
1
18-500 Progress Report: 10/19/2020

MyoRun: Real Time
EMG

Design Review Report

Authors: Alex Hong, Tarana Laroia, Kayla Vokt:
Electrical and Computer Engineering, Carnegie Mellon

University
Abstract—

THE objective of our capstone is to create a system capable of
controlling a video game environment using only the electrical signal
from forearm muscle action. We decided to create a new form of
controlling user movement in a videogame setting using an EMG
system with five electrodes arranged on specific muscles on the
forearm. The collection of these signals were classified into left, right,
up and down movements that function as inputs to the control of the
user in an endless-runner style video game. This novel form of video
game control creates an exciting experience for the user.

Index Terms—
Arduino
Electromyography (EMG)
Muscle Sensor, Signal to Noise Ratio (SNR)
Unity
User Datagram Protocol (UDP) Streaming

I. INTRODUCTION

 Decoding and extracting the information contained in
bioelectrical signals is a continually studied area of research.
Electromyography, or EMG, technology allows us to detect
signals generated by skeletal muscles from the surface of the
skin. One of the initial areas of application of EMG signals was
driving input for the control of powered upper limb prostheses,
which came to be known as myoelectric control [1]. Many
common computer and videogames today are played with an
external controller such as a keyboard or game controller.
 For our project, we were interested in applying myoelectric
control to the novel area of video game control. This application
area is important because it has the potential for broader impact
for people with impaired movement skills, as well as has the
potential for impact in rehabilitation of motor impairment
following stroke [2]. We developed a hardware EMG system
using 5 electrode pairs on distinct muscles in the forearm. EMG
signals collected from trials of different wrist and forearm
movements were used to train and test a machine learning
classification model in order to identify hand movements as
inputs to the virtual game. Designing a novel game controlling
technique interfacing with the human body meant that our
system was susceptible to the intricacies of the human body
system. To combat this, we collected training data from various
subjects in order to make the model robust enough to work for
different people.
 The software portion of the game had to be developed in
parallel, thus in order to test the system independently without
the muscle guided signal inputs, a Mock Muscle Controller was

designed to simulate game inputs and test the functionality of
the frontend of the project.
 Our final capstone goal was to develop a surface EMG
system for the forearm that controls user movement in a virtual
game environment. Through simultaneous game development
and machine learning algorithm modification, we created a
robust myoelectric control video game. We hoped to meet the
specifications of keeping the EMG system impedance under
20kΩ, while meeting high classification accuracy of over 80%
and meeting low classification and game latency, keeping the
game delay under 500 ms.

II. DESIGN REQUIREMENTS

 Project requirements can be broken down to requirements for
the Muscle hardware, Signal Processing, and Game Software.
 The first hardware standard requirement we would like to
highlight is keeping the impedance of the EMG system under
20kΩ. It is the standard in medicine for impedances to be under
20kΩ for electronic devices, so this was an important metric we
set for ourselves. We will measure the impedance of the actual
hardware itself, without any electrical input, using the
impedance function of a multimeter. In the event that we need
to decrease our electrode’s impedance, we will employ
techniques commonly practiced in EMG labs, including
cleaning and abrading the skin, and applying conductive
electrolytic paste as needed. This requirement is important to
ensure a better SNR, because cleaner signals are easier to
process and classify. This metric is in place to ensure
classification accuracy.
 Second, we require the classification accuracy to be greater
than or equal to 80%. This means that four out of every five
muscle movements we make will be classified correctly. This
will be measured by repetitively testing all possible inputs, and
keep track of the output from the classification algorithm. This
is an important metric to meet for this project, so we will
considerably iterate on the algorithm as it develops through the
design process. If we struggle to meet our objective, we will
optimize our algorithm and record more training data from
diverse samples in order to make the algorithm more robust. If
needed, we will add more electrodes into our system because
having more features will give our model more information to
train on, leading to an improved classification accuracy.
 In addition, it is important to reduce the classification delay
as much as possible, specifically we expect the delay from
utilizing the classification model we develop to fit into the total
system delay to be under 250ms. Given that the game delay
should not be significantly large, the classification delay should
reduce as our model reaches a higher classification accuracy.
Collecting and incorporating as much training data as possible
into our model will ensure the accuracy and reduce the delay
experienced through using our system.
 Next we require the Game Delay to be less than or equal to
250 ms. Game Delay is defined to be the time between when
messages get sent off through the UDP channel, and when the
change in the character’s state in the game is visible. Human
response time for a negligible latency is known to be 250ms, so
this will be our requirement. We have developed the Mock
Muscle Controller that will be used to send sample input data

