
​Abstract​—​A system capable of real time translation of American
Sign Language to English using machine learning, computer
vision and web application development

 Index Terms​—​Deep Learning, Neural Network, Image
Processing, Feature Extraction, Edge Detection, Image
Smoothing, Background Subtraction

I. I​NTRODUCTION

This project is motivated by the need for
communication between hearing and
hearing-disabled individuals. Its goal is to provide a
consistent, easy-to-use program that facilitates this
communication in real-time. In order to do so, we
have defined a 29 word lexicon of recognizable
signs: the letters A-Z, space, delete and an empty
sign. Many of the competing technologies in this
area are hardware and software based, requiring the
use of glove or wearable technology to increase
accuracy of reading. On the other hand, our
approach avoids additional hardware requirements
since we aimed for our final product to be more
widely accessible to users. Instead, we use raw
camera frames to extract the hand and the important
features to use for recognition. This way, there is no
extra technology required other than a device with a
camera that can access a browser.

Our application is made to classify static
hand signs that represent letters. Static signs are
stationary signs that only require a single frame to
capture and consist of most letters and numbers as
well as a few words. By capturing single letters
along with spaces and deletes, we allow the users to
build more complex phrases with significantly less
knowledge of the ASL language as a whole. As an
initial goal, we intended for our app to correctly

classify static signs with at least 90% accuracy.
Furthermore, recognition and feedback should aim
to happen within 1 second of the end of a gesture.
The detection should also be scale and translation
invariant so that signs made from 1 to 3 feet of the
camera should be recognized so as to allow user
flexibility. Additionally, users must be signing in a
bright enough area so that the images can be
properly detected.

II. D​ESIGN​ R​EQUIREMENTS

The key technical challenges include
successfully recognizing the ASL hand signs as
words, in relatively noiseless environments that are
consistent in lighting, angle, and interfering objects
in the background. Since a language includes many
words and phrases, we have decided to limit the
capacity of our project to recognize the letters and a
subset of the words in ASL so that we can train the
program within a reasonable time frame.
Specifically, we planned to recognize 29 unique
static signs that are required for basic written
communication. Since we want the app to recognize
signals within a reasonable real time constraint, we
would not want to generate an output with too many
classes because an unrealistically high number of
output classes could introduce more similar signs
that could be confused together and increase the
size of the neural network, which could slows down
response time such that it longer operates within
real time requirements.

In order to meet these timing constraints, we
implemented image processing and feature
extraction algorithms so that our neural network can

train and operate on video data in a reasonable time
frame. The methods of image processing deal with
edge detection, image smoothing, frame subtraction
and background subtraction.

There are many words in ASL that are
motions as opposed to single frame pictures, also
known as dynamic signs, which presented
challenges in both feature representation and
building the predictor model. Initially, we planned
on creating multi-frame videos that would define
our input space with dynamic sign labels that define
the output class. After testing and experimenting
with this kind of design, we found that especially in
the dynamic sign classification problem, we would
need more reliable feature extraction in order for
this kind of endeavor to be realizable. So one
example of the feature extraction methods we
attempted was extracting the locations of the joints
in the fingers and wrists, so that we could defer the
work of learning important features of the input
image to another convolutional neural network that
operates independently of the classification stage.
This would also allow the input vector to be
sufficiently small so that we could train a large
network fairly efficiently. In fact, without this
feature engineering scheme, training on large image
files would have been very difficult. Ideally, we
could use this feature extraction across the frames
of a video feed so that we could analyze each frame
and train the neural net based on those features.

Accuracy testing involved reserving a subset
of the training data to use as the validation set,,
upon which the accuracy is evaluated each epoch.
Cross validation methods, such as varying the
subset of the training data to be used as the
validation set, was useful in tuning the
hyperparameters of our network to optimize both
accuracy and computation speed, which are the
measurable qualities of the classification stage as
conflicting sides of the accuracy-speed tradeoff.
Test data came from both untrained samples of the
existing data set and manual testing by us directly to

test compatibility with varied distances, light
settings, hand shapes and colors, and backgrounds
to ensure the generalizability of the network. We
planned to use binary correctness classification as
well as Top K classification, in which correctness
equates to the correct label belonging in the set of
the K most likely outputs. However, it turned out
that the binary correct versus incorrect metric was
sufficient enough for measuring the network since
the performance exceeded our expectations.

