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Abstract— 

THE objective of our capstone is to create a system capable of 
controlling a video game environment using only the electrical signal 
from forearm muscle action. We decided to create a new form of 
controlling user movement in a videogame setting using an EMG 
system with five electrodes arranged on specific muscles on the 
forearm. The collection of these signals were classified into left, right, 
up and down movements that function as inputs to the control of the 
user in an endless-runner style video game. This novel form of video 
game control creates an exciting experience for the user.

Index Terms— 
Arduino
Electromyography (EMG)
Muscle Sensor, Signal to Noise Ratio (SNR)
Unity
User Datagram Protocol (UDP) Streaming

I. INTRODUCTION

    Decoding and extracting the information contained in 
bioelectrical signals is a continually studied area of research. 
Electromyography, or EMG, technology allows us to detect 
signals generated by skeletal muscles from the surface of the 
skin. One of the initial areas of application of EMG signals was 
driving input for the control of powered upper limb prostheses, 
which came to be known as myoelectric control [1]. Many 
common computer and videogames today are played with an 
external controller such as a keyboard or game controller. 
    For our project, we were interested in applying myoelectric 
control to the novel area of video game control. This application 
area is important because it has the potential for broader impact 
for people with impaired movement skills, as well as has the 
potential for impact in rehabilitation of motor impairment 
following stroke [2]. We developed a hardware EMG system 
using 5 electrode pairs on distinct muscles in the forearm. EMG 
signals collected from trials of different wrist and forearm 
movements were used to train and test a machine learning 
classification model in order to identify hand movements as 
inputs to the virtual game. Designing a novel game controlling 
technique interfacing with the human body meant that our 
system was susceptible to the intricacies of the human body 
system. To combat this, we collected training data from various 
subjects in order to make the model robust enough to work for 
different people.
    The software portion of the game had to be developed in 
parallel, thus in order to test the system independently without 
the muscle guided signal inputs, a Mock Muscle Controller was 

designed to simulate game inputs and test the functionality of 
the frontend of the project. 
    Our final capstone goal was to develop a surface EMG 
system for the forearm that controls user movement in a virtual 
game environment. Through simultaneous game development 
and machine learning algorithm modification, we created a 
robust myoelectric control video game. We hoped to meet the 
specifications of keeping the EMG system impedance under 
20kΩ, while meeting high classification accuracy of over 80% 
and meeting low classification and game latency, keeping the 
game delay under 500 ms.  

II. DESIGN REQUIREMENTS

    Project requirements can be broken down to requirements for 
the Muscle hardware, Signal Processing, and Game Software.
    The first hardware standard requirement we would like to 
highlight is keeping the impedance of the EMG system under 
20kΩ. It is the standard in medicine for impedances to be under 
20kΩ for electronic devices, so this was an important metric we 
set for ourselves. We will measure the impedance of the actual 
hardware itself, without any electrical input, using the 
impedance function of a multimeter. In the event that we need 
to decrease our electrode’s impedance, we will employ 
techniques commonly practiced in EMG labs, including 
cleaning and abrading the skin, and applying conductive 
electrolytic paste as needed. This requirement is important to 
ensure a better SNR, because cleaner signals are easier to 
process and classify. This metric is in place to ensure 
classification accuracy.
    Second, we require the classification accuracy to be greater  
than or equal to 80%. This means that four out of every five 
muscle movements we make will be classified correctly. This 
will be measured by repetitively testing all possible inputs, and 
keep track of the output from the classification algorithm. This 
is an important metric to meet for this project, so we will 
considerably iterate on the algorithm as it develops through the 
design process. If we struggle to meet our objective, we will 
optimize our algorithm and record more training data from 
diverse samples in order to make the algorithm more robust. If 
needed, we will add more electrodes into our system because 
having more features will give our model more information to 
train on, leading to an improved classification accuracy.
    In addition, it is important to reduce the classification delay 
as much as possible, specifically we expect the delay from 
utilizing the classification model we develop to fit into the total 
system delay to be under 250ms. Given that the game delay 
should not be significantly large, the classification delay should 
reduce as our model reaches a higher classification accuracy. 
Collecting and incorporating as much training data as possible 
into our model will ensure the accuracy and reduce the delay 
experienced through using our system.
    Next we require the Game Delay to be less than or equal to 
250 ms. Game Delay is defined to be the time between when 
messages get sent off through the UDP channel, and when the 
change in the character’s state in the game is visible. Human 
response time for a negligible latency is known to be 250ms, so 
this will be our requirement. We have developed the Mock 
Muscle Controller that will be used to send sample input data 
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over to Unity. This will be used for a measurement independent 
of the Hardware, allowing for a specific and accurate 
measurement of the Software side of performance.
    The final metric is the Total System Delay to be less than or 
equal to 500ms. Total System Delay is the latency of the entire 
system, which is the time between when a muscle is fired and 
when the change in the character’s state in the game is visible. 
From the diagram in Fig. 1, when a muscle is fired, the signals 
are converted to digital inputs, which then goes to ML and DSP 
models, to the UDP Channel, and finally to the Unity game. The 
Total System Delay is measuring the entire latency, which 
ultimately affects the playability and performance of the 
project.

