
1
18-500 Design Report: 10/15/2021

Abstract—Hardware verification is traditionally done using
simulation software, which is notoriously slow. Our project aims
to speed up this process by synthesizing the design under test
(DUT) and running tests on an FPGA instead, taking advantage of
its fast hardware clock and reconfigurability. The goal is for our
method to achieve 3x speedup over simulation. To test our method,
we are creating a simple single-cycle processor as our DUT on the
FPGA.

Index Terms—FPGA, Hardware acceleration, Simulation, SoC,
SystemVerilog, Verification

I. INTRODUCTION
Before today’s SoC chips are manufactured and shipped, the

design needs to be extensively tested using simulation software
to verify functionality. This step, known as verification, is
crucial because a bug that makes its way into a released chip
could lead to recalls, potentially costing a company in the
billions [1]. At the same time, verification also tends to be the
bottleneck of the chip design process due to simulation often
taking weeks or even months total to run [2]. Verification
therefore takes up both significant compute resources and man-
hours, not to mention the increasing complexity of designs only
exacerbates the problem.

Our project aims to speed up verification by using custom
hardware, instead of simulation software, to run tests. More
specifically, we will be using the DE2-115 FPGA, which is a
reconfigurable and relatively cheap integrated circuit. The
benefits of this approach are two-fold: by leveraging the fast
hardware clock of the FPGA, tests can complete in shorter times
than they would in simulation, and the design is tested on actual
hardware. For our project, the goal is to achieve runtime
speedup of 3x over VCS simulation for test cases of various
sizes (ranging from one instruction to 20,000 instructions). The
test cases will be randomizable and customizable by the user.

II. DESIGN REQUIREMENTS
For our system to be useful, there are numerous requirements

we need to satisfy. We divide the requirements into three
categories: performance, functionality, and ease of use.

A. Performance
The most critical of our requirements is about performance,

prompted directly by the problem at hand. As mentioned in the
introduction, our goal is to achieve 3x speedup in comparison
to the traditional method of verification: simulation. This goal
is motivated by the fact that many tests in industry take 24 hours
to complete. Reducing the runtime to 8 hours allows tests to run

overnight, meaning a verification engineer can analyze the
results when they come to work next morning.

We’d like to note that while simulation runtime consists only
of processing time by the simulator, runtime for our approach
consists of communication time from a PC to the FPGA and
back, in addition to computation time on the FPGA (see section
III for system dataflow). Communication is the bottleneck of
our system, and we chose to use Gigabit Ethernet as our
communication channel to maximize our chances of meeting
speedup (see section V for communication tradeoff studies).

B. Functionality
Our next set of requirements deal with the basic functionality

of our system, a.k.a. what sort of tests we can support. We will
create our own design under test (DUT)—a single-cycle
processor supporting a subset of RISC-V instructions—and use
our FPGA framework to test this DUT. (See section IV for DUT
details). Our framework naturally must support testing all
instructions implemented by the DUT. Furthermore, we will
support running test cases of any size ranging from one to
20,000 instructions. Users can use small test sizes to isolate
bugs, while large test sizes can be used to stress the design.

C. Ease of use
Our last set of requirements relate to user experience while

working with our framework. Our users will be able to both
customize and randomize the test cases being fed to the DUT.
This method of combining direct and indirect testing is known
as constrained random verification. It is widely used in
simulation-based approaches for its effectiveness at discovering
both anticipated and unanticipated bugs. Therefore, we would
like to provide the same experience in our framework. More
specifically, we will allow the user to choose the number of
instructions per test, which instructions to test, which registers
to write to, etc., while unspecified parameters are randomized.

Another feature we will provide is cycle by cycle correctness
checks of the DUT’s output against that of a golden model (a C
model of the design). This gives the user an exact pinpoint of
which instruction the DUT begins faulting at, thereby easing
their debugging effort, in contrast to offering only final output
comparisons (which will require the user to trace through the
test themselves to discover the divergence point).