III. A​RCHITECTURE​ ​AND​/​OR​ P​RINCIPLE​ ​OF​ O​PERATION

A. OVERVIEW

Our system architecture can best be broken
down into two stages. The actual training occurs in
the latter of the two, in the classification stage,
where the neural network is fed data in order to
learn. The datasets we used were composed of
3000 instances of each of the 29 hand signs we
planned on recognizing. Since the gathering of the
data manually would have taken too much effort
and time given the scope of the project and how
much time we had to budget, we primarily relied on
publicly available datasets such as the Kaggle ASL
Alphabet dataset built by Akash Nagaraj (6). By
using these datasets to train the dataset, we could
focus our effort on the algorithmic portion of the
endeavor. In the first stage of the workflow, this
data is sent to the web-app for preprocessing and
feature engineering of a representation that is
suitable for good training. Since these datasets
consist of all single frame images, we can perform a
universal preprocessing sequence on the images so
that the data we feed into the neural net does not
pick up irrelevant noise from the background of the
dataset or suffer from a lack of generalizability.
This same sequence was run on a statically defined
portion of the video frame that is marked as the
signing region at test time in addition to background
subtraction to clean the bounding box of noise.
Therefore, we would be able to identify where the

sign exists relative to the global image without
using too many resources or imposing too
uncomfortable a restriction on the user.

B. I​MAGE​ ​PROCESSING

The actual process of image processing is a
combination of edge detection and background
subtraction. The edge detection was implemented
through the use of Gaussian blurs and Canny edge
detection, which both blur the image to reduce noise
and detect harsh changes in the frame as the edges.
From there we ran a background subtraction
algorithm that calculates the average of frames to
determine a static background from a moving
foreground. The algorithm then subtracts out the
background to create a mask of the moving image,
or in our case the hand sign being displayed.

For the specifics of the Gaussian blur, we
would convert the RGB (red, green, blue) input
image to GRY (grayscale) which changes the three
channel image to an image described by a single
weight of each pixel. The weight ranges of this new
GRY image were between 0 and 255, and
represented how light or dark the image appears at
the pixel. From there, we fed the GRY image into
the Gaussian blur to smooth the edges of the image.
After much experimentation, we used a kernel size
of 7x7 pixels with a standard deviation in the x-axis
of 2. This means that every pixel is averaged with
the 7x7 block around it in order to determine the
average value of the image around this pixel and
adjust the pixel accordingly.

Figure: Background Subtraction

After the image has been blurred, we feed
the result into a canny edge detection algorithm
with upper and lower bounds of 50 for the

hysteresis procedure as well as aperture size of 3.
We decided on an equal upper and lower bound to
remove the hysteresis procedure, since the image
blurring helps remove the need for it. The red
boundary line in the figure below indicates that all
pixels with an intensity gradient less than minVal
are surely not considered as edges while the blue
boundary line indicates that all pixels with an
intensity gradient above maxVal are guaranteed to
be edges. If the gradient falls between threshold
lines, the detector considers adjacent pixels and
connectivity in a more sophisticated classification
procedure.

Figure: Canny Edge Detection Thresholds

The procedure also affected our image processing
efficiency so by setting this empty range we were
able to reach faster analysts speeds. The edge
detection algorithm also transforms the image into a
binary representation of the original, where pixels
are either black or white. The white pixels represent
the areas in which there are harsh changes to the
frame, which can be construed to be edges. As can
be seen in Figure 3.3, this means that objects in the
background, such as a picture frame, will be
detected as edges and represented in the final
product.

Figure: Canny Edge Detection without Background
Subtraction

By running this process on all of the images
both during training and in use, we achieve multiple
different advantages for our system in terms of
execution speed and overall correctness. Firstly,
background subtraction accomplished generalizing
the background of the inputs to the network. The
Kaggle ASL dataset is produced by one signer
under various light conditions with the same
background. This dataset on its own without
preprocessing lacks variety and comprehensiveness.
When we kept the background in the test inputs, we
observed much lower success rates during
evaluation. This can be explained by the fact that
the neural network has never been exposed to signs
where the background has never been seen before.
While it is true that the network is able to identify
the features that distinguish the classes in the
training dataset, background subtraction essentially
equalizes the backgrounds of both training and test
inputs to an empty background. Since our dataset
consisted of images with only a single background,
training on the raw train images would have caused
the network to become over-familiar with that
background, and be unable to generalize to all
backgrounds. Thus, assuming that the background
subtraction does not accidentally delete edges of the
hand it is strictly better to include it for higher
accuracy gains, as the features that are irrelevant to
the classification could be filtered out.