2
18-500 Progress Report: 10/19/2020

over to Unity. This will be used for a measurement independent
of the Hardware, allowing for a specific and accurate
measurement of the Software side of performance.
 The final metric is the Total System Delay to be less than or
equal to 500ms. Total System Delay is the latency of the entire
system, which is the time between when a muscle is fired and
when the change in the character’s state in the game is visible.
From the diagram in Fig. 1, when a muscle is fired, the signals
are converted to digital inputs, which then goes to ML and DSP
models, to the UDP Channel, and finally to the Unity game. The
Total System Delay is measuring the entire latency, which
ultimately affects the playability and performance of the
project.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

 The overall system is a one-way stream from Muscle Activity
to Game Action. When the user moves muscles where N
electrodes are placed, the Muscle Sensor reads analog EMG
readings from the N electrodes and gets amplified and
converted into digital signal in Arduino. The raw digital signal
of N channels is sent over to Python, and Wavelet Transform,
PCA, STFT methods are used to extract features from the
signals. Classification Algorithms such as Support Vector
Machine (SVM) are used to classify the feature signals into
Flexion, Extension, Pronation, Supination. The classification
results in bytes are then sent over to Unity in UDP protocol,
which is then used to trigger action on the game on active edge.

Fig. 1. Overall System Design

The software has an inherent dependency with the
hardware because the system is a constant one-directional
stream from the hardware to software. Without a hardware side
to provide inputs to control the game, the game is unable to be
played. While the project’s final goal is to get both sides
functional, Mock Muscle Controller is developed to test for
Software functionality.

Fig 2. Diagram of Mock Muscle Controller

 The Mock Muscle Controller simulates real Classification
Results by sending off sequences of bytes that we expect to see
from the real classifier. The controller application, written with
the pygame library, listens for keyboard inputs - left, right, up,
and down arrows - each arrow keys represents the classification
result. For example, Up arrow maps to the class Pronation,
which maps to byte (0x03).
 The Mock Muscle Controller is useful because it allows for
parallel development between the Software and the Signals,
allowing the team to make progress without having to wait for
one another. Another benefit is that such blackbox testing
allows the 2 development lines, Software and Signals, to be
made in tandem without relying on one another. One can
constantly make progress and proceed without having to wait
for another. Such separation help the team test and integrate
easily. Another benefit of the Mock Muscle Controller is that it
can test metrics independent of the Hardware side, and test
specifically for the latency in the UDP and the game only.

IV. DESIGN TRADE STUDIES AND SYSTEM DESCRIPTION

A. Hardware Subsystem
 The first part of our system begins when the user performs a
muscle movement. The activity in their muscles will be read
and recorded by the array of muscle sensors on their arms.
These signals are read into Arduino IDE using the ADCs on the
Arduino Nano microcontroller. From there, they are sent
directly into python to be analyzed.

After the signal data has been sent to the python, it will
be preprocessed via the Wavelet Transform then the STFT to
change the basis of the signal and extract its features. From
there, these extracted features will be used as inputs into the
SVM algorithm, where they will be classified as a muscle
movement mapping to a game control.

Electrodes
 A key component of our EMG system is the electrodes we
use. For our project, we chose to use the Covidien EMG/EKG
pads. Like many electrode pads, they are self-adhesive and
come with silver/silver chloride tabs built into them, providing
easy integration with our snap electrode wires and amplifier.
Unlike most conventional self-adhesive electrode pads, these
come with electrolytic gel designed into the electrode itself.
This will allow for greater conductivity on the surface of the
skin, which will reduce the impedance of our system and lead

3
18-500 Progress Report: 10/19/2020

to a higher SNR, which will make our signals clear and our
classifications more accurate. Without the electrolytic gel, the
spatial frequencies between the two electrodes would be more
difficult to measure.