Finally, if we have time at the end, we would like to
implement a GUI to display to the user statistics about tests they
have run (how many times each instruction has been tested,
failure rates, etc.). This is to help with coverage closure—
determining if enough tests that exercise different portions of
the DUT have been run.

Author: Grace Fieni, Ali Hoffmann, Xiran Wang
Electrical and Computer Engineering, Carnegie Mellon University

FPGA-Assisted Verification

2
18-500 Design Report: 10/15/2021

III. ARCHITECTURE OF SYSTEM
As shown in Fig. 1, our project consists of two subsystems:

the PC (a machine with Quartus installed and with an Ethernet
port) and the FPGA (a DE2-115 Altera board). The two
subsystems communicate through Ethernet. In this section, we
will describe how data flows through our system at a high level.
In section IV, we will describe the DUT and the Ethernet
interfaces in more detail.

The information entry point of our project is the test case
generator, which will be a Python script that takes user input
and outputs a test case. User input will be obtained by
prompting the user with a series of questions on the command
line (e.g., “How many instructions would you like to have in
this test?”, “Which instructions would you like to test?”), to
which the user may either respond with the desired
customization or ask the system to randomize. The test case
generator will then create a test adhering to the user’s needs and
output the test as a text file containing line-separated
instructions.

This test file will then be sent to both the golden model and
the DUT on the FPGA. They will both execute the instructions
in the test and write to separate files register dumps after each
cycle. The golden model, which serves as the reference for
checking the DUT’s functionality, is a simple C program
executed on the PC that parses the input file and computes the
needed arithmetic. We have chosen to write the golden model
in a fourth-generation language for simplicity, speed, and ease
of ensuring correctness. The DUT, on the other hand, is written

in SystemVerilog and synthesized onto the FPGA.
Because the DUT is on the FPGA, not the PC, we need a

communication protocol to send the test to it and obtain the
register dumps back. This communication protocol will be
implemented using Gigabit Ethernet. The FPGA board has two
Ethernet ports, but we will only need one of these ports to send
all of our data (instruction bytes streaming to the FPGA and
register dump bytes streaming out). We will elaborate on both
the DUT and the communication protocol in the next section.

After the test completes on both the golden model and the
DUT, we will have two files on the PC containing register
dumps from each execution. Those two files will then be sent
to an output comparator, again a Python script. The comparator
is responsible for detecting that either the register dumps are the
same for every cycle (meaning the DUT passed the test) or, in
the case of a discrepancy (meaning the DUT failed the test), the
exact cycle at which the discrepancy began.

We will then take the result and display it to the user. The
scope of this part of the project is not yet clear due to time
constraints. For the simplest implementation, we will just
output, to standard out or to a text file, if the test passed or
failed, and which cycle the failure occurred if there’s any. If
time permits, however, we will develop a GUI that displays
additional statistics about the test (e.g., graphs of the instruction
distribution in the test), to help the user make better sense of
what they had tested. For now, we are not prioritizing this part
of the project because it is not a part of the core functionalities
of our system.

Fig. 1: System overview

3
18-500 Design Report: 10/15/2021

IV. SYSTEM DESCRIPTION
The DUT and the Ethernet interfaces, briefly mentioned in

the previous section, are the most complex modules in our
project and the modules with the most design choices. In this
section, we will describe those modules in greater detail. In
section V, we will describe the design choices we made
regarding those modules.

A. DUT
Our DUT implements a single-cycle processor capable of

executing some 16-bit ALU instructions inspired mainly by
RISC-V. Each instruction is 16 bits, while our register file is
also 16 registers by 16 bits. Note that we do not support memory
operations or control flow, so each register is general purpose.
The instruction format is as follows in Fig. 2.

The instruction bits are evenly divided into four components.
At a high level, the instruction takes the two sources, applies
the opcode on the sources (performs some computation), then
writes the result to the destination. Source 1 must be a register,
while source 2 may be a register (for a register-register
instruction), a direct value (for a register-immediate
instruction), or not used (for MOV). The destination can only
be a register. We’d like to note two caveats here. The first is
that register 0 is always 0 (a value written to it will simply be
disregarded). The second is that for immediate instructions, the
4-bit immediate in the instruction will be sign-extended to 16
bits before the computation is performed. Both of those features
are taken from RISC-V.