The edge detection serves to further filter

the noise that is unimportant, such as the skin color
of the signer and the lighting conditions. Knowing
that the only features needed to identify a hand sign
is the shape of the hand itself, we decided that using
edges to show the shape of the hand would be able
to unify images of the same sign where variables
such as skin color and lighting may vary. As a
welcome side effect, this technique also allows us
reduce the dimensionality of the image since instead
of triples with values in the range [0, 255], each
pixel would simply be a single binary scalar that
represents whether there is an edge at this pixel.
When we compare the results of our edge detection
with the combined background subtraction, we
could resolve an image that contains a more reduced
background without losing much of the hand’s
image. An example can be seen in Figure 3.4. From
this example, using the same background as Figure
3.3, we can see that the background picture frame
has been removed from the image without losing
the shape or definition of the hand itself.

C. C​LASSIFICATION

The final neural network model was built
off of the Inception-V3 network architecture,
Google’s third edition of the Inception
Convolutional Neural Network series. We chose
this network structure since it is well known for its
state of the art accomplishments in object
recognition tasks, demonstrated by its results in the
ImageNet Recognition Challenge, which extends
well to our intended use. As a 42-layer deep
network with a relatively small 23 million

parameters, the InceptionV3 is able to achieve
classification results similar to that of other
networks such as VGG16 and AlexNet which have
180 million and 60 million parameters respectively.
With special optimizing features such as an
auxiliary classifier, smaller factorized convolutions,
and batch normalization layers, and label
smoothing, the InceptionV3 model is optimal for
situations where limited training time is available
and predictions must be made within timing
constraints. By using this pre-structured network,
we were able to then add our own layers after the
network in order to further promote learning.
Specifically, we flattened the output of the
InceptionV3 base model, added a dropout with 0.5
probability to reduce overfitting, added a fully
connected layer in between the Inception-V3
network and the output layer, and generated
probabilities over 29 classes with softmax activation
for categorical outputs.

As we decided to adapt the InceptionV3
network, we also tested the same modification
layers at the end to the VGG-16 and AlexNet
architectures since those have also had successful
applications in image recognition. After initial
testing all of these structures and comparing both
accuracy and efficiency, we found that the
Inception-V3 network generated the highest
validation accuracy in a moderate and manageable
amount of time. In short, these constraint factors
specific to our problem advised how we chose to
design our system architectures.

D. W​EB​ A​PPLICATION

Building a native android app for our project was
one option we considered but we decided to build a
web app for our ASL interpreter as it would be
more accessible from multiple devices than native
apps.

We chose to build this app using the Django

framework because of the ease of use of python and
the OpenCV api that is available for it. It also
handles both the frontend and backend and reduces
work. The app has a simple layout, showing a live
feed of the user signing and a highlighted area
where signs are interpreted in real time.

In figure 3.2, we show a high-level design of
the data flow when a user is using the system. In
order to send the video feed to the Django
web-application, we used an IP Webcam object.
The IP Webcam streams the video feed to an IP on
the local network that is then picked up by the
Django web-app and analyzed by the image
processor. The result of image processing is then
fed into the neural network classifier, giving a
prediction of the displayed sign.

IV. D​ESIGN​ T​RADE​ S​TUDIES

As the architectural choices to be made in
our project are entirely software, they can be
reconfigured and redesigned with much more ease

and free of cost. This means we have more liberty
to consider other design choices and evaluate them
during the realization and production process and
shift gears if we find that another approach is more
optimal than the current one. The only substantial
cost of making design chances would be time since
training convolutional neural networks take time.
Thus, we allocated a safely large portion of the
budget towards AWS credits for GPU access to
train networks with different architectures quickly
and in parallel.

