reducing latency 
We can reduce latency by reducing the number of bits sent 

between the PC and FPGA. For every instruction processed, the 
DUT needs to receive the instruction and the PC needs to 
receive the register dump (in order to perform cycle-by-cycle 
correctness checks). In a naïve approach, this would mean a 
total of 272 bits (16 instruction bits + 16 registers * 16 bits) of 
communication per instruction processed. 

 However, we observed that it is not necessary to send the 
entire register dump after each instruction; we can instead send 
the delta (which register changed to what value) and reconstruct 
the dump at the PC end. This reduces the number of 
communication bits to 36 bits per instruction processed (16 
instruction bits + 4 bits for register index + 16 bits). 

2)  Hiding latency 
 In addition to reducing latency, we can also hide latency 

through pipelining. In contrast to the serial approach of waiting 
for one instruction to finish propagating through our system (to 
the FPGA, then computed, then back from the FPGA) before 

processing the next instruction, we can overlap processing of 
multiple instructions.  

Table 2 illustrates this pipeline. Each row represents a 
different instruction, and the pipeline consists of three stages: 
TO is sending data from the PC to the FPGA, COMP is the 
computation on the FPGA, and BACK is sending data from the 
FPGA back to the PC.  

In a pipelined system, throughout is bounded by the latency 
of the slowest stage, which is BACK in our case. Whereas in 
the serial approach, we have one instruction processed after the 
latency of TO + COMP + BACK, in our pipelined system, we 
have one instruction processed after only the latency of BACK. 

 We recognize that while the pipelined approach offers 
speedup gains, it will also complicate the communication 
protocol significantly. Therefore, we decided we will start with 
the serial approach, then implement the pipelined approach if 
time permits. Calculations from this point onwards will assume 
we are communicating a reduced number of bits per instruction 
(36 bits) as explained in C1), but without pipelining. 

3) Communication channel 
After exploring ways to reduce the communication cost, we 

needed to determine which communication channel to use to 
meet our speedup requirement. The Altera DE2-115 board has 
three types of I/O that we could use: JTAG, USB, and triple 
speed Ethernet. Table 3 gives the speed for each of these options 
(found in the DE2-115 User Manual [4]). 

 With the values in Table 3, we can calculate, for each 
channel, how much time it takes to transmit 36 bits: 
 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒	𝑝𝑒𝑟	𝑖𝑛𝑠𝑡𝑟 = !"	$%&'

#	$%&'/'
 (1) 

 We also know the FPGA clock is 50 MHz (again from the 
User Manual). We can then obtain the total time per instruction 
by adding communication time and FPGA compute time. 
Because of our DUT’s single-cycle microarchitecture, each 
instruction takes one cycle on the FPGA: 
 𝑡𝑜𝑡𝑎𝑙	𝑡𝑖𝑚𝑒	𝑝𝑒𝑟	𝑖𝑛𝑠𝑡𝑟 = 𝑐𝑜𝑚𝑚. 𝑡𝑖𝑚𝑒 + *

+,	-./
 (2) 

 Table 4 gives the results of these calculations. 
 The next step was to find how much time it would take to 

simulate one instruction so we could choose a communication 

Table 2: Communication pipeline illustration 
TO COMP BACK    
 TO COMP BACK   
  TO COMP BACK  
   TO COMP BACK 

Table 3: DE2-115 communication channels and speeds 
Communication 
channel 

Data transmission speed  
(# bits/s) 

JTAG 4 Mbit/s 
USB 12 Mbit/s 
Triple speed Ethernet 10, 100, or 1000 Mbit/s 
Table 4: Time per instruction for each channel 
Communication 
channel 

Comm. time per 
instr. 

Total time per 
instr. 