III. ARCHITECTURE AND/OR PRINCIPLE OF OPERATION

    The overall system is a one-way stream from Muscle Activity 
to Game Action. When the user moves muscles where N 
electrodes are placed, the Muscle Sensor reads analog EMG 
readings from the N electrodes and gets amplified and 
converted into digital signal in Arduino. The raw digital signal 
of N channels is sent over to Python, and Wavelet Transform, 
PCA, STFT methods are used to extract features from the 
signals. Classification Algorithms such as Support Vector 
Machine (SVM) are used to classify the feature signals into 
Flexion, Extension, Pronation, Supination. The classification 
results in bytes are then sent over to Unity in UDP protocol, 
which is then used to trigger action on the game on active edge.

Fig. 1. Overall System Design

The software has an inherent dependency with the 
hardware because the system is a constant one-directional 
stream from the hardware to software. Without a hardware side 
to provide inputs to control the game, the game is unable to be 
played. While the project’s final goal is to get both sides 
functional, Mock Muscle Controller is developed to test for 
Software functionality.

Fig 2. Diagram of Mock Muscle Controller

    The Mock Muscle Controller simulates real Classification 
Results by sending off sequences of bytes that we expect to see 
from the real classifier. The controller application, written with 
the pygame library, listens for keyboard inputs - left, right, up, 
and down arrows - each arrow keys represents the classification 
result. For example, Up arrow maps to the class Pronation, 
which maps to byte (0x03). 
    The Mock Muscle Controller is useful because it allows for 
parallel development between the Software and the Signals, 
allowing the team to make progress without having to wait for 
one another. Another benefit is that such blackbox testing 
allows the 2 development lines, Software and Signals, to be 
made in tandem without relying on one another. One can 
constantly make progress and proceed without having to wait 
for another. Such separation help the team test and integrate 
easily. Another benefit of the Mock Muscle Controller is that it 
can test metrics independent of the Hardware side, and test 
specifically for the latency in the UDP and the game only.

IV. DESIGN TRADE STUDIES AND SYSTEM DESCRIPTION

A. Hardware Subsystem
    The first part of our system begins when the user performs a 
muscle movement. The activity in their muscles will be read 
and recorded by the array of muscle sensors on their arms. 
These signals are read into Arduino IDE using the ADCs on the 
Arduino Nano microcontroller. From there, they are sent 
directly into python to be analyzed.

After the signal data has been sent to the python, it will 
be preprocessed via the Wavelet Transform then the STFT to 
change the basis of the signal and extract its features. From 
there, these extracted features will be used as inputs into the 
SVM algorithm, where they will be classified as a muscle 
movement mapping to a game control.

Electrodes
    A key component of our EMG system is the electrodes we 
use. For our project, we chose to use the Covidien EMG/EKG 
pads. Like many electrode pads, they are self-adhesive and 
come with silver/silver chloride tabs built into them, providing 
easy integration with our snap electrode wires and amplifier. 
Unlike most conventional self-adhesive electrode pads, these 
come with electrolytic gel designed into the electrode itself. 
This will allow for greater conductivity on the surface of the 
skin, which will reduce the impedance of our system and lead 
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to a higher SNR, which will make our signals clear and our 
classifications more accurate. Without the electrolytic gel, the 
spatial frequencies between the two electrodes would be more 
difficult to measure.