Table 1 outlines the full instruction set that we support. Each
line in our test cases will be one instruction in hex (e.g., 9325
means r3 = r2 + 0x5).

Table 1: Supported instruction set

Fig. 3 shows the block diagram for our DUT implementation

in SystemVerilog. On each clock, the DUT takes a 16-bit
instruction from the Ethernet interface. We have an instr_valid
signal to indicate whether the instruction is ready to be executed
(has fully propagated through Ethernet). The instruction then
goes through a decoder, which outputs the four components of
the instruction in Fig. 2, along with some other control signals
that will be passed along to the register file and/or ALU (e.g.,
whether this is a register-immediate instruction).

We then access the operands from the register file. The
register file will be asynchronous read, synchronous write,
meaning the operand values will be available in the same clock
cycle. After obtaining the operands, they are passed along to the
ALU. On the next clock cycle, the ALU’s output will be written
back to the destination register in the register file.

Instr Opcode Type Description
MOV 0x0 Reg-Mov Register move
ADD 0x1 Reg-Reg Register add
SUB 0x2 Reg-Reg Register subtract
AND 0x3 Reg-Reg Register bitwise and
OR 0x4 Reg-Reg Register bitwise or
XOR 0x5 Reg-Reg Register bitwise xor
SLL 0x6 Reg-Reg Reg. shift left logical
SRL 0x7 Reg-Reg Reg. shift right logical
SRA 0x8 Reg-Reg Reg. shift right arith.
ADDI 0x9 Reg-Imm Imm. add
ANDI 0xa Reg-Imm Imm. bitwise and
ORI 0xb Reg-Imm Imm. bitwise or
XORI 0xc Reg-Imm Imm. bitwise xor
SLLI 0xd Reg-Imm Imm. shift left logical
SRLI 0xe Reg-Imm Imm. shift right logical
SRAI 0xf Reg-Imm Imm. shift right arith.

Fig. 2: Instruction format

Fig. 3: DUT datapath

4
18-500 Design Report: 10/15/2021

B. Ethernet interfaces
As mentioned in section III, the two subsystems of our

project—the PC and the FPGA—will be connected using
Gigabit Ethernet, with the PC sending the FPGA instructions to
execute, and the FPGA sending the PC register values back.

Most of the communication will be controlled on the low-
level by Ethernet directly. However, we will need to handle the
end points of communication: that is, choosing where the data
is being read from / written to. On the PC, we will simply use
files for reading/writing. On the FPGA, we will be using the
NIOS II/e to place Ethernet data in memory. The NIOS II/e is
an off-the-shelf soft processor developed by Altera, which we
can configure and then instantiate on the FPGA board along
with the DUT. This processor will allow us to run C/C++
programs on the FPGA board.

Fig. 4 is obtained from Altera’s triple speed Ethernet guide
[3]. As shown in the figure, the Nios II Processor has a Triple
Speed Ethernet MegaCore connected to a transmit and a receive
Scatter-Gather Direct Memory Access (SGDMA). This
SGDMA is a conversion point between memory and streaming
interfaces: it converts serial data to words of data and interfaces
with the main memory. We can therefore use main memory to
save the data that is being received from the PC and the data
that will be sent to the PC. To simplify the protocol, we will
keep the memory location the same for all reads and the same
for all writes.
 We will be implementing a handshaking protocol for alerting
when new data is ready to be read or sent back to the PC. The
end goal is that at every positive clock edge, the DUT can
assume that it is getting a new instruction unless the signal

telling it to wait is asserted. As we develop the protocol, we
anticipate having to add more signals to the DUT to indicate
different events.

V. DESIGN TRADE STUDIES
Throughout the design phase of our project, we made design

decisions to balance implementation complexity, meeting our
requirements, and the usefulness of our system. Those design
decisions can be divided into three categories: regarding the
hardware platform for our project, regarding the DUT, and
regarding the communication protocol.