JTAG 9 µs 9.02 µs 
USB 3 µs 3.02 µs 
Triple speed 
Ethernet 

3.6 µs, 360 ns,  
or 36 ns 

3.62 µs, 380 ns, 
or 56 ns 
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protocol that meets speedup. Unfortunately, this metric is 
difficult to determine. Simulation runtime varies significantly 
across different designs, making it impossible for us to have an 
exact number of how long our design would take before we 
have the design ready. However, we do know that simulation 
time grows as design complexity grows, so we can obtain a 
lower bound time by simulating a smaller design. 

We ended up creating an adder and simulating its execution. 
Our benchmarks show that it takes roughly 2 µs to simulate a 
single add operation. This means in order to attain 3x speedup, 
each instruction in our approach must be processed in less than 
2 µs/3 ≈ 666 ns. We can achieve this using either 100 Mbit/s or 
1000 Mbit/s Ethernet. We are planning on using 1000 Mbit/s 
Ethernet (also called Gigabit Ethernet) to give us the most 
speedup we can get and to leave room for spending bits not 
taken into account in this calculation for handshaking. 

We’d like to note, once again, that the 2 µs is a lower bound 
approximation. However, this estimate is still useful for 
providing us order-of-magnitude insights.  

4) Nios II Processor 
After deciding to use Ethernet as our communication 

channel, we found an Altera tutorial for how to use Ethernet on 
DE2-115 boards [5]. Implementing the system following the 
tutorial requires using a Nios II processor. This presents another 
design decision, as there are 3 versions of the Nios II processor: 
Nios II/e, Nios II/s, and Nios II/f. The versions increase in 
functionality and area in the order listed, but all of them have 
the needed functionality for us to use Ethernet.   

We decided to use the Nios II/e (the simplest one) in the 
interest of saving area on the FPGA. Another benefit of using 
the Nios II/e is that it is the only one out of the 3 versions that 
does not require a license to use. This means instead of having 
to go on CMU lab computers (which have the license) to work, 
we can use our personal computers. 

VI. TEST AND VALIDATION 
Recall that our requirements are divided into three 

categories: performance, functionality, and ease of use. In this 
section, we outline testing plans for each requirement. 

A. Speedup 
Our 3x speedup requirement can be tested by measuring 

simulation runtime and runtime of our approach. For simulation 
runtime, we will use CPU time outputted by VCS at the end of 
simulation. To get the runtime of our approach, we will utilize 
software system clocks. Because the dataflow of our system 
begins on the PC and ends on the PC, we can place a time() call 
before the test begins and another time() call after all the output 
has been received. The different between the two calls is then 
the runtime for our solution. 

Speedup is defined as follows: 
 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒	/	𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒	 (3) 

Again, having speedup > 3 means we have met this 
requirement. 

B. Functionality 
We have a functional system if we can support test cases 

ranging from one to 20,000 instructions. We will start by testing 
that we can send test cases containing one instruction for all 16 
instruction types we have through our system.  

We are successful if our approach gives the same output as 
simulation (register dump at the end + whether the test passed). 
We will then increase the size of test cases and apply the same 
validation method until we reach 20,000 instructions. 

C. Ease of use 
As a reminder, ease of use deals with allowing the users to 

customize and randomize test cases, in addition to providing 
cycle-by-cycle correctness checks. 

Checking that test case customization and randomization are 
successful is a matter of manual inspection, plus some analysis 
of randomization distribution. As an example, if the user 
chooses to only test ADD, we will manually inspect the 
generated test case to check that it does indeed only contain 
ADD instructions. If the user chooses to randomize what 
instructions to test, we will analyze the distribution of 
instructions in the generated file to see if they are about even. 
We will repeat this process for different user customizations. 

On the other hand, to ensure that when a test case fails, we 
accurately tell the user which cycle the test fails on, we will be 
inserting intentional bugs into the DUT. Because we know what 
the bug is, we can check that our system indicates a failure at 
the cycle that we expect. The bugs we insert will either be 
realistic hardware bugs or RTL designer mistakes. Some 
examples are having a register that is not r0 stuck at 0, or not 
performing sign-extension on an immediate value. 