Sensors
    For our project, we employed the use of the MyoWare 
Muscle Sensor [3]. This is an embedded EMG system that 
measures the activity at a single muscle in the body. It is made 
up of two electrodes, about 2 cm apart, which record the 
resistance and spatial frequencies between them. This is how 
muscle activity is measured. The entire system references a 
ground electrode, meant to be separated from the muscle in 
question. This allows all noise that the system experiences to be 
filtered out using the ground electrode as a reference to the rest 
of the system. It also has a builtin amplifier, which is critical in 
a system sensitive to noise. Amplifying the signal as close to 
the source as possible will lead to a higher SNR, which is 
important for having a high classification accuracy. Letting the 
signal travel any amount means exposing it to more and more 
power deterioration and noise, which will result in a weaker, 
noisier signal. We took care to choose a system with amplifiers 
patches right at the signal source, taking full advantage of the 
signal strength. Furthermore, the MyoWare Muscle Sensors are 
individual embedded systems, which gives us the adaptability 
to easily shift our electrode placements and make our system 
modular. We chose to have the ability to place a small number 
of electrodes in a few key locations. An alternative design we 
considered was an EMG sleeve, which would put a higher 
density of electrodes in one place, and have a single amplifier 
for all of the multiplexed signals. However, this would limit us 
to working with a single muscle or group of muscles. It would 
also not have the benefit of amplifying directly at the signal 
source (albeit fairly close) and would not offer us the 
modularity of picking what muscles we wanted to use.

Microcontroller
    For our project, we needed a microcontroller capable of 
reading the analog signals from our muscle sensors. We 
considered a variety of Microcontroller options, including the 
Raspberry Pi, SparkFun RedBoard, Adafruit Feather M0, and 
the Arduino Uno/Mega/MKRZero. Ultimately, we decided on 
using the Arduino Nano. It is capable of reading up to eight 
analog signals at once, each with an ADC sampling rate of 9.6 
kHz, making it ideal for our EMG electrode system. It is also 
small and headerless, making it easily portable with the 
flexibility to be made into a wearable device. It has a 5V power 
rating, which also makes it compatible with our muscle sensors. 
The Arduino specifically comes with Arduino IDE, and easy 
support for coding the system. As hardware is not the main 
focus of our project, we wanted a reliable platform that would 
allow us to focus on the software and signals aspects of our 
work; therefore, we chose to use Arduino over other platforms, 
as it allowed us the flexibility to easily set up our hardware and 
dedicate our time to collecting and analyzing our data.

B. Data Collection & Classification Subsystem

Electrode Placements
    Another critical design decision that we made for this project 
was where on the forearm we intended to place the electrode 
pair components for the EMG system. As an initial idea, we 
intended to use an array of eight electrode pairs along the 
forearm, beginning 2-3 centimeters from the elbow and 
extending down to a few inches above the wrist. They would be 
arranged in a circular formation around the forearm. As gleaned 
from previous EMG experiment research papers, with a 
recommended interelectrode difference of 20mm as to avoid 
crosstalk and enhance SNR [4]. After reviewing additional 
research papers to discover the best electrode configuration for 
our use case, we decided to alter our design to utilize five 
electrode pairs instead of eight. This was motivated by 
collecting fewer extraneous muscular signals, given the four 
specific wrist/forearm movements we selected to use to control 
our game. We decided to place the five electrodes directly on 
the muscles that are activated during these specific movements, 
including the Brachioradialis, Flexor Carpi Radialis, Flexor 
Carpi Ulnaris, Extensor Carpi Ulnaris, Extensor Digitorum, as 
shown in Fig. 3.

Fig. 3. This figure showcases the location of the five muscles in the forearm 
that will be recorded as well as the location of where the electrodes will be 

placed on the surface of the

Feature Extraction
    The best features to classify the EMG signals from the 
forearm were selected through reading through existing 
literature about EMG classification. The best features that we 
selected to incorporate were Principal Component Analysis 
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(PCA) for dimensionality reduction, Wavelet Transform (WT), 
and Short Time Fourier Transform (STFT) [5]. Other feature 
extraction methods that were considered were root-mean-
square, time-domain features such as mean absolute value and 
number of zero crossings, however it was determined that the 
features that we selected, particularly WT, yielded the best 
classification accuracy [6].