A. Hardware platform
With our goal being accelerating simulation by leveraging

the fast clocks of hardware, we first needed to choose what
hardware platform to use.

1) FPGA vs. ASIC
FPGAs and ASICs are both commonly used as hardware

accelerators. We chose to use a FPGA for the reconfigurability
and low cost. Verification, fundamentally, is the process of
discovering bugs and fixing the design to be bug free. Our
platform therefore needs to accommodate changes in the
design, making an ASIC—a static design—not suitable for our
use case. In addition, the cost of manufacturing an ASIC is well
beyond our budget, while FPGAs are much cheaper in
comparison, and the ECE department has some readily
available.

2) Altera vs. Xilinx
We could use either an Altera or a Xilinx FPGA owned by

the ECE department. While the Xilinx FPGAs available have a
built-in SoC on the board (which makes communicating data to
and back from the FPGA chip simple), none of us have
experience programming such a FPGA using the necessary
toolchains. After several people who do have experience with
Xilinx FPGAs informed us that learning how to use said
toolchains in the time frame we have is incredibly difficult, we
decided to use an Altera FPGA instead. However, the lack of
an on-board SoC means we need to generate the test cases on a
PC and send data between the PC and the FPGA through a
communication protocol we develop.

3) DE2-115 vs. Cyclone V
As for which Altera board to use specifically, we again have

two options: the DE2-115 board and the Cyclone V board. The
Cyclone V is overall more powerful (it has more memory and
more logic elements), while the DE2-115 has more I/O ports.
Keeping in mind the need for a communication protocol, we
chose the DE2-115 because more I/O ports give us more
options (and fallbacks) for how to send/receive data. The
downside of having limited memory and logic elements then
influenced the design of our DUT.

B. DUT
We chose to implement a processor for our DUT because the

project arose from our shared struggles in trying to verify a CPU
core. However, the limited amounts of memory and logic
elements on the DE2-115 FPGA dictate that we cannot create a
very complex DUT. The challenge here is then to limit the
scope of the DUT while keeping it realistic and interesting.

Fig. 4: General Nios II Processor diagram

5
18-500 Design Report: 10/15/2021

First, we ruled out making a pipelined processor our DUT
out of concerns for complexity and the design not fitting on the
board. A non-pipelined design is expected to fit because we
have experience synthesizing, in 18-240, such a design onto the
same board. Next, we need to determine what instructions our
DUT could support.

1) Instruction size
Modern processors typically have 32-bit or 64-bit ISAs.

Having such large bit widths though would mean having high
communication cost in our system (since for each instruction,
we need to send the instruction to the FPGA and obtain register
information back). Moreover, having a large register file raises
the chances of the design not fitting on the board. In the end, we
settled for 16 bits to lower those risks, while keeping the ISA
large enough that it does not become a toy example.

2) Instruction format
To keep the instruction decoder simple, we chose the

simplest scheme possible for the instruction format, illustrated
in Fig. 2.

3) Instruction set
A typical ISA consists of compute, memory, and control flow

operations. However, in the interest of making our
communication protocol simple and again due to FPGA size
limitations, it is not feasible for us to support changes in control
flow or maintain a large memory. Our instruction set is thus
comprised solely of compute instructions.

The instructions themselves are chosen after studying three
ISAs: RISC-V, ARM, and x86. While our instruction set is
mainly inspired by RISC-V, we wanted to look at others in
order to determine what instructions are important and
essential. We ended up choosing the most common instructions
across these ISAs.

C. Communication
Although the FPGA has a fast clock, communication to off-

board is time-consuming and is the bottleneck of our system.
To meet 3x speedup despite this challenge, we designed various
ways to reduce/hide the communication latency and calculated
which channel would allow us to meet our requirement.

1) Reducing latency
We can reduce latency by reducing the number of bits sent

between the PC and FPGA. For every instruction processed, the
DUT needs to receive the instruction and the PC needs to
receive the register dump (in order to perform cycle-by-cycle
correctness checks). In a naïve approach, this would mean a
total of 272 bits (16 instruction bits + 16 registers * 16 bits) of
communication per instruction processed.