Sensors
 For our project, we employed the use of the MyoWare
Muscle Sensor [3]. This is an embedded EMG system that
measures the activity at a single muscle in the body. It is made
up of two electrodes, about 2 cm apart, which record the
resistance and spatial frequencies between them. This is how
muscle activity is measured. The entire system references a
ground electrode, meant to be separated from the muscle in
question. This allows all noise that the system experiences to be
filtered out using the ground electrode as a reference to the rest
of the system. It also has a builtin amplifier, which is critical in
a system sensitive to noise. Amplifying the signal as close to
the source as possible will lead to a higher SNR, which is
important for having a high classification accuracy. Letting the
signal travel any amount means exposing it to more and more
power deterioration and noise, which will result in a weaker,
noisier signal. We took care to choose a system with amplifiers
patches right at the signal source, taking full advantage of the
signal strength. Furthermore, the MyoWare Muscle Sensors are
individual embedded systems, which gives us the adaptability
to easily shift our electrode placements and make our system
modular. We chose to have the ability to place a small number
of electrodes in a few key locations. An alternative design we
considered was an EMG sleeve, which would put a higher
density of electrodes in one place, and have a single amplifier
for all of the multiplexed signals. However, this would limit us
to working with a single muscle or group of muscles. It would
also not have the benefit of amplifying directly at the signal
source (albeit fairly close) and would not offer us the
modularity of picking what muscles we wanted to use.

Microcontroller
 For our project, we needed a microcontroller capable of
reading the analog signals from our muscle sensors. We
considered a variety of Microcontroller options, including the
Raspberry Pi, SparkFun RedBoard, Adafruit Feather M0, and
the Arduino Uno/Mega/MKRZero. Ultimately, we decided on
using the Arduino Nano. It is capable of reading up to eight
analog signals at once, each with an ADC sampling rate of 9.6
kHz, making it ideal for our EMG electrode system. It is also
small and headerless, making it easily portable with the
flexibility to be made into a wearable device. It has a 5V power
rating, which also makes it compatible with our muscle sensors.
The Arduino specifically comes with Arduino IDE, and easy
support for coding the system. As hardware is not the main
focus of our project, we wanted a reliable platform that would
allow us to focus on the software and signals aspects of our
work; therefore, we chose to use Arduino over other platforms,
as it allowed us the flexibility to easily set up our hardware and
dedicate our time to collecting and analyzing our data.

B. Data Collection & Classification Subsystem

Electrode Placements
 Another critical design decision that we made for this project
was where on the forearm we intended to place the electrode
pair components for the EMG system. As an initial idea, we
intended to use an array of eight electrode pairs along the
forearm, beginning 2-3 centimeters from the elbow and
extending down to a few inches above the wrist. They would be
arranged in a circular formation around the forearm. As gleaned
from previous EMG experiment research papers, with a
recommended interelectrode difference of 20mm as to avoid
crosstalk and enhance SNR [4]. After reviewing additional
research papers to discover the best electrode configuration for
our use case, we decided to alter our design to utilize five
electrode pairs instead of eight. This was motivated by
collecting fewer extraneous muscular signals, given the four
specific wrist/forearm movements we selected to use to control
our game. We decided to place the five electrodes directly on
the muscles that are activated during these specific movements,
including the Brachioradialis, Flexor Carpi Radialis, Flexor
Carpi Ulnaris, Extensor Carpi Ulnaris, Extensor Digitorum, as
shown in Fig. 3.

Fig. 3. This figure showcases the location of the five muscles in the forearm
that will be recorded as well as the location of where the electrodes will be

placed on the surface of the

Feature Extraction
 The best features to classify the EMG signals from the
forearm were selected through reading through existing
literature about EMG classification. The best features that we
selected to incorporate were Principal Component Analysis

4
18-500 Progress Report: 10/19/2020

(PCA) for dimensionality reduction, Wavelet Transform (WT),
and Short Time Fourier Transform (STFT) [5]. Other feature
extraction methods that were considered were root-mean-
square, time-domain features such as mean absolute value and
number of zero crossings, however it was determined that the
features that we selected, particularly WT, yielded the best
classification accuracy [6].

