
FPGA-Assisted Verification
Team A1: Xiran Wang, Ali Hoffmann, Grace Fieni

Problem: the tortoise vs. the hare

What is verification?
Why do we use
hardware simulation
(tortoise)?

Why do we want to
synthesize (hare)?

Solution: what if we were fast and won the race?

Executing tests on FPGA through
synthesis allow the same amount of
testing to occur, but faster.

Executing tests on FPGA allow for
designs to be tested on hardware

sooner without sending the design
to silicon.

System block diagram

Requirements

Functionality:
- Support testing all instructions in ISA
- Test cases can have size ranging from 1 ~ 20k instructions

Performance:
- 3x speedup relative to simulation

Ease of use:
- User can customize test case size and instruction(s) to test
- Can randomize test case
- Provide exact cycle of failure

More on communication: JTAG vs USB vs Ethernet

Simulation approach

- Time increases drastically as design size increases
- For our small design, expect < 2 MHz

Our approach: send data to FPGA, process, send data from FPGA

- FPGA clock: 50 MHz
- In worst case, need to send 16 + 16x16 = 272 bits/cycle
- JTAG: 4 Mbit/s, USB: 12 Mbit/s, Ethernet: 1000 Mbit/s

 => Need to use Ethernet to meet 3x speedup

More on communication: cutting down latency
Send entire register dump

(16 bit instruction + 16
registers by 16 bits

= 272 bits)

Send only data for register that was
updated (16 bit instruction + register

number + 16 bits register data = 36 bits)

1 Cycle

Send data to FPGA +
process data + send data

from FPGA

Send data
to FPGA

Process
data

Send data
from FPGA

3 Cycles

More on the DUT: ISA
Support 16-bit ALU instructions:

- Cannot support full RISC-V instruction set due to time and FPGA limitations
- ALU instructions make up >50% of typical instruction mix

Instruction format Register file
16 registers by 16 bits

Instructions
- Register movement: MOV rd, rs1
- ALU register-register: ADD/SUB/AND/OR/XOR/SLL/SRL/SRA rd, rs1, rs2
- ALU register-immediate: ADDI/ANDI/ORI/XORI/SLLI/SRLI/SRAI rd, rs1, imm

opcode dest reg source 1 source 2
4 bits 4 bits 4 bits 4 bits

More on the DUT: hardware block diagram

Testing

Functionality (can test all instructions, test case can have 1 ~ 20k instructions):
- For all instructions, write test case containing that one instruction
- Write test cases of other sizes (e.g., 5, 100, 1k, 20k, etc.)
- For all these cases, check communication is successful

Performance (3x speedup):
- Measure simulation time and solution time for tests of different sizes

- Simulation time: use vcs end of simulation CPU time
- Solution time: use time() calls at beginning and end of flow

- Speedup = simulation time / solution time

Testing continued

Ease of use (test case user customization, randomization, exact failure cycle):
- Try different customizations and manually inspect test case to see if

customizations applied successfully
- e.g., if user chose to only test ADD, test case should only contain ADD

instructions
- For randomization, manually check for different generated values
- To see if failure cycle is reported correctly, introduce bugs to DUT

- Realistic bugs to introduce: register stuck at 0, opcode decoding error

Schedule