 However, we observed that it is not necessary to send the
entire register dump after each instruction; we can instead send
the delta (which register changed to what value) and reconstruct
the dump at the PC end. This reduces the number of
communication bits to 36 bits per instruction processed (16
instruction bits + 4 bits for register index + 16 bits).

2) Hiding latency
 In addition to reducing latency, we can also hide latency

through pipelining. In contrast to the serial approach of waiting
for one instruction to finish propagating through our system (to
the FPGA, then computed, then back from the FPGA) before

processing the next instruction, we can overlap processing of
multiple instructions.

Table 2 illustrates this pipeline. Each row represents a
different instruction, and the pipeline consists of three stages:
TO is sending data from the PC to the FPGA, COMP is the
computation on the FPGA, and BACK is sending data from the
FPGA back to the PC.

In a pipelined system, throughout is bounded by the latency
of the slowest stage, which is BACK in our case. Whereas in
the serial approach, we have one instruction processed after the
latency of TO + COMP + BACK, in our pipelined system, we
have one instruction processed after only the latency of BACK.

 We recognize that while the pipelined approach offers
speedup gains, it will also complicate the communication
protocol significantly. Therefore, we decided we will start with
the serial approach, then implement the pipelined approach if
time permits. Calculations from this point onwards will assume
we are communicating a reduced number of bits per instruction
(36 bits) as explained in C1), but without pipelining.

3) Communication channel
After exploring ways to reduce the communication cost, we

needed to determine which communication channel to use to
meet our speedup requirement. The Altera DE2-115 board has
three types of I/O that we could use: JTAG, USB, and triple
speed Ethernet. Table 3 gives the speed for each of these options
(found in the DE2-115 User Manual [4]).

 With the values in Table 3, we can calculate, for each
channel, how much time it takes to transmit 36 bits:
 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒	𝑝𝑒𝑟	𝑖𝑛𝑠𝑡𝑟 = !"	$%&'

#	$%&'/'
 (1)

 We also know the FPGA clock is 50 MHz (again from the
User Manual). We can then obtain the total time per instruction
by adding communication time and FPGA compute time.
Because of our DUT’s single-cycle microarchitecture, each
instruction takes one cycle on the FPGA:
 𝑡𝑜𝑡𝑎𝑙	𝑡𝑖𝑚𝑒	𝑝𝑒𝑟	𝑖𝑛𝑠𝑡𝑟 = 𝑐𝑜𝑚𝑚. 𝑡𝑖𝑚𝑒 + *

+,	-./
 (2)

 Table 4 gives the results of these calculations.
 The next step was to find how much time it would take to

simulate one instruction so we could choose a communication

Table 2: Communication pipeline illustration
TO COMP BACK
 TO COMP BACK
 TO COMP BACK
 TO COMP BACK

Table 3: DE2-115 communication channels and speeds
Communication
channel

Data transmission speed
(# bits/s)

JTAG 4 Mbit/s
USB 12 Mbit/s
Triple speed Ethernet 10, 100, or 1000 Mbit/s
Table 4: Time per instruction for each channel
Communication
channel

Comm. time per
instr.

Total time per
instr.

JTAG 9 µs 9.02 µs
USB 3 µs 3.02 µs
Triple speed
Ethernet

3.6 µs, 360 ns,
or 36 ns

3.62 µs, 380 ns,
or 56 ns

6
18-500 Design Report: 10/15/2021

protocol that meets speedup. Unfortunately, this metric is
difficult to determine. Simulation runtime varies significantly
across different designs, making it impossible for us to have an
exact number of how long our design would take before we
have the design ready. However, we do know that simulation
time grows as design complexity grows, so we can obtain a
lower bound time by simulating a smaller design.