Classification
 For our classification algorithm, we wanted a machine
learning model that was well suited to our project and resources.
We considered a variety of models, including K Nearest
Neighbors (KNN), Perceptron, Neural Networks, and Hidden
Markov Models (HMMs). Ultimately, we decided on using a
Support Vector Machine (SVM). This model in particular is
suited to classification (not regression) and works very well
even on small amounts of training data. Because of COVID-19,
our access to participants to collect a diverse sample of training
data has been extremely limited, so we wanted a model that
would perform well without having to be trained on thousands
of samples to perform well. Because of this restriction, we ruled
out using a Neural Network, which is only as good as the
training data and can only recognize things it has seen before.
SVMs are also a form of unsupervised learning, which work
better for signal processing applications such as ours, as it will
be capable of doing its own feature extraction. This is another
area where SVMs will outperform Neural Networks for our
application. Furthermore, SVMs can work on data that is not
linearly separable, making them adaptable to a wider variety of
situations, especially since our classes share distinct features
and muscle patterns. For this reason, this model is easy to adapt
into higher dimensional space, unlike HMMs. We will also be
primarily analyzing signals in the Fourier basis, making the
sequential nature of HMMs not as applicable to us. Another
benefit of SVMs is that they do not weigh all features equally,
as we know that some features we extract will be more
meaningful than others. Particularly, some muscle movements
will be more meaningful for certain classifications. A drawback
of both Perceptron and KNN is that they provide the same
weight to all features, and SVMs are more flexible in that
regard.

C. Software Subsystem

Unity System
The Unity game triggers actions from a data stream from

UDP. A separate thread receives the data and processes the
active edge trigger, to change a state variable. Then, the main
thread does actions based on the changed states. Keeping the
main thread separate from the UDP Socket is important in
keeping the game running smoothly and fast.

Creating new objects in the virtual world and deleting them
are expensive processes in Unity because of the rendering,
meshes, object colliders and other background mechanisms that
need to be used and allocated. Thus, reusing already created
objects as much as possible is the preferred practice. This is the
approach used to generate roads for the endless Myo-Run game.
The map keeps a queued array of road segments of fixed size,

and when the player moves past one segment, the segment is
popped and pushed back in. This way the roads are being
reused, and the only objects that need to be re-created or re-
rendered are the obstacles and other feature objects. But these
also can be reused to optimize game run-time.

UDP vs. TCP/IP
 UDP is used as the communication protocol between Python
and Unity to deliver classification results because we need fast
delivery. This is at the cost of unreliable delivery compared
with TCP/IP, but we are constantly streaming classification
results to the game, so there is not as much of a need for reliable
delivery.

Modified UDP Client-Server Model
 In a typical UDP model, the Client request information and
the Server responds back with information. Following this
mechanism our initial plan was to have Unity request for data
from the Muscle Streamer, so Unity would be the Client, and
Muscle Streamer would be the Server. However the problem
with this is that before the Streamer can stream anything it
needs to wait until the Client sends something. This is
unnecessary because we just want the Streamer to stream
information to the designated port.
 This gets even more unnecessary when either one of the
Unity or Muscle Streamer get disconnected. One option is to
have Unity constantly request data and wait for response for
every transaction. Another option is to have Muscle Streamer
start streaming data after the first request, and have a timer for
Unity to know whether Unity is disconnected and request data
again. Both of the methods are inefficient and they revolve
around having Unity being the Client and Muscle Streamer
being the Server.

Fig. 4. Modified UDP Streamer Model

Instead our solution is to have the Muscle Streamer to be the
Client and Unity to be the Server. Shown in Figure #, Muscle
Streamer can just send data to a given port information, without
knowing whether the other side has received it. Meanwhile
Unity just listens for any incoming messages, receives data and

5
18-500 Progress Report: 10/19/2020

does not respond back. This cuts down the number of messages
by half. If we send N sequences of bytes, we send exactly N
packets over, making the time complexity to the bare minimum.

V. PROJECT MANAGEMENT

A. Schedule
The schedule for our project consisted of 4 main phases. The

detailed schedule can be found at the end of the report.