D. Other testing of subsystems 
In addition to validating that we meet our requirements, we 

will be testing our subsystems as their implementations 
complete throughout the project.  

Not much testing effort is expected to be spent on our 
software components, as they are relatively simple. We will 
apply the standard software engineering technique of feeding 
modules different inputs and observing if the outputs are as 
expected. Testing the output comparator, for example, involves 
giving the comparator different input file pairs and observing if 
it flags differences at the right line. 

Our communication protocol, on the contrary, is much more 
substantial and requires more planned-out testing. We are 
staging our testing by beginning with simply sending data to the 
FPGA board and echoing it back to the PC. To be more precise, 
the echoed back data will be slightly different to ensure that the 
read and write buffers on the board are not unintentionally 
coupled somehow.  

Once echoing succeeds, we will move on to sending actual 
instructions to the DUT and obtaining register values back. As 
mentioned earlier, we will start with small test cases. 
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VII. PROJECT MANAGEMENT 

A. Schedule 
We give an overview of our schedule here. Please see 

Appendix A for the Gantt chart of our project. 
Our project is divided into three phases. Phase one focuses 

on setting up our system. This includes creating a basic echo 
communication protocol, determining the ISA, and 
programming the corresponding golden model. In phase two, 
we move on to implementing the core functionality of our 
system. This entails finalizing the communication protocol, as 
well as implementing the DUT and output comparator. By the 
end of phase two, we will have a system that can send test cases 
to the FPGA and obtain back results. The testing interface is not 
fully complete, but this is our MVP. In phase three, we will 
focus on adding features to fulfill our ease-of-use requirements. 
This means mainly creating scripts for test case 
customization/randomization, as well as potentially creating a 
UI to output results to the user. 

We can currently in the middle of phase one and two. We are 
working on the echo protocol, while development of the DUT 
is also underway. 

B. Team member responsibilities 
We have divided up the work so that each team member is 

responsible of two large tasks, roughly one for the first half of 
the project and one for the second half. 

1) Ali 
Ali’s responsibilities are to develop, along with Grace, the 

communication protocol and to test different parts of the design. 
Developing the communication protocol includes both the 
initial echo protocol as well as the final version to be used in 
our system. Afterwards, Ali will transition to a testing role. She 
will test components as they complete and perform periodic 
benchmarking to see if we are on track to meeting speedup. 

2) Grace 
Grace’s responsibilities are to develop, along with Ali, the 

communication protocol and the input part of our interface. She 
and Ali will work together to research, implement, and test our 
communication protocol. Afterwards, Grace will develop the 
test case generator, allowing the user to customize and 
randomize test cases. 

3) Xiran 
Xiran’s responsibilities are to implement the golden model 

and DUT, and to develop the output end of our testing interface. 
She begins by designing an ISA for our use case and will then 
create the design in both software and hardware. Afterwards, 
she will develop the output comparator and an output display to 
the user.  

C. Bill of materials and tools 
Please see Appendix B for a list of what equipment we used 

and their costs. 
In addition to this equipment, we will be using Quartus Prime 

II for synthesis onto the FPGA. 

D. Risk management 
The biggest risk in our project is in data communication 

between the PC and the FPGA. This is because communication 
is both challenging and essential: while none of us have 
experience working on FPGA communication to an offboard 
component, we must use a fast communication protocol in order 
to meet our speedup requirement. 

We are actively mitigating this risk with three strategies: (1) 
perform thorough research before implementation, (2) allocate 
more time and manpower to this part of the project, and (3) 
come up with backup plans. 

As shown in section V, we chose the communication 
protocol that would maximize our chances of meeting speedup 
after quantitative analysis. This mitigates the risk of us having 
spent significant effort on implementation, only to discover that 
we cannot meet our requirement. After deciding to use Ethernet, 
we continued to be cautious by looking into implementation 
details from multiple sources. Some of the tutorials and projects 
we found helpful are listed under References. 

The communication protocol task is also the first task we 
worked on when the project began and is the only task with two 
team members responsible for it. Ali and Grace can support 
each other and balance the workload. 