We ended up creating an adder and simulating its execution.
Our benchmarks show that it takes roughly 2 µs to simulate a
single add operation. This means in order to attain 3x speedup,
each instruction in our approach must be processed in less than
2 µs/3 ≈ 666 ns. We can achieve this using either 100 Mbit/s or
1000 Mbit/s Ethernet. We are planning on using 1000 Mbit/s
Ethernet (also called Gigabit Ethernet) to give us the most
speedup we can get and to leave room for spending bits not
taken into account in this calculation for handshaking.

We’d like to note, once again, that the 2 µs is a lower bound
approximation. However, this estimate is still useful for
providing us order-of-magnitude insights.

4) Nios II Processor
After deciding to use Ethernet as our communication

channel, we found an Altera tutorial for how to use Ethernet on
DE2-115 boards [5]. Implementing the system following the
tutorial requires using a Nios II processor. This presents another
design decision, as there are 3 versions of the Nios II processor:
Nios II/e, Nios II/s, and Nios II/f. The versions increase in
functionality and area in the order listed, but all of them have
the needed functionality for us to use Ethernet.

We decided to use the Nios II/e (the simplest one) in the
interest of saving area on the FPGA. Another benefit of using
the Nios II/e is that it is the only one out of the 3 versions that
does not require a license to use. This means instead of having
to go on CMU lab computers (which have the license) to work,
we can use our personal computers.

VI. TEST AND VALIDATION
Recall that our requirements are divided into three

categories: performance, functionality, and ease of use. In this
section, we outline testing plans for each requirement.

A. Speedup
Our 3x speedup requirement can be tested by measuring

simulation runtime and runtime of our approach. For simulation
runtime, we will use CPU time outputted by VCS at the end of
simulation. To get the runtime of our approach, we will utilize
software system clocks. Because the dataflow of our system
begins on the PC and ends on the PC, we can place a time() call
before the test begins and another time() call after all the output
has been received. The different between the two calls is then
the runtime for our solution.

Speedup is defined as follows:
 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 = 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒	/	𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛	𝑡𝑖𝑚𝑒	 (3)

Again, having speedup > 3 means we have met this
requirement.

B. Functionality
We have a functional system if we can support test cases

ranging from one to 20,000 instructions. We will start by testing
that we can send test cases containing one instruction for all 16
instruction types we have through our system.

We are successful if our approach gives the same output as
simulation (register dump at the end + whether the test passed).
We will then increase the size of test cases and apply the same
validation method until we reach 20,000 instructions.

C. Ease of use
As a reminder, ease of use deals with allowing the users to

customize and randomize test cases, in addition to providing
cycle-by-cycle correctness checks.

Checking that test case customization and randomization are
successful is a matter of manual inspection, plus some analysis
of randomization distribution. As an example, if the user
chooses to only test ADD, we will manually inspect the
generated test case to check that it does indeed only contain
ADD instructions. If the user chooses to randomize what
instructions to test, we will analyze the distribution of
instructions in the generated file to see if they are about even.
We will repeat this process for different user customizations.

On the other hand, to ensure that when a test case fails, we
accurately tell the user which cycle the test fails on, we will be
inserting intentional bugs into the DUT. Because we know what
the bug is, we can check that our system indicates a failure at
the cycle that we expect. The bugs we insert will either be
realistic hardware bugs or RTL designer mistakes. Some
examples are having a register that is not r0 stuck at 0, or not
performing sign-extension on an immediate value.

D. Other testing of subsystems
In addition to validating that we meet our requirements, we

will be testing our subsystems as their implementations
complete throughout the project.

Not much testing effort is expected to be spent on our
software components, as they are relatively simple. We will
apply the standard software engineering technique of feeding
modules different inputs and observing if the outputs are as
expected. Testing the output comparator, for example, involves
giving the comparator different input file pairs and observing if
it flags differences at the right line.

Our communication protocol, on the contrary, is much more
substantial and requires more planned-out testing. We are
staging our testing by beginning with simply sending data to the
FPGA board and echoing it back to the PC. To be more precise,
the echoed back data will be slightly different to ensure that the
read and write buffers on the board are not unintentionally
coupled somehow.

Once echoing succeeds, we will move on to sending actual
instructions to the DUT and obtaining register values back. As
mentioned earlier, we will start with small test cases.