Initially, we had planned to develop a
system that would be able to classify static signs
along with dynamic signs, which are signs that
require movement as opposed to a stationary
picture. In terms of the model input, this requires
multiple frames concatenated into a three
dimensional array, as deep as the number of frames
captured. This substantially increased the size of the
input dimension, even after sampling at a lower
framerate at the cost of accuracy.

Prior attempts at a dynamic sign interpreter

have generally been used for contexts such as
gesture recognition for smart home controllers, or
translation without real time requirements.
Generally, special hardware has been involved in
the form of gloves that send signals to the system in
order to detect lower dimensional features such as
fingertips and joints, filtered and refined. Being able
to condense the 3-D vector into a 2-D vector
seemed to be a common theme among these
preprocessing stages, so we strived to create
something similar.

Figure: Joint Detector Performing Correctly on Clear Image

Our idea for a hardware free feature
extraction scheme involved extracting the joints of
the hand on the screen, but there were a considerate
number of problems we encountered with this
approach. Firstly, the very time it took to preprocess

the individual frames to make the network operate
faster took up more response time than expected.
Secondly, the joint detector was not very robust
under settings where the background interfered.
Lighting was a very critical and sensitive factor and
often made the detection of the contours of the hand
inconsistent. Furthermore, dynamic signs could take
a lot of physical space so there can be no bounding
box where the user is directed to sign within. This
in itself is not problematic since the joint detection
is able to identify the hand, but when another hand
or the user’s face showed up in the frame, which
was usually the case, the detector would label joints
elsewhere other than on the correct hand. We have
tried using a hand detector that automatically draws
contours around where it detects the hand to be in
the frame, but this resulted in similar problems
where either parts of the hand were cut out of the
bounding region or other background features were
picked up.

Figure: Joint Detector Performing Poorly on Complex Image
without Bounding Region

There are a class of neural networks which
involve CNNs optimized for 3d inputs such as the
C3D and deep LSTMs, but these networks trained
on video inputs have reported to take days to train
on such large datasets, using high computational
power resources. Of course, one training run is
manageable but no design of a ConvNet works on
the first try. After multiple runs of different training
parameters and architectural modifications and

finding that certain feature extraction schemes do
not work, those days easily add up to weeks of
sheer training. While transfer learning and fine
tuning could be used to improve the initial weights
of the network and immensely speed up training, we
were only able to find pretrained models for our 2D
ConvNet models, such as the InceptionV3.
Moreover, the Kaggle ASL dataset for static signs
barely fit in the GPU instance that we were able to
obtain from AWS. To fit a dataset of videos in the
instance would have required trimming down the
size of the dataset. Along with storage space,
memory limitations in the AWS instance also
turned out to be a recurrent issue. Due to the size of
the weights and the size of the dataset, we were
forced to use only 10% of the Kaggle ASL dataset,
but thankfully this turned out to be sufficient for
static signs. For a larger 3DCNN with video inputs,
the memory usage would have skyrocketed, and we
would have had to use a rather small dataset. To
resolve this, we would require a much faster GPU
instance with large storage space and memory but
unfortunately AWS did not grant us access to a
larger instance than our current m5.xlarge instance
that we received upon request. So rather than to
suffer losses due to data loss, we opted to aim to
thoroughly explore and optimize our static sign
detection system instead.

Regarding the preprocessing steps, another
feature engineering plan we had was to use a binary
pixel encoding. In more detail, this involves taking
the edge filtered grayscale image and converting
each pixel to either black or white by splitting on a
brightness threshold. This would allow us to use
integers, which capture 2^32 different values, to
represent sets of 32 pixels, as opposed to one pixel
in the grayscale image. Effectively, this reduces our
input dimension by a factor of 32 and is easy to
program, but performed poorly in an image
classification setting. So while this did lend
efficiency benefits, the accuracy losses were not
worth the tradeoff.

The even more reductive feature encoding
was the joint detection classifier which reduces
every image to 22 integers. The disadvantage to this
approach is that nuances in grayscale image would
be lost. Additionally since edge detection will not
perfectly reproduce the outline of the palm and the
fingers, simplifying to black and white may cause
the outline to fragment where the edge value is not
as intense.

A final and obvious choice is removing the
preprocessing in the static signs all together, and
using the raw input to the neural network. While
this is the most expensive computationally for the
classification stage, the preprocessing stage is
significantly reduced, so it is not unreasonable to
think that the overall runtime cost may even out .
However, after testing this, we realized that it would
not achieve sufficient accuracy or efficiency, so we
quickly forgoed this idea.