Classification
    For our classification algorithm, we wanted a machine 
learning model that was well suited to our project and resources. 
We considered a variety of models, including K Nearest 
Neighbors (KNN), Perceptron, Neural Networks, and Hidden 
Markov Models (HMMs). Ultimately, we decided on using a 
Support Vector Machine (SVM). This model in particular is 
suited to classification (not regression) and works very well 
even on small amounts of training data. Because of COVID-19, 
our access to participants to collect a diverse sample of training 
data has been extremely limited, so we wanted a model that 
would perform well without having to be trained on thousands 
of samples to perform well. Because of this restriction, we ruled 
out using a Neural Network, which is only as good as the 
training data and can only recognize things it has seen before. 
SVMs are also a form of unsupervised learning, which work 
better for signal processing applications such as ours, as it will 
be capable of doing its own feature extraction. This is another 
area where SVMs will outperform Neural Networks for our 
application. Furthermore, SVMs can work on data that is not 
linearly separable, making them adaptable to a wider variety of 
situations, especially since our classes share distinct features 
and muscle patterns. For this reason, this model is easy to adapt 
into higher dimensional space, unlike HMMs. We will also be 
primarily analyzing signals in the Fourier basis, making the 
sequential nature of HMMs not as applicable to us. Another 
benefit of SVMs is that they do not weigh all features equally, 
as we know that some features we extract will be more 
meaningful than others. Particularly, some muscle movements 
will be more meaningful for certain classifications. A drawback 
of both Perceptron and KNN is that they provide the same 
weight to all features, and SVMs are more flexible in that 
regard.

C. Software Subsystem

Unity System
The Unity game triggers actions from a data stream from 

UDP. A separate thread receives the data and processes the 
active edge trigger, to change a state variable. Then, the main 
thread does actions based on the changed states. Keeping the 
main thread separate from the UDP Socket is important in 
keeping the game running smoothly and fast.

Creating new objects in the virtual world and deleting them 
are expensive processes in Unity because of the rendering, 
meshes, object colliders and other background mechanisms that 
need to be used and allocated. Thus, reusing already created 
objects as much as possible is the preferred practice. This is the 
approach used to generate roads for the endless Myo-Run game. 
The map keeps a queued array of road segments of fixed size, 

and when the player moves past one segment, the segment is 
popped and pushed back in. This way the roads are being 
reused, and the only objects that need to be re-created or re-
rendered are the obstacles and other feature objects. But these 
also can be reused to optimize game run-time.

UDP vs. TCP/IP
    UDP is used as the communication protocol between Python 
and Unity to deliver classification results because we need fast 
delivery. This is at the cost of unreliable delivery compared 
with TCP/IP, but we are constantly streaming classification 
results to the game, so there is not as much of a need for reliable 
delivery. 

Modified UDP Client-Server Model
    In a typical UDP model, the Client request information and 
the Server responds back with information. Following this 
mechanism our initial plan was to have Unity request for data 
from the Muscle Streamer, so Unity would be the Client, and 
Muscle Streamer would be the Server. However the problem 
with this is that before the Streamer can stream anything it 
needs to wait until the Client sends something. This is 
unnecessary because we just want the Streamer to stream 
information to the designated port. 
    This gets even more unnecessary when either one of the 
Unity or Muscle Streamer get disconnected. One option is to 
have Unity constantly request data and wait for response for 
every transaction. Another option is to have Muscle Streamer 
start streaming data after the first request, and have a timer for 
Unity to know whether Unity is disconnected and request data 
again. Both of the methods are inefficient and they revolve 
around having Unity being the Client and Muscle Streamer 
being the Server. 

Fig. 4. Modified UDP Streamer Model

Instead our solution is to have the Muscle Streamer to be the 
Client and Unity to be the Server. Shown in Figure #, Muscle 
Streamer can just send data to a given port information, without 
knowing whether the other side has received it. Meanwhile 
Unity just listens for any incoming messages, receives data and 
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does not respond back. This cuts down the number of messages 
by half. If we send N sequences of bytes, we send exactly N 
packets over, making the time complexity to the bare minimum.

V. PROJECT MANAGEMENT

A. Schedule
The schedule for our project consisted of 4 main phases. The 

detailed schedule can be found at the end of the report. 

Phase 1: Project Proposal and Planning
During this phase, we created our project proposal and 

arranged our Gantt chart and plan of action for the entire 
semester project. We ordered one initial MyoWare electrode in 
order to test it and verify that it would work for our intended 
project, before comitting to using it for our entire design. 
Additionally, we conducted a literature review on current state-
of-the-art surface EMG classification methods and existing 
myoelectric controlled video games.

Phase 2: Design and Implementation
This phase consisted of the bulk of our project. The major 

milestones we completed are outlined below.

Milestone #1: Proof of Concept / Hardware Prep
In this milestone, we worked with a single EMG electrode in 

order to have a proof of concept test for the pipeline of our 
project. We streamed the data from a single electrode into an 
Arduino and sent it over to python in order to prepare for the 
feature extraction and classification part of the project.

Milestone #2: Basic Integration
With the software development of the game well underway, 

the Mock Muscle Controller was developed to help us test the 
game independent of the muscle inputs. The basic integration 
consists of classifying a binary EMG signal and integrating this 
with the game.