7
18-500 Design Report: 10/15/2021

VII. PROJECT MANAGEMENT

A. Schedule
We give an overview of our schedule here. Please see

Appendix A for the Gantt chart of our project.
Our project is divided into three phases. Phase one focuses

on setting up our system. This includes creating a basic echo
communication protocol, determining the ISA, and
programming the corresponding golden model. In phase two,
we move on to implementing the core functionality of our
system. This entails finalizing the communication protocol, as
well as implementing the DUT and output comparator. By the
end of phase two, we will have a system that can send test cases
to the FPGA and obtain back results. The testing interface is not
fully complete, but this is our MVP. In phase three, we will
focus on adding features to fulfill our ease-of-use requirements.
This means mainly creating scripts for test case
customization/randomization, as well as potentially creating a
UI to output results to the user.

We can currently in the middle of phase one and two. We are
working on the echo protocol, while development of the DUT
is also underway.

B. Team member responsibilities
We have divided up the work so that each team member is

responsible of two large tasks, roughly one for the first half of
the project and one for the second half.

1) Ali
Ali’s responsibilities are to develop, along with Grace, the

communication protocol and to test different parts of the design.
Developing the communication protocol includes both the
initial echo protocol as well as the final version to be used in
our system. Afterwards, Ali will transition to a testing role. She
will test components as they complete and perform periodic
benchmarking to see if we are on track to meeting speedup.

2) Grace
Grace’s responsibilities are to develop, along with Ali, the

communication protocol and the input part of our interface. She
and Ali will work together to research, implement, and test our
communication protocol. Afterwards, Grace will develop the
test case generator, allowing the user to customize and
randomize test cases.

3) Xiran
Xiran’s responsibilities are to implement the golden model

and DUT, and to develop the output end of our testing interface.
She begins by designing an ISA for our use case and will then
create the design in both software and hardware. Afterwards,
she will develop the output comparator and an output display to
the user.

C. Bill of materials and tools
Please see Appendix B for a list of what equipment we used

and their costs.
In addition to this equipment, we will be using Quartus Prime

II for synthesis onto the FPGA.

D. Risk management
The biggest risk in our project is in data communication

between the PC and the FPGA. This is because communication
is both challenging and essential: while none of us have
experience working on FPGA communication to an offboard
component, we must use a fast communication protocol in order
to meet our speedup requirement.

We are actively mitigating this risk with three strategies: (1)
perform thorough research before implementation, (2) allocate
more time and manpower to this part of the project, and (3)
come up with backup plans.

As shown in section V, we chose the communication
protocol that would maximize our chances of meeting speedup
after quantitative analysis. This mitigates the risk of us having
spent significant effort on implementation, only to discover that
we cannot meet our requirement. After deciding to use Ethernet,
we continued to be cautious by looking into implementation
details from multiple sources. Some of the tutorials and projects
we found helpful are listed under References.

The communication protocol task is also the first task we
worked on when the project began and is the only task with two
team members responsible for it. Ali and Grace can support
each other and balance the workload.

Despite these efforts, in the case that we cannot implement a
successful Ethernet protocol, we have investigated backups.
The first set of backups is to switch to using either USB or
JTAG as our communication channel. We all have experience
with the USB protocol, making the implementation difficulty
lower than that of Ethernet. JTAG is even simpler: it is already
set up on the board and should not require much configuration
from our end. Unfortunately, switching to either of these
protocols would mean we will most likely not meet our speedup
requirement, but that is better than not having a functional
product at all in the end.

If we are still not able to get offboard communication
working, we have yet another backup: store test cases in and
write results to the FPGA’s memory. We then have no need for
any complex communication protocol because everything is
completed on chip. Of course, this would mean we most likely
need to reduce the size of our test cases and revamp our system
architecture. We therefore save this option as a last resort.

Regardless of these challenges, Grace and Ali are close to
running a test with the Nios II Processor and Ethernet. They are
mainly working on debugging the synthesis process and are
looking forward to making Ethernet work.