V. S​YSTEM​ D​ESCRIPTION

Our ASL Interpreter is trained on a data set
of American sign language gestures using deep
learning. Using an Amazon Fire Tablet as the
platform for image data capture, OpenCV and edge
detection and feature extraction algorithms for
image data processing, the program will be run
through a Django web app utilising the OpenCV
api. The user interface is built into a webpage, and
contains a live video of the user with a box
designated as the “signing area”. The page also has
a description of the recognizable signs and an area
in which the read signs will be printed. Diagrams
of the final design are available on Figure 3.1 and
3.2 in Section III.

A. Neural Network

We designed the neural network based on
available data and our ability to parse it. We
processed the training data so the layer size is
reasonable and so the network can be trained

efficiently. Designing and tuning the neural network
comes down to how the feature extraction works. If
we were to just read in raw data from the
normalizer, the input space would be 1280 * 720.
Instead, by capturing a smaller subset of the video
frame we can reduce input layer size and focus
more on layering. Since this is the part that we can
test most rigorously, we took a lot of time on
testing, re-designing and re-tuning our layers.

Our neural network was implemented using the
Tensorflow and Keras packages. The input is the
preprocessed version of the picture frame from a
video feed captured by the tablet camera. The
output is one of the 29 signs in the alphabet, space,
delete, or nothing, which either type a letter, add an
underscore, delete the last letter, or do nothing,
respectively. Our solution approach for the
implementation approach is as follows. A
InceptionV3 base model is followed by a Flatten
layer, a Dropout layer with probability 0.5, a fully
connected layer with 29 output units followed by a
softmax activation function for multinomial
classification:

i ∈ {1, 2, …, 29})(

Figure: InceptionV3 base model

Figure: Inception module

where y is the output of the neural network and 29 =
size of output space or how many signs we are
detecting. Neural networks seek to minimize a loss
function and ours will be categorical cross entropy.
We used an Adam optimizer, which is a learning
optimization algorithm that combines AdaGrad
(separate learning rate per weight parameter) and
RMSProp (changing learning rate per iteration) to
speed up training performance and update neural
network weights. The best learning rate we found
for training the classifier is 0.0003, which we found
most successful with 10 training epochs and a batch
size of 32 on a trimmed Kaggle ASL dataset of
about 10,000 images.

B. Computer Vision

How we handle the computer vision processing is
as crucial to our project as the network is in
producing consistent and accurate results with
decent response time. Our solution approach to the
computer vision portion of the project includes
feature extraction and image processing. For feature
extraction, we are trying to pick out the important
bits of data from the overall image of a gesture to
condense and input to our neural network.

For Image processing solution we are using our
Fire Tablets’ cameras to capture the image data and
OpenCV to process the data. Through OpenCV we
performed Background Subtraction by Moving

Averages which is where average values across
frames are used to determine the moving
foreground against the stationary background. Then,
we Gaussian blur to smooth the image of minor
blotches of colors that could be misconstrued as
edges, and Canny edge detection to pick out the
edges. Furthermore, we implemented a face
detection and mask in the web app that is able to
remove the face from the image, since background
subtraction was not enough to remove the face. This
feature enabled us to erase just the face from the
image and would have allowed us to potentially use
a dynamic bounding box detector to find a hand, but
took much too long to operate on a single frame.
Thus, we disabled the face removal and used a static
bounding box, since this would not affect the user’s
usability for signing static hand signs.

While we originally planned to sample at a rate of
5 seconds, we realized throughout manual testing
that static images would not need such a high
sample rate. Furthermore, this simply would cause
the user to mistype multiple characters at a time if
they realized a letter was signed incorrectly too late.
Thus, we made the delay happen . Due to the
modularity of the OpenCV camera feed running
with the detection in the background, we are able to
give the illusion that the two components are
running in parallel, without a pause in the frontend.

C. Web Application

Initially we had considered building a native
android app for our project but soon came to the
realization that this would be too large of an
endeavor on top of the main portions of the project
due to our lack of experience with android
development Building a native app would also go
against our goal of making the app easily accessible
unless we have the expertise to develop and deploy
it on most platforms. So we decided to build a web
app for our ASL interpreter with the added
advantage of it being more easily accessible from
multiple devices than native apps.

