Integration Milestones:

- 1) Send stepper motor command from website
 - a) Prototype main board
 - i) Schematic including esp32, 2 stepper motor drivers, gpio break out
 - ii) Layout
 - iii) Home fabrication (toner transfer, etch, cut out, tin coating, populated)
 - b) Esp32 and stepper drivers connected on prototype main board
 - i) ESP model selected, ordered
 - ii) Stepper drivers selected, ordered
 - c) Esp32 running FreeRTOS
 - i) FreeRTOS configured
 - ii) Loaded onto esp32
 - iii) Drivers loaded
 - d) Esp32 running GRBL cnc firmware
 - i) GRBL (esp32 ported) configured and loaded
 - e) ESP32 running custom software stack
 - f) ESP32 wifi connectivity
 - g) Website backend sending and receiving http requests
- 2) CNC works
 - a) Device frame built
 - i) 80/20 chosen
 - ii) Frame CAD model
 - iii) Proper lengths ordered
 - b) Y, Z axis rails built in
 - i) Linear rails chosen
 - ii) CAD included in frame
 - iii) Rails/bearings ordered
 - c) Stepper motors integrated into frame/rails
 - d) ESP32 controlling motors
 - e) Endstops integrated
 - i) Endstops built into frame
 - ii) Endstop IO integrated in main board
 - iii) Endstop IO (polling/interrupt) integrated in embedded software
 - f) Power supplied to motors
 - i) Power supply selected, ordered
 - ii) Main board power IO integrated
 - iii) Relay board selected, ordered
- 3) Climate control
 - a) Sensors integrated (humidity/temperature)
 - i) Choose and order temperature/humidity sensor (combo/separate)
 - ii) Connect/wire to main board IO
 - iii) Design frame attachment for sensor, attach to device
 - iv) Add sensor polling to software/esp32
 - v) Add sensor data sending to website from esp32

- vi) Add sensor UI/display to website
- b) Lighting system integrated
 - i) Lights chosen, ordered
 - ii) Lighting frame attachment designed, manufactured
 - iii) Lights attached to device
 - iv) Lights connected to relay board, that to main board
 - v) ESP32 control output of lights
 - vi) Add website command control lights (handshake website, esp32)
- c) "Squish sheet" integrated
 - i) CAD
 - ii) Manufactured (laser cut), sent to Lucas
 - iii) Attached to frame, under lights
- d) Integrate fans
 - i) Fans chosen, ordered
 - ii) Fans frame attachment designed, manufactured
 - iii) Fans attached to frame
 - iv) Fans wired to relay board/main board
 - v) ESP32/main board pwm control output
 - vi) Control fans from website
- 4) Irrigation system
 - a) Fresh water reservoir built into frame
 - i) Cad designed
 - ii) Manufactured vacuform, sent to Lucas
 - iii) Attached to frame
 - b) Waste water reservoir built into frame
 - i) Cad designed
 - ii) Manufactured vacuform, sent to Lucas
 - iii) Attached to frame
 - c) Bed holder
 - i) Outer water shell
 - (1) CAD design
 - (2) Manufactured vacuform?, sent to Lucas
 - (3) Solenoid chosen, ordered
 - (4) Solenoid built into shell
 - ii) Holding attachment for z axis cnc
 - iii) Relay board and main board IO
 - iv) Website control/monitoring
 - d) Piping/plumbing
 - i) PVC/rubber/plastic piping hardware chosen, ordered
 - ii) Attachments (if any needed) designed, manufactured
 - iii) Plumbing built into frame
 - e) Water pumping
 - i) Water pump chosen, ordered
 - ii) Water pump frame attachment designed

- iii) Water pump attached/built into frame
- iv) Water pump IO connected/built into relay board and main board
- v) Water pump IO running in software
- vi) Water pumps controlled from website
- 5) Seeding system
 - a) Storage hopper
 - i) Storage hopper CAD
 - (1) Body cad
 - (2) Pawl cad
 - ii) Body model 3D printed and vacu-formed, sent to Lucas
 - iii) Body cut up/drilled/manufactured
 - iv) Motor chosen, ordered
 - v) Pawl printed, motor built in
 - vi) Motor IO wired to relay board and main board
 - vii) Hopper built into frame
 - b) Distribution hopper
 - i) Load cells chosen, ordered
 - ii) CAD of hopper
 - iii) CAD of pawl (if changed from storage hopper)
 - iv) Hopper plug built
 - (1) Plug CAD
 - (2) Plug 3D printed/manufactured (rubber/silicone molds?)
 - (3) Attached to frame
 - v) Body model printed, vacu-formed, sent to Lucas
 - vi) Body cut up/drilled/manufactured
 - vii) Motor chosen, ordered
 - viii) Pawl printed, motor built in
 - ix) Motor IO wired to relay board and main board
 - x) Load cells attached to hopper
 - xi) Load cells wired to main board IO
 - xii) ESP32 software updated to poll load cells
 - xiii) Send load cell data to website, display on site
 - xiv) Hopper built into y-axis cnc
 - c) Add seed watering (rinse/soak)
 - i) Edit plumbing to include line to distribution hopper
 - ii) Water splitter/manifold chosen, ordered
 - iii) Manifold added to plumbing (direct pumped water to irrigation/seed soak)
 - iv) Manifold IO wired to relay board and main board
 - v) ESP32 control of water direction (manifold)
 - vi) Website control/monitoring of water direction (manifold)
 - d) Y-axis control programmed to move through Zone A, Zone B, zone C
 - e) Website CNC control updated to reflect Zone segregation
 - f) Full seeding routine programed (single command to go through whole process)