8
18-500 Design Report: 10/15/2021

VIII. RELATED WORK
While researching the feasibility of our project in the

beginning stages, we were surprised to learn that hardware
acceleration of simulation is in fact a hot area of research. A
quick Google search of “FPGA accelerated verification” or the
like reveals a plethora of recent research papers ([6], [7], [8]).
Common trends across these papers include the flexibility of
the framework proposed (can move some portions of the DUT
onto the FPGA while keeping others in simulation) and much
greater speedup (up to two or three orders of magnitude).

Although we cannot hope to achieve as much gains as these
works from academia, we are encouraged by their existence (as
they show there is clearly a problem to be solved) and excited
by the new technology to come.

We also looked into works that used the Nios II processor
and/or Ethernet ports to learn more about how to use them. One
of the projects we found uses an Altera DE2-115 and a Nios II
Processor to handle image and video processing [8]. This
project helped Grace and Ali understand how to use the Nios II
Processor with C/C++ code.

Another project we found useful is a project that designed an
interface for the FPGA to communicate with other devices
through Ethernet without using the Nios II processor [9]. It
details the Ethernet communication protocol, which is useful to
reference when designing our own packet.

IX. SUMMARY
The main goal of our project is to speed up RTL simulation

using a FPGA. However, the FPGA we are using has limited
memory and logic elements, thereby limiting what kind of
DUT we can place in our system. We encourage future work
to be done using more powerful FPGAs, ideally with a SoC
onboard, as this would enable testing of more complex
designs. In addition, by significantly reducing communication
cost through the use of onboard communication, much greater
speedup can be attained.

GLOSSARY OF ACRONYMS
ALU – Arithmetic Logic Unit
DUT – Device Under Test
FPGA – Field Programmable Gate Array
GUI – Graphical User Interface
ISA – Instruction Set Architecture
MVP – Minimum Viable Product
PC – Personal Computer
RTL – Register Transfer Level
SoC – System on a Chip

REFERENCES
[1] https://www.crn.com/news/components-peripherals/229200131/intel-

assesses-damage-of-cougar-point-chipset-flaw.htm
[2] http://www.iie.uz.zgora.pl/iie_archiwum/desdes01/files/ref/IV-7.pdf
[3] https://bohr.wlu.ca/nznotinas/altera_reference/DE2_115/using_triple_sp

eed_ethernet.pdf
[4] https://www.intel.com/content/dam/www/programmable/us/en/portal/ds

n/42/doc-us-dsnbk-42-1404062209-de2-115-user-manual.pdf
[5] https://bohr.wlu.ca/nznotinas/altera_reference/DE2_115/using_triple_sp

eed_ethernet.pdf
[6] https://escholarship.org/uc/item/0vt3c73p
[7] http://trilobit.fai.utb.cz/Data/Articles/PDF/fba3fd06-6222-4e25-910c-

989553226dde.pdf
[8] https://ieeexplore.ieee.org/document/1329526
[9] https://www.secs.oakland.edu/~ganesan/ece576f14project/index.htm
[10] https://people.ece.cornell.edu/land/courses/ece5760/FinalProjects/f2011/

mis47_ayg6/mis47_ayg6/

9
18-500 Design Report: 10/15/2021

Appendix A: Gantt chart

10
18-500 Design Report: 10/15/2021

Appendix B: Bill of materials

Item Name Quantity Price Manufacturer Model Number Description

Altera DE2-115
FPGA

1 $675.00 Altera DE2-115 This is an FPGA that the ECE department
had in stock

Cat 5 Ethernet
Cable

1 $11.84 Mediabridge 31-399-25X Ethernet cable used to communicate
between PC and FPGA

Dual ended USB
cable

1 $6.99 UGREEN 10369 USB Male to USB Male cable to use to
test demo project that comes with FPGA

USB to ethernet
dongle

1 $16.55 Amazon Basics U3-GE-1P USB-ethernet converter used to easily
connect ethernet cable to PC/Desktop.
Because it uses USB 3.0, it should not
limit the speed of ethernet.