We chose to build this app using the Django
framework because of the ease of use of Python and
the OpenCV api that is available for it. It handles
both the frontend and backend and reduces work so
you don’t have to closely manage HTML, CSS, and
JavaScript files while still having the option to do
so if needed. The app has a simple layout, showing
a live feed of the user signing, a highlighted
bounding box area where the signs will be
interpreted, and subtitle text at the bottom of the
screen filled by the text of translated signs. The app
works by displaying the live feed as a video stream
from our fire tablet using an IP webcam. Each
frame is preprocessed using background
subtraction, gaussian blur and canny edge detection
in order to reduce the neural network input size.
Then a frame with a hand present in a static
bounding box is sampled and fed to the neural
network.

D. Physical Components

Due to our project being heavily software and
signals driven we don’t have a need for much
hardware. However we wanted to show that the
project could run on an easily accessed device and
thus we decided on Amazon’s Fire Tablets. They
are affordable and lightweight and thus, perfect for
our use case. We envisioned this application to be
highly portable, so that users may run the system on
their tablet or other portable device, which they
attach to a wall in a room where they can
periodically go to sign.

V. P​ROJECT​ M​ANAGEMENT

A. Schedule

Our current full schedule can be found at the end
of the document. In general, each team member had
a task or a number of tasks to complete every week.
At the start of the project we spent a lot of time
learning, and since then we’ve followed a cycle of
research and learning, and then implementation, and

then into integration. In the end, we integrated our
individual portions and debugged them in time to
finish our project.

B. Team Member Responsibilities

In the conception phase of our project, we
maintained generalist roles as we were doing a lot
of research and learning in the topic areas that our
project covered. Once we had a general grasp of the
concepts required, we started splitting tasks
according to what areas we were most proficient at
while still maintaining general tasks when needed.

Young had the most experience with machine
learning and deep learning, so he took the lead on
developing, training, and optimizing the neural
network for recognizing ASL gestures. His
secondary responsibility was to work on the feature
extraction component of computer vision for the
project. Aaron was taking on the role of developing
the Django web app through which our ASL
Interpreter will communicate with our neural
network and his secondary responsibility was to
lead the integration of the OpenCV api into the web
app for computer vision. He also worked in tandem
with Malcolm on computer vision.

Malcolm took on computer vision, working on
OpenCV to enable the filtering of the noise out of
videos for easier feature extraction and as his
secondary responsibility, also worked on Amazon
Web Services integration for the training of our
neural network and hosting of our web app.

Oftentimes, we ended up working in pairs or in a
team when tasks proved to be too big for one person
to handle. Our main goal here was to maintain
flexibility so no one person was overwhelmed with
work.

C. Budget

Due to the nature of our project we did not have
to purchase much hardware. We purchased three
Fire 8 HD Plus tablets for each team member and

$150 of AWS credits to use the AWS instances. The
complete Bill of Materials and their associated costs
is included at the end of the report.

D. Risk Management

Our primary risk management strategy dealt with
research and experimentation after making
implementation decisions. Since we were not
buying many parts for this project and the main
focus is on development, we were allowed the
freedom to try as many approaches as we liked with
our only limiting factor being time. So when
assessing risk, we focused on the issues around
design choices and our past experiences with
various systems and technologies. We went about
balancing the risks we took on in developing this
project by weighing the benefits of learning new
technologies with the speed and comfort of using
technology we had experience with.

For example, one of the choices we made dealt
with the using physical gloves versus writing an
implementation plan that pulled sign information
straight from a video feed. We looked at
possibilities of using a physical glove with sensors
as well as a glove with color targets on fingertips in
order to provide extra parseable information for the
neural network to learn. The other side of this
choice was creating a system to fully parse the hand
sign information from the video feed. This would
require much more clever design and
implementation choices, but ultimately also lead to
a more challenging problem and worthwhile
learning experience.

At the same time, this choice also helps our
learning process, since the databases we had
available were just raw image data. If we were to
have added physical gloves, we would have to
heavily augment our training data or completely
recreate data. This is because we would need to
train on the physical sensor data as well as the video
data, and they would need to be synced. Therefore,
it was more worthwhile to choose the approach that

made our problem more difficult without causing us
to recreate all of the data ourselves.