Phase 1: Project Proposal and Planning
During this phase, we created our project proposal and

arranged our Gantt chart and plan of action for the entire
semester project. We ordered one initial MyoWare electrode in
order to test it and verify that it would work for our intended
project, before comitting to using it for our entire design.
Additionally, we conducted a literature review on current state-
of-the-art surface EMG classification methods and existing
myoelectric controlled video games.

Phase 2: Design and Implementation
This phase consisted of the bulk of our project. The major

milestones we completed are outlined below.

Milestone #1: Proof of Concept / Hardware Prep
In this milestone, we worked with a single EMG electrode in

order to have a proof of concept test for the pipeline of our
project. We streamed the data from a single electrode into an
Arduino and sent it over to python in order to prepare for the
feature extraction and classification part of the project.

Milestone #2: Basic Integration
With the software development of the game well underway,

the Mock Muscle Controller was developed to help us test the
game independent of the muscle inputs. The basic integration
consists of classifying a binary EMG signal and integrating this
with the game.

Milestone #3: Full Implementation
The final milestone for phase 2 consists of developing the

classification model from the data collected using the EMG
system with five electrodes. The output of the signal is to be
integrated with the fully developed game.

Phase 3: Performance Testing and Integration
During this phase, we verify the functionality and accuracy

of our system, looking back at our metrics to see how closely
we met the requirements we set out for ourselves. The
classification accuracy and game delay are tested during this
phase. At the end of this phase is the Thanksgiving break, which
we took care to plan our schedules and availability around.
Following this, we want to ensure that all physical/hardware
aspects of our project are completed, as we will be in remote
instruction during that time.

Phase 4: Final Report
The final phase of our project is to compile all the results and

reflect on the outcome of our project. During this phase, we

create a final project demo video as well as write our final
report.

B. Budget

TABLE I. MAJOR COMPONENTS OF BILL OF MATERIALS

 For our hardware implementation, we use five individual
MyoWare Muscle Sensors to detect muscle activity, several
electrodes to connect the sensors to a participant’s skin, an
Arduino to intepret the analog signals of said activity, a USB
separator to isolate the participant from a computer and protect
them from being electrically shocked, and a miscellaneuos
assortment of tools and wires to connect everything and put our
system together.
 Moveover, we also used part of our budget to purchase a
Unity asset of predesigned characters, with certain animations
for given actions. We will use these to enhance the graphics
experience for the user and make the game more playable.

C. Risk Management
 Something important to our project’s success is the delay
between the user’s actions and when the game processes them.
This is our total delay, which we have broken down into two
distinct parts: classification delay and game delay. The
classification delay includes the time that it takes for the signal
to be read into the Arduino, sent to python, preprocessed, and
classified. The game delay includes the amount of time it takes
for the game to receive an input signal and act on it. For our
project, we want our total delay to be no more than 500 ms, with
no more than 250 ms for both the classification delay and the
game delay. However, we have measures to address not being
able to meet either of these goals. If our classification delay is
too large, we will work to improve our algorithm to make it
more efficient. One of our main approaches will be to
downsample our data. Because the frequencies being recorded
are of human muscle activity, they are quite low, and therefore
the Nyquist frequency is also low. This gives us the freedom to
downsample from the Arduino’s much faster sampling rate of
9.6 kHz. If our game delay is too large, then we will apply this
idea of downsampling to our approach of the game. We can
reduce the framerate, which will mean the game will not reload
itself as frequently, but will have more processing power
available. We can also work to optimize the code on the game
end, and simplify the procedural generation and complex
aspects of the game environment.