Milestone #3: Full Implementation
The final milestone for phase 2 consists of developing the 

classification model from the data collected using the EMG 
system with five electrodes. The output of the signal is to be 
integrated with the fully developed game.

Phase 3: Performance Testing and Integration
During this phase, we verify the functionality and accuracy 

of our system, looking back at our metrics to see how closely 
we met the requirements we set out for ourselves. The 
classification accuracy and game delay are tested during this 
phase. At the end of this phase is the Thanksgiving break, which 
we took care to plan our schedules and availability around. 
Following this, we want to ensure that all physical/hardware 
aspects of our project are completed, as we will be in remote 
instruction during that time.

Phase 4: Final Report
The final phase of our project is to compile all the results and 

reflect on the outcome of our project. During this phase, we 

create a final project demo video as well as write our final 
report.

B. Budget

TABLE I. MAJOR COMPONENTS OF BILL OF MATERIALS

    For our hardware implementation, we use five individual 
MyoWare Muscle Sensors to detect muscle activity, several 
electrodes to connect the sensors to a participant’s skin, an 
Arduino to intepret the analog signals of said activity, a USB 
separator to isolate the participant from a computer and protect 
them from being electrically shocked, and a miscellaneuos  
assortment of tools and wires to connect everything and put our 
system together.
   Moveover, we also used part of our budget to purchase a 
Unity asset of predesigned characters, with certain animations 
for given actions. We will use these to enhance the graphics 
experience for the user and make the game more playable.

C. Risk Management
    Something important to our project’s success is the delay 
between the user’s actions and when the game processes them. 
This is our total delay, which we have broken down into two 
distinct parts: classification delay and game delay. The 
classification delay includes the time that it takes for the signal 
to be read into the Arduino, sent to python,  preprocessed, and 
classified. The game delay includes the amount of time it takes 
for the game to receive an input signal and act on it. For our 
project, we want our total delay to be no more than 500 ms, with 
no more than 250 ms for both the classification delay and the 
game delay. However, we have measures to address not being 
able to meet either of these goals. If our classification delay is 
too large, we will work to improve our algorithm to make it 
more efficient. One of our main approaches will be to 
downsample our data. Because the frequencies being recorded 
are of human muscle activity, they are quite low, and therefore 
the Nyquist frequency is also low. This gives us the freedom to 
downsample from the Arduino’s much faster sampling  rate of 
9.6 kHz. If our game delay is too large, then we will apply this 
idea of downsampling to our approach of the game. We can 
reduce the framerate, which will mean the game will not reload 
itself as frequently, but will have more processing power 
available. We can also work to optimize the code on the game 
end, and simplify the procedural generation and complex 
aspects of the game environment.
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    An important part to ensuring good signal quality is having 
low impedance on the electrodes [7]. A lower impedance will 
lead to stronger signals and a better SNR, which will allow for 
a higher classification accuracy. If our electrode impedance is 
too high, then we will address this by employing a variety of 
tactics common in medical device practices. These include 
introducing electrolytic gel or conductive paste under the skin 
electrodes [8], exfoliating and abrading the skin to remove dirt 
and dead skin cells impeding the signal [9] , and removing body 
hair impeding the signal. If all of these tactics fail to bring us 
under our desired 20kΩ impedance; however, we are still able 
to achieve our desired classification accuracy, then we will have 
reached an impedance low enough to make our project work.
    A critical part of the game experience for the user is the 
classification accuracy of our algorithm. If we are unable to 
achieve our desired classification accuracy of 80%, then we 
have measures in place to aid us into improving that. Firstly, we 
will record more data, as introducing our machine learning 
model to as much training data as possible will improve its 
performance. We will particularly record more training data on 
a variety of people, so that we can introduce a diverse 
population set into our game to make it more adaptable and 
diverse. This way, any participant would be able to play, 
regardless of whether or not they were used to train the 
classification algorithm they will be testing. Another approach 
to improving classification accuracy will be introducing more 
electrodes, particularly on different muscles on the surface of 
the arm. Adding another muscle into our system will create 
another class of features to extract, such that we can make our 
algorithm more precise in its ability to pattern match. More 
electrodes will allow for a broader range of feature extraction.

VI. RELATED WORK

    While there are not any specific myoelectric control games 
available on the market, there is the Myo Armband developed 
by Thalmic Labs which has been used to interface with 
myoelectric control projects, or work as a handsfree 
presentation remote, which is currently sold on Amazon [9].
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