FPGA-Assisted Verification

Team Al: Xiran Wang, Ali Hoffmann, Grace Fieni

Problem: the tortoise vs. the hare

What is verification?

Why do we use Why do we want to
hardware simulation synthesize (hare)?
(tortoise)?

Solution: what if we were fast and won the race?

Executing tests on FPGA allow for
designs to be tested on hardware
sooner without sending the design
to silicon.

Executing tests on FPGA through
synthesis allow the same amount of
testing to occur, but faster.

Test case
Ethernet Ethernet Q Software

gene rator
interface interface

- @ System block diagram

Hardware

Golden model
Off the shelf

In progress

| Ethernet Ethernet

interface interface Yet to be implemented

Output
comparator

Requirements

Functionality:
- Support testing all instructions in ISA
- Test cases can have size ranging from 1 ~ 20k instructions

Performance:
- 3x speedup relative to simulation

Ease of use:
- User can customize test case size and instruction(s) to test
- Canrandomize test case
- Provide exact cycle of failure

More on communication: JTAG vs USB vs Ethernet

Simulation approach

- Timeincreases drastically as design size increases
- Forour small design, expect <2 MHz

Our approach: send data to FPGA, process, send data from FPGA

- FPGA clock: 50 MHz
- In worst case, need to send 16 + 16x16 =272 bits/cycle
- JTAG: 4 Mbit/s, USB: 12 Mbit/s, Ethernet: 1000 Mbit/s

=> Need to use Ethernet to meet 3x speedup

More on communication: cutting down latency

Send entire register dump Send only data for register that was
(16 bit instruction + 16 ‘ updated (16 bit instruction + register
registers by 16 bits number + 16 bits register data = 36 bits)

= 272 bits)

3 Cycles A

Send data to FPGA + Send data Process Send data

process data + send data to FPGA data from FPGA

from FPGA

More on the DUT: ISA

Support 16-bit ALU instructions:
- Cannot support full RISC-V instruction set due to time and FPGA limitations
- ALU instructions make up >50% of typical instruction mix

Instruction format Register file
opcode dest reg source 1l source 2 16 registers by 16 bits
4 bits 4 bits 4 bits 4 bits

Instructions
- Register movement: MOV rd, rs1

- ALU register-register: ADD/SUB/AND/OR/XOR/SLL/SRL/SRA rd, rs1, rs2
- ALU register-immediate: ADDI/ANDI/ORI/XORI/SLLI/SRLI/SRAI rd, rs1, imm

More on the DUT: hardware block diagram

Insor
Peceder

Yd _we 4 Y _dgdnn
o
Register | ALY
STC,). ‘F‘\\& f} Y.”Z- &A‘b\, 0
! I veset, o —L;M

1S_SA2_ \mm

4

/

OP&de

/

Testing

Functionality (can test all instructions, test case can have 1 ~ 20k instructions):
- Forallinstructions, write test case containing that one instruction
- Write test cases of other sizes (e.g., 5, 100, 1k, 20k, etc.)
- For all these cases, check communication is successful

Performance (3x speedup):
- Measure simulation time and solution time for tests of different sizes
- Simulation time: use vcs end of simulation CPU time
- Solution time: use time() calls at beginning and end of flow
- Speedup = simulation time / solution time

Testing continued

Ease of use (test case user customization, randomization, exact failure cycle):
- Try different customizations and manually inspect test case to see if
customizations applied successfully
- e.g.,if user chose to only test ADD, test case should only contain ADD
instructions
- For randomization, manually check for different generated values
- To see if failure cycle is reported correctly, introduce bugs to DUT
- Realistic bugs to introduce: register stuck at 0, opcode decoding error

Schedule

September October November
Grace Week 4 Week 5 Week 6 Week 7 Week 8 Week © Week 10 Week 11 Week 12
Xiran UMITWRF SUMITWRF FISIUIMITWIRF SUMTWRF SUMTWRTFSUMTWRIFIS\WUMTWRIF S| UMTWRIFSUMTWRIF
Task Title Task Owner Status 19/20 21 22 23 24 2526 2728 20 30 1 2/ 3 4 5 6 7 8 910 11 12 13 14 1516 17/18/10 20 21 22 23 24 2526 27 282030 31 1 2 3 4 5 6 7 8 © 10 1112 13 14 15 16 17 18 1€
— ! | | k] I I | !
Research communication protocols
subtask: research JTAG Ali ~ Done \ il \ [i

subtask: research Ethemet Grace ~ Done

subtask: research USE Xiran ~ Done
Implement chosen communication protocol

subtack: sef up simple DUT Grace & Al ~ In progress

subtask: successfully send dsta fo DUT Grace &Ali ~ In progress

subtask: successfully receive dats from DUT Grace & Al ~ In progress
Create SW golden mode!

subtask: determine ISA Xiran ~ Done
subtask: i design in 4G I Xiran ~ In progress
Phase 2
Create DUT in SV
subtask: design dstapath Xiran ~ Done
subtssk implement datspsth Everyone -
subtack: testing Ali - il
Finalize /O FPGA Modules Grace &Ali -
Create simple test to send Grace v
Create output comparator Xiran v
Integration Everyone v
Banchmark performance Al -
Phase 3
Set up random testing scripts Grace -
Display output in user friendly fashion Xiran -
Introduce bugs to DUT Ali v
Benchmarking + Testing Everyone v | I | []_I_[_I_I_L