6
18-500 Progress Report: 10/19/2020

 An important part to ensuring good signal quality is having
low impedance on the electrodes [7]. A lower impedance will
lead to stronger signals and a better SNR, which will allow for
a higher classification accuracy. If our electrode impedance is
too high, then we will address this by employing a variety of
tactics common in medical device practices. These include
introducing electrolytic gel or conductive paste under the skin
electrodes [8], exfoliating and abrading the skin to remove dirt
and dead skin cells impeding the signal [9] , and removing body
hair impeding the signal. If all of these tactics fail to bring us
under our desired 20kΩ impedance; however, we are still able
to achieve our desired classification accuracy, then we will have
reached an impedance low enough to make our project work.
 A critical part of the game experience for the user is the
classification accuracy of our algorithm. If we are unable to
achieve our desired classification accuracy of 80%, then we
have measures in place to aid us into improving that. Firstly, we
will record more data, as introducing our machine learning
model to as much training data as possible will improve its
performance. We will particularly record more training data on
a variety of people, so that we can introduce a diverse
population set into our game to make it more adaptable and
diverse. This way, any participant would be able to play,
regardless of whether or not they were used to train the
classification algorithm they will be testing. Another approach
to improving classification accuracy will be introducing more
electrodes, particularly on different muscles on the surface of
the arm. Adding another muscle into our system will create
another class of features to extract, such that we can make our
algorithm more precise in its ability to pattern match. More
electrodes will allow for a broader range of feature extraction.

VI. RELATED WORK

 While there are not any specific myoelectric control games
available on the market, there is the Myo Armband developed
by Thalmic Labs which has been used to interface with
myoelectric control projects, or work as a handsfree
presentation remote, which is currently sold on Amazon [9].

REFERENCES

[1] Moritani, T., Stegeman, D. and Merletti, R. (2005). Basic
Physiology and Biophysics of EMG Signal Generation. In
Electromyography (eds R. Merletti and P. Parker).
doi:10.1002/0471678384.ch1

[2] Klein, Cliff S et al. “Editorial: Electromyography (EMG)
Techniques for the Assessment and Rehabilitation of
Motor Impairment Following Stroke.” Frontiers in
neurology vol. 9 1122. 18 Dec. 2018,
doi:10.3389/fneur.2018.01122

[3] Hermens, H., B. Freriks, R. Merletti, D. Stegeman, J.
Blok, G. Rau, C. Disselhorst-Klug, and G. Hägg,
European recommendations for surface
electromyography, Roessingh Research and
Development, Enschede, Netherlands, 1999.

[4] Andrews, A, E Morin, and L McLean. “Optimal Electrode
Configurations for Finger Movement Classification Using
EMG.” 2009 Annual International Conference of the

IEEE Engineering in Medicine and Biology Society 2009
(2009): 2987–2990. Web.

[5] Y. Geng, L. Yu, M. You and G. Li, "A Pilot Study of
EMG Pattern Based Classification of Arm Functional
Movements," 2010 Second WRI Global Congress on
Intelligent Systems, Wuhan, 2010, pp. 317-320, doi:
10.1109/GCIS.2010.125.

[6] Nunez, P., & Srinivasan, R. (2006-01-26). Electric Fields
of the Brain: The neurophysics of EEG. : Oxford
University Press. Retrieved 19 Oct. 2020, from
https://oxford.universitypressscholarship.com/view/10.10
93/acprof:oso/9780195050387.001.0001/acprof-
9780195050387.

[7] Brigham, Danielle et al. “Comparison of artifacts between
paste and collodion method of electrode application in
pediatric EEG.” Clinical neurophysiology practice vol. 5
12-15. 30 Nov. 2019, doi:10.1016/j.cnp.2019.11.002

[8] Lukaski, Henry C, and Micheal Moore. “Bioelectrical
impedance assessment of wound healing.” Journal of
diabetes science and technology vol. 6,1 209-12. 1 Jan.
2012, doi:10.1177/193229681200600126

[9] https://www.amazon.com/Thalmic-Labs-Gesture-
Control-Presentations/dp/B00VHWBH02

https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780195050387.001.0001/acprof-9780195050387
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780195050387.001.0001/acprof-9780195050387
https://oxford.universitypressscholarship.com/view/10.1093/acprof:oso/9780195050387.001.0001/acprof-9780195050387
https://www.google.com/url?q=https://www.amazon.com/Thalmic-Labs-Gesture-Control-Presentations/dp/B00VHWBH02&sa=D&ust=1603165395159000&usg=AOvVaw1Pfj0oSRUBMwyQmn-ndewI
https://www.google.com/url?q=https://www.amazon.com/Thalmic-Labs-Gesture-Control-Presentations/dp/B00VHWBH02&sa=D&ust=1603165395159000&usg=AOvVaw1Pfj0oSRUBMwyQmn-ndewI

1
18-500 Progress Report: 10/19/2020