VI. R​ELATED​ W​ORK

We were really only able to find one product that
was the same as the product that we are trying to
produce. MotionSavvy, which emerged from ​the
Leap Motion accelerator AXLR8R​, built a tablet
case that leveraged the power of ​the Leap Motion
controller in order to translate American Sign
Language into English and vice versa. This product
was built entirely by a ​6-person team of which all
were deaf.

VII. S​PECIAL​ T​HANKS​ ​TO​ AWS

The making of this project would not have been
possible without the help of the AWS m5.4xlarge
instance, which significantly improved computation
speed, storage space, and memory capacity
compared to our local machines. It enabled us to
train and retrain our models in under an hour, which
allowed us to truly optimize them with time to
spare. We used a total of around $42 worth of
credits, mostly through the m5.4xlarge instance.

VIII. S​UMMARY

In summary, our system was able to meet our
design specifications. It hits a limit of recognizing
29 signs at an accuracy of 95% for static signs.
Possible next steps we could take include further
attempts at a dynamic bounding box as well as
recognizing dynamic signs.

A. Future work

Currently our project only implements a mix of
29 American Sign Language static signs, and that is
what we planned to have produced at the end of this
semester. However, thinking about the future of our
project, it would be interesting to add more gestures

and grammar to make it more useful in daily life.

B. Lessons Learned

We would say to other student groups that are
attempting similar neural network based problems
that it is important to start exploring data
representation early into the project. Being able to
abstract relevant information in a problem is
important since it lets you more easily develop a
neural network architecture as well as train the
network. Designing the neural network itself is also
likely going to fail the first time and keeping this
assumption in mind is a good idea For training
based projects, being able to train multiple
implementations in parallel via AWS instances has
been very time saving. Setting up AWS is also
nontrivial and sometimes clunky if you have to
transfer data in and out a lot, but ultimately it was
our only option with our limited computational
resources Otherwise we just recommend getting
started early!

X. R​EFERENCES

1. Li, Dongxu, et al. “Word-Level Deep Sign
Language Recognition from Video: A New
Large-Scale Dataset and Methods
Comparison.” ​ArXiv.org​, 21 Jan. 2020,
arxiv.org/abs/1910.11006.

2. “ASLLRP DAI.” ​DAI - ASLLVD​,
www.bu.edu/asllrp/av/dai-asllvd.html.

3. 10-601 Panopto Recordings (Machine
Learning),
https://scs.hosted.panopto.com/Panopto/Pages/
Sessions/List.aspx#folderID=%22eb329349-cb
74-47a2-8e0d-abc000e95971%22

4. Akash. “ASL Alphabet.” ​Kaggle​, 22 Apr.
2018,
www.kaggle.com/grassknoted/asl-alphabet?sel
ect=asl_alphabet_train.

https://beta.techcrunch.com/2014/01/31/leap-axlr8r/
https://beta.techcrunch.com/2014/01/31/leap-axlr8r/
https://www.leapmotion.com/
https://www.leapmotion.com/
http://www.motionsavvy.com/#team
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx#folderID=%22eb329349-cb74-47a2-8e0d-abc000e95971%22
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx#folderID=%22eb329349-cb74-47a2-8e0d-abc000e95971%22
https://scs.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx#folderID=%22eb329349-cb74-47a2-8e0d-abc000e95971%22

5. Akash. “ASL Alphabet.” ​Kaggle​, 22 Apr.
2018,
www.kaggle.com/grassknoted/asl-alphabet?sel
ect=asl_alphabet_train.

6. Gupta, Vikas. “Hand Keypoint Detection
Using Deep Learning and OpenCV.” ​Learn
OpenCV​, 8 Oct. 2018,
www.learnopencv.com/hand-keypoint-detectio
n-using-deep-learning-and-opencv/.

Item Cost Description Status

Fire 8 HD
Plus
Tablet

$89.99
Purchased
on Amazon

Arrived

Fire 8 HD

Plus
Tablet

$89.99 Purchased
on Amazon

Arrived

Fire 8 HD
Plus
Tablet

$89.99
Purchased
on Amazon

Arrived

Amazon
Web
Service
Credits

$150 Purchased
on AWS

Redeemed

Total $419.97