Despite these efforts, in the case that we cannot implement a 
successful Ethernet protocol, we have investigated backups. 
The first set of backups is to switch to using either USB or 
JTAG as our communication channel. We all have experience 
with the USB protocol, making the implementation difficulty 
lower than that of Ethernet. JTAG is even simpler: it is already 
set up on the board and should not require much configuration 
from our end. Unfortunately, switching to either of these 
protocols would mean we will most likely not meet our speedup 
requirement, but that is better than not having a functional 
product at all in the end. 

If we are still not able to get offboard communication 
working, we have yet another backup: store test cases in and 
write results to the FPGA’s memory. We then have no need for 
any complex communication protocol because everything is 
completed on chip. Of course, this would mean we most likely 
need to reduce the size of our test cases and revamp our system 
architecture. We therefore save this option as a last resort. 

Regardless of these challenges, Grace and Ali are close to 
running a test with the Nios II Processor and Ethernet. They are 
mainly working on debugging the synthesis process and are 
looking forward to making Ethernet work. 
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VIII. RELATED WORK 
While researching the feasibility of our project in the 

beginning stages, we were surprised to learn that hardware 
acceleration of simulation is in fact a hot area of research. A 
quick Google search of “FPGA accelerated verification” or the 
like reveals a plethora of recent research papers ([6], [7], [8]). 
Common trends across these papers include the flexibility of 
the framework proposed (can move some portions of the DUT 
onto the FPGA while keeping others in simulation) and much 
greater speedup (up to two or three orders of magnitude).  

Although we cannot hope to achieve as much gains as these 
works from academia, we are encouraged by their existence (as 
they show there is clearly a problem to be solved) and excited 
by the new technology to come. 

We also looked into works that used the Nios II processor 
and/or Ethernet ports to learn more about how to use them. One 
of the projects we found uses an Altera DE2-115 and a Nios II 
Processor to handle image and video processing [8]. This 
project helped Grace and Ali understand how to use the Nios II 
Processor with C/C++ code. 

Another project we found useful is a project that designed an 
interface for the FPGA to communicate with other devices 
through Ethernet without using the Nios II processor [9]. It 
details the Ethernet communication protocol, which is useful to 
reference when designing our own packet. 

IX. SUMMARY 
The main goal of our project is to speed up RTL simulation 

using a FPGA. However, the FPGA we are using has limited 
memory and logic elements, thereby limiting what kind of 
DUT we can place in our system. We encourage future work 
to be done using more powerful FPGAs, ideally with a SoC 
onboard, as this would enable testing of more complex 
designs. In addition, by significantly reducing communication 
cost through the use of onboard communication, much greater 
speedup can be attained. 

GLOSSARY OF ACRONYMS 
ALU – Arithmetic Logic Unit 
DUT – Device Under Test 
FPGA – Field Programmable Gate Array 
GUI – Graphical User Interface 
ISA – Instruction Set Architecture 
MVP – Minimum Viable Product 
PC – Personal Computer 
RTL – Register Transfer Level 
SoC – System on a Chip 
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Appendix A: Gantt chart 
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Appendix B: Bill of materials 

Item Name Quantity Price Manufacturer Model Number Description 

Altera DE2-115 
FPGA 

1 $675.00 Altera DE2-115 This is an FPGA that the ECE department 
had in stock 

Cat 5 Ethernet 
Cable 

1 $11.84 Mediabridge 31-399-25X Ethernet cable used to communicate 
between PC and FPGA 

Dual ended USB 
cable 

1 $6.99 UGREEN 10369 USB Male to USB Male cable to use to 
test demo project that comes with FPGA 

USB to ethernet 
dongle 

1 $16.55 Amazon Basics U3-GE-1P USB-ethernet converter used to easily 
connect ethernet cable to PC/Desktop. 
Because it uses USB 3.0, it should not 
limit the speed of ethernet. 

 


